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Abstract 

This paper demonstrates that Sharnir’s scheme (“How to share a secret”, Communications of rhe ACM, vol. 22, no. 11, 

November 1979,612-613) is not secure against cheating. A small modification to his scheme retains the security and 

efficiency of the original, is secure against cheating, and preserves the property that its security does not depend on any 

unproven assumptions such as the intractability of computing number-theoretic functions. 

1. How to Cheat when Sharing a Secret 

Shamir [7] proposed and solved a problem in which a secret known only to one party is to be divided among n other 

participants. This is to be done in such a way that a certain number k of these participants is necessary and sufficient 

to reconstruct the secret. Each individual participant knows n,  k ,  and the set of possible values of the secret. The 

problem is stated more precisely as follows: 

Inputs: 

0 Nonnegative integers n, s, and k 5 n 

A “secret” D E { O ,  1, _ _ _  . s - 1). 

Problem: Divide D into “shares” D,, D2, , . . , D, such that 

(a) knowledge of any k shares is sufficient to efficiently reconstruct D. and 

(b) knowledge of any k - 1 shares provides no more information about the value of D than was known before 
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Such a scheme would be useful. for example. when some data must be replicated over n locations (say, for convenience 

or fault tolerance), and simultaneously must be protected from k - 1 security violations (for example, due to sensitivity 

of the data or mistrust among the participants). 

Shamir’s solution is simple, elegant and, unlike most other protocols related to cryptography, not dependent on any 

unproven assumptions about the complexity of computing certain number-theoretic functions. Shamir’s scheme for 

dividing D into shares is as follows: 

1. 

2. 

3. 

Choose any primep 2 max(s, n + I). Let 2, represent the field of integers modulop. 

Choose a,. 4. ... , uk-, E 2, randomly. uniformly, and independently. 

Let q ( x )  = D + a,x + q$ i- ... + U ~ - + - ~ .  

4. 

Properties (a) and (b) now follow from the interpolation theorem, which states that k points are necessary and sufficient 

to determine q ( x )  . (Details are given in the next section.) 

Let D, = q(i) .  for all 1 5 i 5 n. {The evaluation of q(i) is done over Z,.) 

Since the scheme is intended to be useful in applications involving mistrustful participants, the following property is 

desirable in addition to (a) and (b): 

(c) There only a small probability F > 0 that any k - 1 participants i,, i,, ... , ik-l can fabricate new shares 

D’,,, D’,*, ... , Dr,k-, that deceive a kth participant it. Here, deceiving the kth participant means that, from 

D’,,, D‘,,, ... . D’,k-l. and 9, . the secret D’ reconstructed is “legal” (is., D‘ E {O, 1, . _ _  , s - I)), but “incorrect” 

(is., D’ # D ) .  

The desirability of condition ( c )  is particularly clear when k = 2. Without condition (c), a cheater can obtain D while 

simultaneously, and without being detected, convincing a second participant of an incorrect secret. Notice that the 

stronger version of condition (c) resulting when E = 0 is unattainable. This is due to the fact that condition (b) implies 

that for any share D,, of the secret D and any legal but incorrect secret D‘ # D there must exist Dr, l ,  D‘,,, .. . , D’p-l such 

that the collection of shares [Drc,.  D’,2, . . . , Dr,k-, ,  D,,] represents the secret D’, thus deceiving the kth participant. 

Unfortunately. Shamir’s scheme is not secure against such cheating. Firstly, if p = s then all reconstructed secrets are 

legal. so that it is impossible for the kth participant to detect cheating. One might guess from this that Shamir’s scheme 

can be made secure by choosing p much greater than s, since then there would be only a slight chance of the recon- 

structed secret being legal. The following example shows that this is not the case. In fact, with high probability a single 

participant can deceive k - 1 others. 

Suppose that participants i,, i,. . . . . it agree to pool their shares. Participant i,. who decides to cheat, uses interpolation 

to find 3 polynomial A(x) of degree at most k - 1 such that A(0) = -1  and A(i,)  = A(iJ = ... = 4(’ I*) = 0. Having 

been given the share D,,, participant i, announces instead the share D,, + l ( i , ) .  Now the interpolation theorem guar- 

antees that the k participants will reconstruct the polynomial q(x )  + A(x), which has constant term 

q(0) + A(0) = D - 1. Thus. the deception will go undetected unless the original secret happened to be D = 0. 
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In the next section, it is shown that a small modification of Shamir’s scheme has all 3 of properties (a), (b), and (c). (In 

fact, even knowledge of both the secret D and the polynomial q ( x )  does not increase the probability of successful 

deception.) Furthermore the running time is polynomial in k, n, logs and log(l/e). 

One straightforward solution to the problem of cheating is to have the distributor of shares sign each share 0. with an 

unforgeahle signature (such as that proposed in [ 5 ] ) .  This is, in fact, exactly the solution that Rabin [6] chose when he 

used Shamir’s scheme to solve the problem of agreement among distributed processes that might cheat. There are 2 

advantages of our scheme over the use of Shamir’s scheme plus signatures: 

I .  All currently known signature schemes depend upon such unproven hypotheses as the intractability of integer 

factorization, whereas our secret sharing scheme, like Shamir‘s, does not. In fact, our scheme is secure even if the 

conspirators have unlimited computational resources. 

