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Abstract. This paper demonstrates that Shamir's scheme [10] is not secure against 
certain forms of cheating. A small modification to his scheme retains the security 
and efficiency of the original, is secure against these forms of cheating, and preserves 
the property that its security does not depend on any unproven assumptions such 
as the intractability of computing number-theoretic functions. 
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1. How To Cheat When Sharing a Secret 

Shamir [10] proposed and solved a problem in which a secret known only to one 
party is to be divided among n other participants. This is to be done in such a way 
that a certain number k of these participants is necessary and sufficient to reconstruct 
the secret. Each individual participant knows n, k, and the set of possible values of 
the secret. The problem is stated more precisely as follows: 

Inputs. 

• Nonnegative integers n, s, and k ___ n. 
• A "secret" D e {0, 1 . . . .  , s - 1 }. 

Problem. Divide D into "shares" D1, D2, . . . ,  Dn such that: 

(a) Knowledge of any k shares is suffcient to reconstruct D efficiently. 
(b) Knowledge of any k - 1 shares provides no more information about  the value 

of D than was known before. 

Such a scheme would be useful, for example, when some data must be replicated 
over n locations (say, for convenience or fault tolerance), and simultaneously must 

1 This material is based in part upon work supported by the National Science Foundation under 
Grant Nos. DCR-8301212 and DCR-8352093. Part of the work was performed while the second author 
was a visitor at the IBM Thomas J. Watson Research Center. 
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be protected from k - 1 security violations (for example, due to sensitivity of the 
data or mistrust among the participants). 

Shamir's solution is simple, elegant, and, unlike most other protocols related to 
cryptography, not dependent on any unproven assumptions about the complexity 
of computing certain number-theoretic functions. Shamir's scheme ~ror dividing D 
into shares is as follows: 

1. Choose any prime p > max(s, n + 1). Let Zp represent the field of integers 
modulo p. 

2. Choose at,  a2 , . . . ,  ak-~ ~ Zp randomly, uniformly, and independently. 
3. Let q(x) = D + a l x  + a2x 2 + ""  + ak_lX k-t.  

4. Let Di = q(i), for all 1 < i < n. (The evaluation of c1(i) is done over Zp.) 

Properties (a) and (b) now follow from the interpolation theorem, which states that 
k points are necessary and sufficient to determine q(x). (Details are given in the next 
section.) For later reference, the interpolation theorem is stated here. The reader is 
referred to Lipson [8] for a thorough treatment. 

Interpolation Theorem. For any f ield F, for  any k distinct elements x t, x 2 . . . . .  Xk ~ F, 
and for  any k elements Yt,  Y2 . . . . .  Yk ~ F, there exists a unique polynomial ct(x) ~ F i x ]  
with degree less than k such that q(xl) = Yl for  all 1 < i < k. 

Since the scheme is intended to be useful in applications involving mistrustful 
participants, the following property is desirable in addition to (a) and (b): 

(c) There is only a small probability e > 0 that any k - 1 participants i t, iz . . . . .  ik-1 
can fabricate new shares D'. D' D! that deceive a kth participant ik. 

~1 ' 1 2 '  " " " ' L k - I  

Here, deceiving the kth participant means that, from D~, D[2 . . . . .  D~_~, and 
Dik, the secret D' reconstructed is "legal" (i.e., D' e (0, 1 . . . . .  s - 1}), but 
"incorrect" (i.e., D' ~ D). 

The desirability of condition (c) is particularly clear when k = 2. Without condition 
(c), a cheater can obtain D while simultaneously, and without being detected, 
convincing a second participant of an incorrect secret. 

Notice the stronger version of condition (c) resulting when e = 0 is unattainable. 
This is due to the fact that condition (b) implies that, for any share Di~ of the secret 
D and any legal but incorrect secret D' :~ D, there must exist D~, D" 2 . . . .  , D~_, 
such that the collection of shares ~'D'. D' , D' t ,1, ,2 . . . .  ,~_1, Di~ } represents the secret D, 
thus deceiving the kth participant. 

