
How to Sign Digital Streams 

Rosario Gennaro and Pankaj Rohatgi 

I.B.M.T.J.Watson Research Center 

P.O.Box 704, Yorktown Heights, NY 10598, U.S.A. 

Email: rosario, rohatgi@watson, ibm. com 

Abstract. We present a new efficient paradigm for signing digital streams. The 

problem of signing digital streams to prove their authenticity is substantially differ- 
ent from the problem of signing regular messages, Traditional signature schemes 

are message oriented and require the receiver to process the entire message before 

being able to authenticate its signature. However, a stream is a potentially very 

long ( or infinite) sequence of bits that the sender sends to the receiver and the 

receiver is required to consumes the received bits at more or less the input rate 

and without excessive delay. Therefore it is infeasible for the receiver to obtain 
the entire stream before authenticating and consuming it. Examples of streams 

include digitized video and audio files, data feeds and applets. We present two 

solutions to the problem of authenticating digital streams. The first one is for the 

case of a finite stream which is entirely known to the sender (say a movie). We 

use this constraint to devise an extremely efficiem solution. The second case is 

for a (potentially infinite) stream which is not known in advance to the sender (for 

example a live broadcast). We present proofs of security of our constructions. Our 

techniques also have applications in other areas, for example, efficient authenti- 

cation of long files when communication is at a cost and signature based filtering 
at a proxy server. 

1 Introduction 

Digital Signatures (see [5, 17]) are the cryptographic answer  to the prob lem o f  

information authenticity. When a recipient receives digitally s igned informat ion 

and she is able to verify the digital signature then she can be certain that the 

information she received is exactly the same as what the sender  (identified by  his 

public key)  has' signed. Moreover, this guarantee is non-repudiable, i.e., the enti ty 

identified by the public key cannot later deny having signed the information.  Thus ,  

the recipient  can hold the signer responsible for the content she receives.  I 

H o w e v e r  current digital signature technology was designed to ensure  message  

authentication and its straightfo~'ard application does not yield a sat isfactory 

1 This distinguishes digital signatures from message authentication codes (MAC) which allow 

the receiver to have confidence on the identity of the sender, but not to prove to someone else 
this fact, i.e. MAC's are repudiahle. 



181 

solution when applied to information resources which are not message-like. In this 

paper we discuss one such type of resource: streams. We point out shortcomings in 

several approaches (some of  them used in practice) to tackle the problem of  signing 

streams and then present our solution which does not have such shortcomings. 

1.1 Streams Defined 

A stream is a potentially very long (infinite) sequence of  bits that the sender sends 

to the receiver. The stream is usually sent at a rate which is negotiated between 

the sender and receiver or there may be a demand-response protocol in which the 

receiverrepeatedly sends requests for additional (finite) amount of  data. The main 

features of streams which distinguish them from messages is that the receiver must 

consume the data it receives at more or less the input rate, i.e., it can't  buffer large 

amounts of unconsumed data. In fact in many applications the receiver stores 

relatively very small amounts of the stream. In some cases the sender itself may 

not store the entire sequence, i.e., it may not store the information it has already 

sent out and it may not know anything about the stream much beyond what it has 

sent out. 

There are many examples of digital streams. Common examples include digitized 

video and audio which is now routinely transported over the Interact and also 

to television viewers via various means, e.g., via direct broadcast satellites and 

very shortly via cable, wireless cable, telephone lines etc. This includes both pre- 

recorded and stored audio/video programming as well as live feeds. Apart from 

audio/video, there are also data feeds (e.g., news feeds, stock market quotes etc) 

which are best modeled as a stream. The Intemet and the emerging interactive TV 

industry also provides another example of an information resource which is best 

modeled as a stream, i.e., applets. Most non-trivial applets are actually very large 

programs which are organized into several modules. The consumer's  machine 

first downloads and executes the startup module and as the program proceeds, 

additional modules are downloaded and executed. Also, modules which are no 

longer in use may be discarded by the consumer machine. This structure ofapplets 

is forced by two factors. Firstly the amount of  storage available on the consumer 

machine may be limited (e.g., in the emerging interactive TV industry set-top 

boxes have to be cheap and therefore resource limited).  Secondly (in the case 

o f  the Intemet), the bandwidth available to download code may be limited and 

applets must be designed to start executing as soon as possible. Also it is quite 

likely that some of the more sophisticated applets may have data-rich components 

generated on the fly by the applet server. Therefore applets fit very nicely into the 

demand/response streams paradigm. 

Given the above description, it is clear that message oriented signature schemes 

cannot be directly used to sign streams since the receiver cannot be expected to 

receive the entire stream before verifying the signature. If  a stream is infinitely 



182 

long (e.g., the 24-hours news channel), then it is impossible for the receiver to 

receive the entire stream and even if a stream is finite but long the receiver would 

have to violate the constraint that the stream needs to be consumed at roughly the 

input rate and without delay. 

1.2 Previous Solutions and their Shortcomings 

Up to the authors' knowledge there has been no proposed specific solution to 

the problem of signing digital streams in the crypto literature. One can envision 

several possible solutions, some of  them are actually proposed to be used in 

practice. 