Our scheme is exactly as easy to implement as Shamir’s, thus avoiding the complications of implementing an 

additional signature scheme. 

2. 

A recent paper [2] introduced a related problem called “verifiable secret sharing”. This problem is in some sense more 

general than ours, since the distributor of secrets, like the other participants, is not above cheating. In particular, the 

problem requires that the distribution of inconsistent pieces be detected. AU known solutions, including the best SO far 

[3], rely on unproven assumptions such as the intractability of integer factorization or the existence of secure encryption 

schemes. Thus, they have the disadvantages mentioned previously in the discussion of signature schemes. 

2. You Can Fool Some of the People AU of the Time 

This section shows how to modify Shamir’s scheme so that the probability of undetected cheating is less than E. for any 

E > 0. 

1. 

2. 

3. 

4. 

Choose any primep > max((s - 1) ( k  - I ) / €  + k ,  n )  

Choose u,, 4. . . . , uk-l in 2, randomly, uniformly, and independently. 

Let q ( x )  = D + alx + w2 + . . .  + uk-,xL-I. 

Choose (x,.+, ... ,xJ uniformly and randomly from among all permutations of n distinct elements from 

(1, 2, . . . . p  - 1 { . Let 0, = (x,, d,) , where d, = q(x , ) .  

Note that the key difference between this and Shamir’s scheme occurs in step 4. The proofs of propertites (a) and (b) 

were given by Shamir, and are presented here for completeness. 

( 3 )  Any k participants can determine the secret uniquely by interpolarion. since the points x,, &, . . . , x, are distinct. 

(b) Suppose participants i,. &, . . . , ik- ,  conspire to determine the secret without consulting participant ik . When the 

values of D and x.,. I,?, ... , x , ~ - ,  are fixed, q(x , , ) .  q(Q, ... , q(x,k- l )  are functions of the random variables 

a,, &, .. . , at-, . Using the interpolation theorem and the mutual independence of al, $, .._ , it is straightfor- 

ward to show that those k - 1 values q(x,,) ,  q(x, , ) ,  . . . . q ( . ~ , ~ - ~ )  are uniformly distributed and mutually in&- 
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pendent. Hence, the secret shares D,l, D,z, ... , D,k-l provide no more information about the value of D than do 

random numbers. (This proof is somewhat more general than Shamir's, since his assumes that D is chosen by some 

random process, or at least viewed that way by the conspirators.) 

(c) It remains to explore the probability of deceiving another participant. It will be shown that property (c) holds even 

if the k - 1 cheaters know q(x ) ,  and hence know the secret. Suppose participants i,, 5, _ _ _  , ik-, fabricate values 

(x'~,, d , , ) , ( ~ ' , ~ ,  d,,), . . . , (x ' .~-~,  d,k- l )  to send to participant it, Each possible secret D' 6 {O, 1, . . . , s - 11 defines 

a distinct polynomial qU(x)  of degree at most k - 1 passing through the point (0, D') and the fabricated points 

above. If D' # D, such a polynomial q&) can intersect q ( x )  in at most k - 1 points. Participant ik will reconstruct 

the incorrect secret D' only if qO(x,,) = q(x,,) and D' # D. Recall that x , ~  is a random element of { 1,2, . . . , p - 11 

- Ix,,, &z, .. . , x,,-~ l .  Thus for each polynomial q&) with D' # D the probability that qU(x,J = q(x,,) is at most 

(k - l)/(p - k ) .  There are s - 1 legal but incorrect secrets, so the fabricated values yield s - 1 corresponding 

polynomials. Any one of these polynomials would deceive participant ik with probability at most 

( k  - I ) /@ - k ) .  Thus the probability of deceiving participant ik is at most (s - l ) (k - I ) / @  - k )  < e .  

It will now be shown that this scheme runs in expected time polynomial in k. n. logs, and log( l /e) .  It suffices to 

demonstrate that the expected time is polynomial in k ,  n and logp, since p may always be chosen so that logp is linear 

in log k,  log n, logs, and log(l/E). A certified prime p of this magnitude can be found in expected time polynomial in 

log p [4]. The random choice of a,, 4. . . . , ak-, and (xi, 3, . . . , x.) can be done in expected time polynomial in k ,  R, and 

logp, as can the evaluation of q ( x )  at n points over Z,. Finally, interpolating k points over 2, can be done in time 

polynomial in k and l o g p  [I]. 

3. How to Keep a Secret from Cheaters 

Unfortunately, although cheaters arc detected with high probability, they obtain the secret while the other participants 

gain no information about the secret. The reader can probably imagine applications in which this would be unaccept- 

able. 

A simple solution is to introducr a dummy legal value, say s, that is never used as the value of a real secret. The true 

secret D is now encoded as a sequence D"'. D'*'. . . , , D"' where D'" = D for some i chosen randomly, and D'" = s for 

a l l j  # I .  Each element of this sequence is then divided into shares using the scheme of section 2. 

When k participants agree to pool their shares, they reconstruct D"'. D'?', . . . one at a time, until some D"' # s is 

obtained. If D"' is not legal, then cheating has occurred. The probability of cheating on the one crucial round while 

going undetected at any possible earlier cheats is less than 

(This can be proven more formally by induction on t. Recall thai even if the cheater suspects the secret is s, the prob- 

ability of undetected cheating is at most 9 . )  
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