Unfortunately, Shamir's scheme is not secure against such cheating. Firstly, if 
p = s then all reconstructed secrets are legal, so that it is impossible for the kth 
participant to detect cheating. We might guess from this that Shamir's scheme can 
be made secure by choosing p much greater than s, since then there would be only 
a slight chance of the reconstructed secret being legal. The following example shows 
that this is not the case. In fact, with high probability a single participant can deceive 
k - 1 others. 

Suppose that participants i t, i 2 . . . . .  ik agree to pool their shares. Participant i I, 
who decides to cheat, uses interpolation to find a polynomial A(x) of degree at 
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most k - 1 such that A(0) = - 1 and A(i2) = A(i a) = " "  = A(ik) = 0. Having been 
given the share Dit, participant i 1 announces instead the share D~I + A(il). Now 
the interpolation theorem guarantees that the k participants wilt reconstruct the 
polynomial q(x)  + A(x), which has constant term q(0) + A(0) = O - 1. Thus, the 
deception will go undetected unless the original secret happened to be D = 0. 

In the next section it is shown that a small modification of Shamir's scheme has 
all three properties (a), (b), and (c). (In fact, even knowledge of both the secret D and 
the polynomial q(x) does not increase the probability of successful deception.) 
Furthermore, the expected running time is polynomial in k, n, log s, and log(I/e). 

One straightforward solution to the problem of cheating is to have the distributor 
of shares sign each share D~ with an unforgeable signature (such as that proposed 
in [7]). This is, in fact, exactly the solution that Rabin [9] chose when he used 
Shamir's scheme to solve the problem of agreement among distributed processes 
that might cheat. There are two advantages of our scheme over the use of Shamir's 
scheme plus signatures: 

1. All currently known signature schemes depend upon such unproven hypotheses 
as the intractability of integer factorization, whereas our secret sharing scheme, 
like Shamir's, does not. In fact, our scheme is secure even if the conspirators 
have unlimited computational resources. 

2. Our scheme is exactly as easy to implement as Shamir's, thus avoiding the 
complications of implementing an additional signature scheme. 

A recent paper [4] introduced a related problem called "verifiable secret sharing." 
This problem is in some sense more general than ours, since the distributor of 
secrets, like the other participants, is not above cheating. In particular, the problem 
requires that the distribution of inconsistent shares be detected. All known solu- 
tions, including the best so far [3], [5], [6], rely on unproven assumptions such as 
the intractability of integer factorization or the existence of secure encryption 
schemes. Thus, they have the disadvantages mentioned previously in the discussion 
of signature schemes. 

2. You Can Fool Some of the People All of the Time 

This section shows how to modify Shamir's scheme so that the probability of 
undetected cheating is less than e, for any e > 0. 

1. Choose any prime p > max((s - 1)(k - 1)/5 + k, n). 
2. Choose a 1, a z . . . . .  ak-1 ~ Zp randomly, uniformly, and independently. 
3. Let q(x)  = D + a l x  + a2 x2 + . . .  + ak_lX k-1. 
4. Choose (xl, Xz . . . . .  xn) uniformly and randomly from among all permuta- 

tions ofn  distinct elements from {1, 2 . . . . .  p - 1}. Let Dg = (x,, di), where d~ = 
q(xi). 

Note that the key difference between this and Shamir's scheme occurs in step 4. 
The proofs of properties (a) and (b) were given by Shamir, and are sketched here 
for completeness. 
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(a) Any k participants can determine the secret uniquely by interpolation, since 
the points xt ,  x2 . . . . .  x~ are distinct. 

(b) Suppose participants it, i2 . . . . .  ik-t conspire to determine the secret without 
consulting participant ik. When the values of D and xil, x~2, . . . ,  x~k_l are fixed, 
q (x~), q(xt2), . . . ,  q(xi~_~ ) are functions of the random variables a 1, a2 . . . . .  ak-1. 
Using the interpolation theorem and the mutual independence of a l ,  a2, . . . ,  
as-t ,  it can be shown that those k - 1 values q(x~), q(xi2) . . . . .  q(x~k_~) are 
uniformly distributed and mutually independent. Hence, the secret shares 
D~,, D~, . . . ,  D~_, provide no more information about the value of D than do 
random numbers. (This proof is somewhat more general than Shamir's, since 
his assumes that D is chosen by some random process, or at least viewed that 
way by the conspirators.) 