One type of solution splits the stream in blocks. The sender signs each individual 

block and the receiver loads an entire block and verifies its signature before 

consuming it. This solution also works if the stream is infinite. However  this 

solution forces the sender to generate a signature for each block of  the stream and 

the receiver to verify a signature for each block. With today's signature schemes 

either one or both of these operations can be very expensive computationally. 

Which in turns means that the operations of signing and verifying can create a 

bottleneck to the transmission rate of the stream. 

Another type of  solution works for only finite streams. In this case, once again 

the stream is split into blocks. Instead of signing each block, the sender creates 

a table listing cryptographic hashes of each of  the blocks and signs this table. 

When the receiver asks for the authenticated stream, the sender first sends the 

signed table followed by the stream, The receiver first receives and stores this 

table and verifies the signature on it. If the signature matches then the receiver 

has the authenticated cryptographic hash of each of blocks in the stream and thus 

each block can be verified when it arrives. The problem with this solution is 

that it requires the storage and maintenance of a potentially very large table on 

the receiver's end. In many realistic scenarios the receiver buffer is very limited 

compared to the size of the stream, (e.g., in MPEG a typical movie  may be 20 

GBytes whereas the receiver buffer is only required to be around 250Kbytes). 

Therefore the hash table can itself become fairly large (e.g., 50000 entries in this 

case or 800Kbytes for the MD5 hash function) and it may not be possible to store 

the hash table itself. Also, the hash table itself needs to be transmitted first and 

if it.is too large then there will be a significant delay before the first piece of  the 

stream is received and consumed. To address the problem of  large tables one can 

also come up with a hybrid scheme in which the stream is split in consecutive 

pieces and each piece is preceded by a small signed table of  contents. 2 

2 This is the case now (Java Developer Kit 1.1) for large signed java applets which are distributed 

as a eoUection of Java archives (JAR) where each archive has a signed table of hashes of 

contents and the archives are loaded in the order given in the HTML page in which the applet 

is embedded. 



183 

The above solution can be further modified by using an authentication tree: the 

blocks are placed as the leaves of a binary tree and each internal node takes as a 

value the hash of its children (see [13].) This way the sender needs to sign and 

send only the root of  this tree. However in order to authenticate each following 

block the sender has to send the whole authentication path (i.e. the nodes on the 

path from the root to the block, plus their siblings) to the receiver. This means that 

if  the stream has k blocks, the authentication information associated with each 

block will be O(log k). 

As we will see briefly our solution eliminates all these shortcomings. The basic 

idea works for both infinite and finite streams, only one expensive digital signature 

is ever computed, there are no big tables to store, and the size of  the authentication 

information associated with each block does not depend on the size of  the stream. 

NON-REPUDIATION. Notice that if the receiver were only interested in establishing 

the identity of  the sender, a solution based on MAC would suffice. Indeed once 

the sender and receiver share a secret key, the stream could be authenticated block 

by block using a MAC computation on it. Since MAC's are usually faster than 

signatures to compute and verify, this solution would not incur the computational 

cost associated with the similar signature-based solution described above. 

However a MAC-based approach would not enjoy the non-repudiation property. 

We stress that we require such property for our solution. Also in order for this 

property to be meaningful in the context of  streams we need to require that each 

prefix of the stream to be non-repudiable. That is, if the stream is B = B1, B 2 , . . .  

where each Bi is a block, we require that each prefix Bi = B 1 . . .  B~ is non- 

repudiable. This rules out a solution in which the sender just attaches a MAC to 

each block and then signs the whole stream at the end. 

This is to prevent the sender from interrupting the transmission o f  the stream 

before the non-repudiability property is achieved. Also it is a g~arantee for the 

receiver. Consider indeed the following scenario: the receiver notices that the 

applets she is downloading are producing damages to her machine. She interrupts 

the transfer in order to limit the damage, but at the same time she still wants some 

proof to bring to court that the substream downloaded so far did indeed come 

from the sender. 

1.3 Our  solution in a nutshel l  

Our solution makes some reasonable/practical assumptions about the nature of 

the streams being authenticated. 

First of all we assume that it is possible for the sender to embed authentication 

information in the stream. This is usually the case, see Section 7 to see how to do 

this in most real-world situations like MPEG video/audio. We also assume that 

the receiver has a "small" buffer in which it can first authenticate the received bits 



184 

before consuming them. Finally we assume that the receiver has processing power 

or hardware that can compute a small number of  fast cryptographic checksums 

faster than the incoming stream rate while still being able to play the stream in 

real-time. 

The basic idea of our solution is to divide the stream into blocks and embed some 

authentication information in the stream itself. The authentication information of 

the ~th block will be used to authenticate the (i + 1) "r block. This way the signer 

needs to sign just the first block and then the properties of  this single signature 

will "propagate" to the rest of the stream through the authentication information. 

Of  course the key problem is to perform the authentication of  the internal blocks 

fast. We distinguish two cases. 

In the first scenario the stream is finite and is known in its entirety to the signer in 

advance. This is not a very limiting requirement since it covers most  of  the Internet 

applications (digital movies, digital sounds, applets). In this case we will show 

that a single hash computation will suffice to authenticate the internal blocks. The 

idea is to embed in the current block a hash of the following block (which in turns 

includes the hash of the following one and so on...) 

The second case is for (potentially infinite) streams which are not known in 

advance to the signer (for example live feeds, like sports event  broadcasting 

and chat rooms). In this case our solution is less optimal as it requires several 

hash computations to authenticate a block (although depending on the embedding 

mechanism these hash computations can be amortized over the length of  the 

block). The size of the embedded authentication information is also an issue in 

this case. The idea here is to use fast 1-time signature schemes (introduced in 

[11, 12]) to authenticate the internal blocks. So block i will contain a l-time 

public key and also the 1 -time signature of itself with respect to the key contained 

in block i - 1. This signature authenticates not only the stream block but also the 

1-time key attached to it. 

1.4 Related Work 

Some of  the ideas involved in the solution for unknown streams have appeared 

previously, although in different contexts and with different usage. 

Mixing "regular" signatures with 1-time signatures, for the purpose of  improving 

efficiency is discussed in [7]. However in that paper the focus is in making the 

signing operation of  a message M efficient by dividing it in two parts. An off-line 

part in which the signer signs a 1-time public key with his long-lived secret key 

even before the messages M is known. Then when M has to be sent the signer 

computes a 1-time signature of M with the authenticated 1-time public key and 

sends out M tagged with the 1-time public key and the two signatures. Notice 

that the receiver must compute two signature verifications: one on the long-lived 



185 

key and one on the 1-time key. In our scheme we need to make both signing and 

verification extremely fast, and indeed in our case each block (except for the first) 

is signed (and hence verified) only once with a 1-time key. 

We also use the idea to of using old keys in order to authenticate new keys. 

This has appeared in several places but always for long-lived keys. Examples 

include [ 1, 15, 18] where this technique is used to build provably secure signature 

schemes. We stress that the results in [1, 15, 18] are mostly of  theoretical interest 

and do not yield practical schemes. Our on-line solution somehow mixes these 

two ideas in a novel way, by using the chaining technique with 1-time keys, 

embedding the keys inside the stream flow so that old keys can authenticate at the 

samet ime  both the new keys and the current stream block. 

The chaining technique can also be seen as a weak construction of accumulators as 

introduced in [2]. An accumulator for k blocks B t , . . . ,  Bk is a single value A C C  

that allows a signer to quickly authenticate any of the blocks in any particular 

order. Accumulators based on the RSA assumption were proposed in [2]. In our 

case we have a much faster construction based on collision-free hash functions, 

since we exploit the property that the blocks must be authenticated in a specific 

order. 

2 Preliminaries 

In the following we denote with n the security parameter. We say that a function 

e(n) is negligible if for all c, there exists an no such that, for all r~ > r~o, 
, ( , , )  < c 

COLLISION-RESISTANT HASH FUNCTIONS. Let H be a function that map arbitrarily 

long binary strings into elements of a fixed domain D. We say that H is a collision- 
resistant hash function if any polynomial time algorithm who is given as input 

the values H(z{)  on several adaptively chosen values z{, finds a collision, i.e. a 

pair (z ,  y) such that z ~ y and H ( z )  = H(y) ,  only with negligible probability. 

MD5 [16] and SHA-1 [14] are conjectured collision-resistant hash functions. 

SIGNATURE SCHEMES. A signature scheme is a triplet (G, S, V) of  probabilistic 

polynomial-time algorithms satisfying the following properties: 

- G is the keygeneratoralgorithm. On input 1 '~ it outputs a pair (SK, PK)  E 

{0, 1} 2'*. SK is called the secret (signing) key and P K  is called the public 

(verification) key. 

- S is the signing algorithm. On input a message M and the secret key SK,  it 

outputs a signature o-. 

- V is the verification algorithm. For every (PK, SK)  = G(1 '~) and o- = 

S(SK, M), it holds that V(PK, a, M) = 1. 



186 

In [9] security for signature schemes is defined in several variants. The strongest 

variant is called "existential unforgeability against adaptively chosen message 

attack". That is, we require that no efficient algorithm will be able to produce a 

valid signed message, even after seeing several signed messages of  its choice. 

STREAM SIGNATURES. We define a stream to be a (possibly infinite) sequence of 

blocks 13 = B1, B2, . . .  where each Bi E {0, 1} ~ for some constant z c. 

We distinguish two cases. In the first case we assume that the stream is finite and 

known to the sender in advance. We call this the off-line case. Conversely in the 

on-line case the signer must process one (or a few) block at the time with no 

knowledge of the future part of the stream. 

D e f i n i t i o n  1. An off-line stream signature scheme is a triplet (G, S, V)  o fp rob-  

abilistic polynomial-time algorithms satisfying the following properties: 

-- G is the keygeneratoralgorithm. On input 1 '~ it outputs a pair (SK,  P K )  E 
{0, 1} 2". S K  is called the secret (signing) key and P K  is called the public 

(verification) key. 