(c) It remains to. explore the probability of deceiving another participant. It will 
be shown that property (c) holds even if the k - 1 cheaters know q(x), and 
hence know the secret. Suppose participants i t, i 2 . . . . .  ik_ ~ fabricate values 
(xi~ , di~), (x~2, d~), Cx' d' ' ' ' . . . ,  t ~_~, ~_~, to send to participant i~. Each possible 
secret D' s {0, 1 . . . . .  s - I} defines a distinct polynomial qD.(x) of degree at 
most k - i passing through the point (0, D') and the fabricated points above. 
I fD '  ~ D, such a polynomial qu,(X) can intersect q(x) in at most k - 1 points. 
Participant ik will reconstruct the incorrect secret D' only if qD,(x~) = q(x~) 
and D '% D. Recall that x:~ is a random element of {1, 2 . . . . .  p -  1 } -  
{x~, x~ . . . . .  x~_, }. Thus for each polynomial qo,(x) with D' ~ D the prob- 
ability that qn,(x~k) = q(x~) is at most (k - 1)/(p - k). There are s - i legal 
but incorrect secrets, so the fabricated values yield s -  1 corresponding 
polynomials. Any one of these polynomials would deceive participant ik 
with probability at most (k - 1)/(p - k). Thus the probability of deceiving 
participant i~ is at most (s - t)(k - 1)/(p - k) < e. 

It wilt now be shown that this scheme runs in expected time polynomial in k, n, 
log s, and log(l/e). It suffices to demonstrate that the expected time is polynomial 
in k, n, and log p, since p may always be chosen so that log p is linear in log k, 
log n, log s, and log(I/e). A certified prime p of this magnitude can be found in 
expected time polynomial in log p [ t ] .  The random choice of a 1, a z . . . . .  ak-1 and 
(xt, x2 . . . . .  x~) can be done in expected time polynomial in k, n, and log p, as can 
the evaluation of q(x) at n points over Zp. Finally, interpolating k points over Zp 
can be done in time polynomial in k and log p [2], [8]. 

3. How To Keep a Secret from Cheaters 

Unfortunately, although cheaters are detected with high probability, they obtain 
the secret while the other participants gain no information about the secret. The 
reader can probably imagine applications in which this would be unacceptable. 

A simple solution is to augment the set {0, 1 . . . . .  s - 1} of legal values by the 
addition of a dummy legal value, say s, that is never used as the value of a real 
secret. The true secret D is now encoded as a sequence D tt), D ~2~, . . . ,  D Co where 
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D (° = D for some i chosen r andomly  and  uniformly, and  D u3 = s for all j ¢ i. 
Each element of  this sequence is then divided into shares using probabil is t ical ly 
independent  appl icat ions of  the scheme of Section 2. 

When  k par t ic ipants  agree to pool  their  shares, they reconstruct  D m, D~2),... one 
at a time, until some D °~ ¢ s is obtained.  This  terminates  the protocol .  I f  D °~ is not  
legal, then cheating has occurred. 

Let  i denote  the round  for which D ~) = D; i is a r a n d o m  variable whose value 
is unknown  to the cheaters. Let  the cheaters  choose their  op t imal  strategy. Let  
ei denote  the event tha t  the pro tocol  does  not  terminate  before round  i and  the 
cheaters  submit  fabricated shares at  r ound  i; e~ is the bad  event  to which the first 
pa rag raph  of  this section alluded. Finally,  let p(t) = Pr(ei). Then  p(t) < (1 - e)-i  t - l ,  
by induct ion on t: 

B a s i s ( t =  l). p(t) N l < ( 1 - e )  -1. 

Induct ion (t > 1). Let  Pt denote the p robabi l i ty  with which the cheaters decide to 
submit  fabricated shares at round  1. Let  s t denote  the event that  the p ro toco l  does 
not  terminate  in round  1. Then 

p(t) = Pr(i = 1) Pr(eili = 1) + Pr(i  > 1) Pr(s l l i  > 1) Pr(e:]i > l&s l )  

= t - t p l  + (t - 1 ) t - t ( p l e  + (1 - p t ) )p ( t  - 1) 

< t - l ( p t  q- (t -- 1)(p~e + (1 -- p t ) ) ( t  --  e)- t( t  -- t) -1) 

= (1 - e ) - t t  - t .  
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