- S is the signing algorithm. On input a finite stream B = B 1 , . . . ,  Bk and the 

secret key S K  algorithm S outputs a new stream 13' = B [ , . . . ,  B~ where 

= (B ,A0. 

-- V is the verification algorithm. For every (PK,  S K )  = G ( I  "~) and B'  = 

S(SK,  B), it holds that V(PK,  B ~ , . . . ,  B ' )  = 1 for 1 < i < k. 

Notice that we modeled the off-line property by the fact that the signing algorithm 

is given the whole stream in advance. Yet the verifier is required to authenticate 

each prefix of the scheme without needing to see the rest of  the stream. As it will 

become clear in the following our algorithms will not require the off-line verifier 

to store the whole past stream either. 

D e f i n i t i o n  2. An on-line stream signature scheme is a triplet (G, S, V)  o fp rob-  

abilistic polynomial-time algorithms satisfying the following properties: 

-- G is the key generator algorithm. On input 1 '~ it outputs a pair (SK,  P K )  6 

{0, 1} 2'~. S K  is called the secret (signing) key and P K  is called the public 

(verification) key. 

- S is the signing algorithm. Given a (possibly infinite) stream 13 = B 1 , . . . ,  

algorithm S with input the secret key S K  process each block one at the time, 

i.e., 

S(SK, B~,.. . ,  B,) = B' = (Bi, A i )  

a The assumption that the blocks have all the same size is not really necessary. We just make it 

for clarity of presentation. 



187 

- V is the verification algorithm. For every (PK, ,.qK) = G(1 '~) and B~', B ~ , . . .  

such that B~ = ,.q(SK, B t , . . . ,  Bi)  for all i, it holds that V ( P K ,  B~ , . . . ,  B')  = 
1 for all i. 

Notice that in the on-line definition we have the signer process each block "on the 

fly" so knowledge of future blocks is not needed. In this case also the definition 

seems to requires knowledge of all past blocks for both signer and verifier, however  

this does not have to be the case (indeed in our solution some past blocks may be 

discarded). 

The above definitions say nothing about security. In order to define security for 

stream signing we use the same notions of security introduced in [9]. That is, we 

require that no efficient algorithm will be able to produce a valid signed stream, 

even after seeing several signed streams. However notice that given our definition 

of  signed streams, a prefix of a valid signed stream is itself a valid signed stream. 

So the forger can present a "different" signed stream by just taking a prefix of  the 

ones seen before. However this hardly constitutes forgery, so we rule it out in the 

definition. With B Ct) C_ B (2) we denote the fact that B Ct) is a prefix o f B  (2) . 

Definition 3. We say that an off-line (resp. on-line) stream signature scheme 

(G, S, V)  is secure if any probabilistic polynomial time algorithm F ,  who is 

given as input the public key P K  and adaptively chosen signed streams B '(j), 

outputs a new previously unseen valid signed stream B' ~ B '(j) Vj only with 

negligible probability. 

For signed streams we slightly abuse the notation: when we write B 'Ct) ~ B 'C2) 

we mean that not only B '(~) is not a prefix of B '(2) but also the underlying "basic" 

unsigned streams are in the same relationship, i.e. B (1) ~ B (2). 

This is the definition of existential unforgeability against adaptive chosen message 

attack, the strongest of the notions presented in [9]. Following [9] weaker variants 

can be defined. 

3 The Off-Line Solution 

In this case we assume that the sender knows the entire stream in advance. (e.g., 

music/movie broadcast). Assume for simplicity that the stream is such that it is 

possible to reserve 20 bytes of extra authentication information in a block of  size 

C. 



188 

The stream is logically divided into blocks of size e. The receiver has a buffer o f  

size c. The receiver first receives the signature on the 20 byte hash (e.g., SHA-1) 

of  the first block. After verification of the signature the receiver knows what the 

hash of  the first block should be and then starts receiving the full stream and starts 

computing its hash block by block. When the receiver receives the first block, 

it checks its hash against what the signature was verified upon. If it matches, it 

plays the block otherwise it rejects it and stops playing the stream. How are other 

blocks authenticated? The key point is that the first block contains the 20 byte 

hash of the second block, the second block contains the 20 byte hash of  the third 

block and so on... Thus, after the first signature check, there are just hashes to be 

checked for every subsequent block. 

In more detail, let (G, S, V) be a regular signature scheme. The sender has a pair 

of  secret-public key (SK, PK) = G(1 '~) of such signature scheme. Also let H 

be a collision-resistant cryptographic hash function. If the original stream is 

B = B 1 , B 2 , . . . , B k  

and the resulting signed stream is 

~ I  I l I l 
= B o , B 1 , B 2 , . . . , B k  

the processing is done backwards on the original stream as follows: 

B;, = <  Bk, 0 0 . . .  0 > 

B~ = <  Bi,H(B~+I) > for i  = 1 , . . . , k  - 1 

B~ =< H(B~),S(SK, H(B~)) > 

Notice that on the sender side, computing the signature and embedding the hashes 

requires a single backwards pass on the stream, hence the restriction that the 

stream is fully known in advance. 

The receiver verifies the signed stream as follows: on receiving B~ = <  B, Ao > 

she checks that 

V(PK, no, B) = 1 

then on receiving B'  = <  Bi, Ai > (for i > 1) the receiver accepts Bi if 

= A _I 

Thus the receiver has to compute a single public-key operation at the beginning, 

and then only one hash evaluation per block. Notice that no big table is needed in 

memory. 



189 

4 The On-Line Solution 

In this case the sender does not know the entire stream in advance (e.g, live 

broadcast). In this scenario it is important that also the operation of  signing (and 

not just verification) be fast, since the sender himself  is bound to produce an 

authenticated stream at a potentially high rate. 

ONE-TIME SIGNATURES. Ill the following we will use a special kind o f  signature 

scheme introduced in [11, 12]. These are signatures which are much  faster to 

compute and verify than regular signatures since they are based on one-way 

functions and do not require a trapdoor function. Conjectured known one-way 

functions (as DES or SHA-1) are much more efficient then the known conjectured 

trapdoor functions as RSA. However these schemes cannot be used to sign an 

arbitrary number of messages but only a prefixed number  of  them (usually one). 

Several other 1-time schemes have been proposed [7, 3, 4]; in Section 6 we discuss 

possible instantiations for our purpose. 

In this case also the stream is split into blocks. Initially the sender sends a signed 

public key for a 1-time signature scheme. Then he sends the first block along with 

a 1-time signature on its hash based on the 1 -time public key sent in the previous 

block. The first block also contains a new 1-time public key to be used to verify 

the signature on the 2nd block and this structure is repeated in all the blocks. 

More in detail: let us denote with (G, S, V) a regular signature scheme and with 

(9, s, v) a 1-time signature scheme. With H we still denote a collision-resistant 

hash function. The sender has long-lived keys (SK, PK) = G(I'~). Let 

/~=BI,B2,... 

be the original stream (notice that in this case we are not assuming the stream to 

be finite) and 
~ I  I I I 

= B 0 , B 1 , B 2 , . . .  

the signed stream constructed as follows. For each i >__ 1 let us denote with 

(ski, pki) = 9(1 r') the output of an independent run of algorithm 9- Then 

B~ =< pko, S(SK, pko) > 

(public keys of  1-time signature schemes are usually short so they need not to be 

hashed before signing) 

=< > fori _> i 



190 

Notice that apart from a regular signature on the first block, all the following signa- 

tt/res are 1-time ones, thus much faster to compute (including the key generation, 

which however does not have to be done on the fly.) 

The receiver verifies the signed stream as follows. On receiving B~ = <  pko, Ao > 

she checks that 

V(PK,  Ao,pko) = 1 

and then on receiving B' = <  B~, pki+t, Ai > she checks that 

v(pk _l, H(B , = 1 

whenever one of these checks fails, the receiver stops playing the stream. Thus 

the receiver has to compute a single public-key operation at the beginning, and 

then only one 1-time signature verification per block. 

5 Proofs of Security 

We were able to prove the security of our stream signature schemes according to 

the definitions presented in Section 2, provided that the underlying components 

used to build the schemes are secure on their own. The proofs o f  the follo~fing 

theorems appear in the full version of the paper [8] due to space limitations. 

THE OFF-LINE CASE. Let us denote with (Goyf, SoI.~, );o~,y) the off-line stream 

signature scheme described in Section 3. With (G, S, V) let us denote the "regu- 

lar" signature scheme and with H the hash function used in the construction. The 

following holds. 

Theorem 4. ff  (G, S, V) is a secure signature scheme and H is a collision- 

resistant hash function then the resulting stream signature scheme ( Goy I, So i l ,  Vo! I 

is secure. 

THE ON-LINE CASE. Let us denote with (Con, Son, Von) the on-line stream sig- 

nature scheme described in Section 4. With (G, S, V) let us denote the "regular" 

signature scheme, with (9, s, v) the one-time signature scheme and with H the 

hash function used in the construction. The following holds. 

Theorem5. I f (G,  S, V) and (9, s, v) are secure signature schemes and H is 

a collision-resistant hash function then the resulting stream signature scheme 

( ~on, Son, ))on) is secure. 



191 

Remark 1: In the bodies and proofs of the above theorems we meant  security as 

"existential unforgeability against adaptively chosen message attack". However 

the theorems hold for any notion of security defined in [9], that is the stream 

signature scheme inherits the same kind of  security of  the underlying signature 

scheme(s) provided that the hash function is coUision-resistant. 

Remark 2: The statements of the above theorems are valid not only in asymptotic 

terms, but have also a concrete interpretation which ultimately is reflected in the 

key lengths used in the various components in order to achieve the desired level 

o f  security of the full construction. It is not hard to see, by a close analysis of 

the proofs, that the results are pretty tight. That is, a forger for the stream signing 

scheme can be transformed into an attacker for one of  the components  (the hash 

function, the regular signature scheme and, a little less optimally, the 1-time 

signature scheme) which runs in about the same time, asks the same number  of 

queries and has almost the same success probability. This is turns means that there 

is no major degradation in the level of security of  the compound scheme and thus 

the basic components can be run with keys of  ordinary, length. 

6 Implementation Issues 

6.1 The Choice of the One-Time Signature Scheme 

Several one-time schemes have been presented in the literature, see for example 

[11, 12, 7, 3, 4]. The main parameters of these schemes are signature length and 

verification time. In the solutions we know, these parameters impose conflicting 

requirements, i.e. if one wants a scheme with short signatures, verification time 

goes up, while schemes with longer signatures can have a much  shorter verification 

time. In our on-line solution we would like to keep both parameters down. Indeed 

the verification should be fast enough to allow the receiver to consume the stream 

blocks at the same input rate she receives them. At the same time, since the 

signatures are embedded in the stream, it's important to keep them small so that 

they will not reduce the throughput rate of the original stream. 

We present a scheme which obtain a reasonable compromise.  In the final paper 

we will present several more schemes. The scheme is based on a 1-way function 

F in a domain D. It also uses a collision resistant hash function H .  The scheme 

allows signing of a single m-bit message. It is based on a combinations of  ideas 

from [11, 19]. Here are the details of the scheme. 

Key Generation. Choose r e + l o g  m elements in D, let them be a l ,  . .  �9 a,~+log ,~. 

This is the secret key. The publick key is 

pk = H(F(a~),...,F(a~+lo,~)) 



192 

Signing Algorithm. Let M be the message to be signed. Append to M the binary 

representation of the number ofzero's in M's  binary representation. Call M '  the 

resulting binary string. The signature of M is s t , . . . ,  s,,~+log ,,~ where si = ai if  

the i th bit of  M '  is 1 otherwise si = F(ai).  

Verification Algorithm. Check if 

E ( t t , . . . ,  t~+~og ~ )  = pk 

where ti = si i f i  th bit of M'  is 0 otherwise tl = F(si) .  

Security. Intuitively this scheme is secure since it is not possible to change a 0 into 

a 1 in the binary representation of the message M without having to invert the 

function N. It is possible to change a 1 into a 0, but that will increase the number 

�9 o f  0's in the binary representation of M causing a bit to flip from 0 to 1 in the last 

log m bits of  M' ,  and so forcing the attacker to invert F anyway. 

Parameters. This scheme has signature length [Dl(ra + log m )  where [Dt is the 
number of  bits required to represent elements of  D. The receiver has to compute 

1 hash computation of H plus on the average ,,~+1o~ ~ computations of  F .  2 
In practice we assume that F maps 64-bit long strings into 64-bit long strings. 

Since collision resistance is not required from F we believe this parameter is 

sufficient. Conjectured good F's  can be easily constructed from efficient block 

ciphers like DES or from fast hash function like MD5 or SHA-1.4 Similarly I-/ 

can be instantiated to MD5 or SHA-1. In general we may assume ra to be 128 or 

160 if the message to be signed if first hashed using MD5 or SHA- 1. 

The SHA-1 implementation has then signatures which are 1344 bytes long. The 

receiver has to compute F around 84 times on the average. With MD5 the numbers 

become 1080 bytes and 68 respectively. When used in our off-line scheme one 

also has to add 16 bytes for the embedding of the public key in the stream. 

Remark: Comparing the RSA signature scheme with verification exponent 3 with 

the above schemes, one could wonder if the verification algorithm is really more 

efficient (2 multiplications verses 84 hash computations). Typical estimates today 

are that an RSA verification is comparable to 100 hash computations. However  

we remind the reader that we are trying to improve both signature generation and 

verification as this scheme is used in the on-line case and as such both operations 

have to be performed on-line and thus efficiently. The improvement in signature 

generation is much more substantial. 

4 As a cautionary remark to prevent attacks where the attacker builds a large table of evaluations 
of F, in practice F could be made different for each signed stream (or for each large portion 
of the signed stream) by defining F(z) to be G(Salf.HX ) where G is a one-way 128 bit to 64 
bit function, and the Salt is generated at random by the signer once for each stream or large 
pieces thereof. 



193 

6.2 Non-Repudiation 

In case of  a legal dispute over a content of a signed stream the receiver must bring 

to court some evidence. If the receiver saves the whole stream, then there is no 

problem. However in some cases, for example because of  memory limitations, 

the receiver may be forced to discard the stream data after having consumed it. In 

these cases what should she save to protect herself in case of  a legal dispute? 

In the off-line solution, assuming the last block of  the signed stream always has a 

special reserved value for the hash-chaining field, (say all O's) she needs to save 

only the first signed block. Indeed this proves that she received something from 

the sender. Now we could conceivably move the burden of  proof to the sender to 

reconstruct the whole stream that matches that first block and ends with the last 

block which has the reserved value for the hash-chaining field. 

Similarly in the on-line solution, at a minimum the receiver needs to save the first 

signed block and all 1-time signatures and have the sender reconstruct the stream. 

However in practice, this may still be too much to save. In the final paper we will 

discuss various modifications to the on-line scheme that can be used in practice 

to substantially reduce the data that the receiver needs to store. 

6.3 Hybrid Schemes 

In the on-line scheme, the length of the embedded authentication information is 

of  concern as it could cut into the throughput of  the stream. In order to reduce it 

hybrid schemes can be considered. In this case we assume that some asynchrony 

between the sender and receiver is acceptable. 

Suppose the sender can process a group (say 20) of  stream blocks at a time 

before sending them. With a pipelined process this would only add an initial 

delay before the stream gets transmitted. The sender will sign with a one-time key 

only 1 block out of 20. The 20 blocks in between these two signed blocks will be 

authenticated using the off-line scheme. This way the long 1-time signatures and 

the the verification time can be amortized over the 20 blocks. 

A useful feature of our proposed 1-time signature scheme is that it allows the 

verification of (the hash of) a message bit by bit. This allows us to actually 

"spread out" the signature bits and the verification time among the 20 blocks. 

Indeed if we assume that the receiver is allowed to play at most 20 blocks of  

unauthenticated information before stopping if tampering is detected we can do 

the following. We can distribute the signature bits among the 20 blocks and verify 

the hash of the first block bit by bit as the signature bits arrive. This maintains the 

stream rate stable since we do not have long signatures sent in a single block and 

verification now takes 3-4 hash computations per block, on ea,er), block. 



194 

It is also possible to remove the constraint on playing 20 blocks o f  unauthenticated 

information before tampering is detected. This requires a simple modification to 

our on-line scheme. Instead of embedding in block Bi its own 1-time signature, 

we embed the signature of the next block Bi+l .  This means that in the on-line 

case blocks have to be processed two at a time now. When this modification is 

applied to the hybrid scheme, the signature bits in the current 20 blocks are used 

to authenticate the following 20 blocks so unauthenticated information is never 

played. However this means that now the sender has to process 40 blocks at a 

time in the hybrid scheme. 

7 Applications 

MPEG V~EO AND AUDIO. In the case of MPEG video and audio, there are 

several methods for embedding authentication data. Firstly, the Video Elementary 

stream has a USER-DATA section where arbitrary user defined information can 

be placed. Secondly, the MPEG system layer allows for an elementary data stream 

to be multiplexed synchronously with the packetized audio and video streams. 

One such elementary stream could carry the authentication information. Thirdly, 

techniques borrowed from digital watermarking can be used to embed information 

in the audio and video itself at the cost of slight quality degradation. In the case 

of MPEG video since each frame is fairly large, (hundreds of  kilobits) and the 

receiver is required to have a buffer of at least 1.8Mbits, both the off-line as well 

as the on-line solutions can be deployed without compromising picture quality. 

In the case of audio however, in the extreme case the bit rate could be very low 

(e.g., 32Kbits/s) and each audio frame could be small (approx. 1000 bytes) and 

the receiver's audio buffer may be tiny ( < 2 Kbytes). In such extreme cases the 

on-line method, which requires around 1000 bytes of authentication information 

per block cannot be used without seriously cutting into audio quality. For these 

extreme cases, the best on-line strategy would be either to send the authentication 

information via a separate but multiplexed MPEG data stream. For regular MPEG 

audio, if the receiver has a reasonably sized buffer (say 32K) then by having a 

large audio block (say 20K) our on-line scheme would a server-introduced delay 

of approximately 5-6 seconds and a 5% quality degradation. If the receiver buffer 

is small but not tiny (say 3 K) a hybrid scheme would work: as an example of  

a scheme that can be built one could use groups of 33 hash-chained blocks of 

length 1000 bytes each; this would typically result in a 5% degradation and a 

server initial delay in the 20 second range. 

JAVA. In the original version of java (JDK 1.0), for an applet coming from the 

network, first the startup class was loaded and then additional classes were (down) 

loaded by the class loader in a lazy fashion as and when the running applet first 



195 

attempted to access them. Since our ideas apply not only to streams which are 

a linear sequence of blocks but in general to trees as well (where one block can 

invoke any of  its children), based on our model, one way to sign java applets would 

be to sign the startup class and each downloaded class would have embedded in it 

the hashes of  the additional classes that it downloads directly. However for code 

signing, Javasofthas adopted the multiple signature and hash table based approach 

in JDK1.1, where each applet is composed of  one or several Java archives, each o f  

which contains a signed table of hashes (the manifest) of  its components. It is our 

belief that once java applets become really large and complex the shortcomings o f  

this approach will become apparent: (1) the large size of  the hash table in relation 

to the classes actually invoked during a run. This table has to fully extracted and 

authenticated before any class gets authenticated; (2) the computational cost o f  

signing each of the manifests if an applet is composed of  several archives; (3) 

accommodating classes or data resources which are generated on the fly by the 

application server based on a client request. 

These could be addressed by using some of our techniques. Also the problem of  

how to sign audio/video streams will have to be considered in the future evolution 

of  Java, since putting the hash of a large audio/video file in the manifest would 

not be acceptable. 

BROADCAST APPLICATIONS. Our schemes (both the off-line and the on-line one) 

can be easily modified to fit in a broadcast scenario. Assume that the stream is 

being sent to a broadcast channel with multiple receivers who dynamically join 

or leave the channel. In this case a receiver who joins when the transmission is 

already started will not be able to authenticate the stream since she missed the 

first block that contained the signature. Both schemes however can be modified so 

that every once in a while apart from the regular chaining information, there will 

also be a regular digital signature on a block embedded in the stream. Receivers 

who are already verifying the stream via the chaining mechanism can ignore this 

signature whereas receivers tuned in at various time will rely on the first such 

signature they encounter to start their authentication chain. A different method 

to authenticate broadcasted streams, with weaker non-repudiation properties than 

ours, was proposed in [10]. 

LONG FILES WHEN COMMUNICATION IS AT COST. Our solution can be used also 

to authenticate long files in a way to reduce communication cost in case of  

tampering. Suppose that a receiver is downloading a long file from the Web. 

There is no "stream requirement" to consume the file as it is downloaded, so the 

receiver could easily receive the whole file and then check a signature at the end. 

However if the file has been tampered with, the user will be able to detect this fact 

only at the end. Since communication is at a cost (time spent online, bandwidth 



196 

wasted etc) this is not a satisfactory solution. Using our solution the receiver can 

interrupt the transmission as soon as tampering is detected thus saving precious 

communication resources. 

SIGNATURE BASED CONTENT-FILTERING AT PROXIES. Recently there has been in- 

terest in using distal signatures as a possible way to filter content admitted in 

by proxy servers through firewalls. Essentially when there is a firewall and one 

wishes to connect to an external server, then this connection can only be done via 

a proxy server. In essence one establishes a connection to a proxy and the proxy 

establishes a separate connection to the external server (if that is permitted). The 

proxy then simulates a connection between the internal machine and the external 

machine by copying data between the two connections. There has been some 

interest in modifying proxies so that they would only allow signed data to flow 

from the external server to the internal machine. However, since the proxy is only 

copying data as it arrives from the external connection into the internal connection 

and it cannot store all the incoming data before transferring it, the proxy cannot 

use a regular signature scheme for solving this problem. However, it is easy to 

see that in the proxy's view the data is a stream. Hence if there could be some 

standardized way to embed authentication data in such streams then techniques 

from this paper would prove useful in solving this problem. 

8 Acknowledgments 

We would like to thank Hugo Krawczyk for his advice, guidance and encourage- 

ment for this work. We would also like to thank Ran Canetti and Mike Wiener for 

helpful discussions. 

References 

1. M. Bellare, S. Micali. How to Sign Given any Trapdoor Permutation. J. of 
theACM, 39(1):214-233, 1992. 

2. J. Benaloh, M. de Mare. One-Way Accumulators: A Decentralized Alterna- 

tive to Digital Signatures.Advancesin CryptoloD,-EUROCRYPT'93.LNCS, 
vol.765, pp.274-285, Springer-Verlag, 1994. 

3. D. Bleichenbacher, U. Maurer. Optimal Tree-Based One-time Digital Signa- 

ture Schemes. STACS'96, LNCS, Vol. 1046, pp.363--374, Springer-Verlag. 



197 

4. D. Bleichenbacher, U. Maurer. On the efficiency of one-time digital signa- 

tures. Advances in Cryptolog3~ASYACRYPT'96, to appear. 

5. W. Diffie, M. Hellman. New Directions in Cryptography. 1EEE Transactions 

on Information Theory, IT-22(6):74--84, 1976. 

6. T. E1Gamal. A Public-Key Cryptosystem and a Signature Scheme based 

on Discrete Logarithms. 1EEE Transactions on Information Theory, IT- 

31(4):469--472, 1985. 

7. S. Even, O. Goldreich, S. Micali. On-Line/Off-Line Digital Signatures. J. 

of Cryptology, 9(1):35-67, 1996. 

8. R. Gennaro, P. Rohatgi. How to Sign Digital Streams. 

Final version available from 

http://www, research, ibm. com/security/papers1997 .html 

9. S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme Secure 

Against Adaptive Chosen Message Attack. SIAMJ. Comp. 17(2):281-308, 

1988. 

10. G. Itkis. Asymmetric MACs. Rump talk at Crypto'96. 

11. L. Lamport. Constructing Digital Signatures from a One-Way Function. 

Technical Report SRI lntl. CSL 98, 1979, 

12. R. Merkle. A Digital Signature based on a Conventional Encryprion Function. 

Advances in Cryptology--Crypto '87. LNCS, vol.293, pp. 369--378, Springer- 

Verlag, 1988. 

13. R. Merkle. A Certified Digital Signature. Advances in Cryptolog3~ 

Crypto '89. LNCS, vol.435, pp. 218-238, Springer-Verlag, 1990. 

14. National Institute of Standard and Technology. Secure Hash Standard. NIST 

FIPS Pub 180-1, 1995. 

15. M. Naor, M. Yung. Universal One-Way Hash Functions and their Crypto- 

graphic Applications. Proceedings of STOC 1989, pp.33--43. 

16. R. Rivest. The MD5 Message Digest Algorithm. Intemet Request for Com- 

ments. April 1992. 

17. R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital Signa- 

tures and Public Key Cryptosystems. Comm. of the A CM, 21 (2): 120-126, 

1978. 

18. J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Sig- 

natures. Proceedings of STOC 1990, pp.387-394. 

19. Wintemitz. Personal communication to R. Merkle. 


