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TV is good for you. That’s one of the conclusions of this month’s book recommendation: Everything Bad 

Is Good for You: How Today's Popular Culture Is Actually Making Us Smarter by Steven Johnson. The 

basic premise is that television series (his primary example) have gotten so complex in their speed of 

exposition and involved interpersonal relationships that it really exercises your brain just to follow them. 

And each episode is not an individual story any more; a given program is one continuing mini-series that 

has to be seen in order without gaps for it to make sense. For example I’ve been totally sucked into the 

series Lost, and the whole fun of the series is watching the mystery unfold by seeing the episodes in 

sequence. But I missed the first few episodes of the second season, so I didn’t dare look at any of the later 

episodes. I’ve been forced to wait for the second season to come out on DVD and not look at any fan sites 

until then. 

Given that TV shows are now all miniseries I don’t feel so bad about the fact that this column has evolved 

into various multi-part series. I had eight articles on 3D lines, two articles on solving quadratic equations, 

and this is the third one on cubic equations. (It would be nice to make it three articles on cubics, and four 

on quartics, but there is more than three articles worth say on cubics so it will probably be four). I do try to 

make each article have a theme so they are roughly self-contained, but I still must start out with the same 

phrase as all the serialized TV shows … 

Previously on Jim Blinn’s Corner… 
We are looking for the roots [x,w] of the equation 

  3 2 2 3, 3 3 0f x w Ax Bx w Cxw Dw      

The Hessian matrix is a useful intermediate result and is calculated as 

      

2

1

2

2

3

1 2

2 3

2

2

AC B

AD BC

BD C







 

 

 

 

 

 
  
 

H

   (0.1) 

The discriminant of the cubic is the determinant of this matrix 
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If 0   there are three real roots, if 0   there is a double or triple root, and if 0   there is a single real 

root. 

 

The first step in solving the cubic is to “depress” it by transforming in parameter space to get a cubic with a 

second coefficient of zero. We transform by the substitution: 

         
t u

x w x w
s v

 
  

 

   (0.3) 

This gives a transformation in coefficient space of 

      

3 2 2 3

2 2 2 2

2 2 2 2

3 2 2 3

3 3

2 2

2 2

3 3

t t u tu u AA

t s tus t v u s tuv u v BB

CC ts us tsv usv tv uv

DD s s v sv v

    
    

               
       

  (0.4) 

We found two transformation matrices that result in a cubic with 0B  :  

     1 0 0 1
or

t u

s v B A D C

     
           

   (0.5)  

The two possibilities generate two variants of the algorithm (which I called A and D after the determinant 

of the transformation.) Each of these generate a depressed polynomial (though some authors use the more 

prosaic term “reduced polynomial”) with  

      

 

 

 

2 2

3 2 2 3

0 0

or

2 3 3 2

A D
A

B
A AC B D BD CC

D A B ABC A D D D A DCB C

   
     
     
            
                   

  (0.6) 

Each of these has a common homogeneous factor which we can toss out giving  

2 2

3 2 2 3

1 1

0 0
or

2 3 3 2

A

B

AC B BD CC

D B ABC A D D A DCB C

    
    
     
      
    
            

 

So both generate a canonical polynomial to solve: 

3 3 0x Cx D    

Solve this (see [1] for details) and transform by the original matrix to get the answer 

     
1 0 0 1

1 or 1x w x x
B A D C

   
        

     

Both these variants work fine algebraically, but each is numerically good for regions in parameter space 

that is different from the other. So far, I have only finished the calculations for the case 0   where there 

is just one real root, a, and a complex conjugate pair  b ic . We found that the best (so far) numerical 

solution to be: 
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     if 3 3B D AC  {equivalent to} 2 2 2a b c    

            use algorithm A to calculate a, 

            use algorithm D to calculate b and c 

     otherwise  

             use algorithm D to calculate a, 

             use algorithm A to calculate b and c. 

Generalizing the depressing transformation 
Given the two choices of depressing transformations, Equation (0.5), it is natural to ask if there are any 

others. Of course there are. So let’s find all possible transformations (values of s,t,u,v) that make 0B  . 

From Equation (0.4) we have 

        2 2 2 22 2B t sA tus t v B u s tuv C u vD        (0.7) 

Proceeding as we did with quadratic polynomials we will parameterize the desired set of transformations in 

terms of the first row [t,u].  So given t,u we find the proper s,v that makes 0B   by rewriting equation 

(0.7) as 

 

 

2 2

2 2

2

2 0

B s t A tuB u C

v t B tuC u D

  

   
 

An s,v that satisfies this is : 

     
 

 

2 2

2 2

2

2

s t B tuC u D

v t A tuB u C

   

   
   (0.8) 

Actually any nonzero multiple of these values will also work, but for now I’ll stick with just the values in 

Equation (0.8).   

The transformation this generates is singular if the following is zero. 

   

 

2 2 2 2

3 2 2 3

2 2

3 3

,

tv su t t A tuB u C t B tuC u D u

t A t uB tu C u D

f t u

      

   



 

In other words, this transformation will be singular if the (t,u) we chose was a root of the original cubic. 

This situation will turn out to be not all that bad, but I’ll defer a complete discussion of this until Part 5. 

Now that we’ve transformed to get 0B   let’s see what the other coefficients are as functions of (t,u). 

Evaluating ,A C  and D  

We first expand out the matrix formulation of equation (0.4) to get the formulas for , ,A C D .   

    

3 2 2 3

2 2 2 2

3 2 2 3

3 3

2 2

3 3

A t A t uB tu C u D

C ts A us tsv B usv tv C uv D

D s A s vB sv C v D

   

     

   

 (0.9) 
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We recognize A  as just f(t,u) which is also the determinant of the transformation. Thinking of A  as now a 

function of (t,u) we have simply    , ,A t u f t u . The other two values C  and D  can be had in terms of 

just t and u by simply plugging the values from equation (0.8) into equation (0.9). This will result in a 

expression for C  that is fifth order in (t,u) and for D  that is sixth order in (t,u). Needless to say, doing this 

explicitly will turn into an algebraic quagmire. And this quagmire obscures the very nice algebraic fact that 

the expression for  ,C t u  and  ,D t u  both contain the polynomial  ,A t u  as a factor. We saw a special 

case of this in equation (0.6) of the original Algorithm A (where [t,u]=[1,0]) and Algorithm D (where 

[t,u]=[0,1]). To see the general case more clearly I will drag in my favorite algebraic simplification tool, the 

tensor diagram.  

Tensor Diagram Essentials 
I’ve described this notation scheme in various previous articles [2]. But there are a few new constructions 

that we will need here so let’s start out with a brief review.  

Polynomials as Tensors 
We are interested in linear, quadratic and cubic homogeneous polynomials 

 

 

 

2 2

3 2 2 3

,

, 2

, 3 3

l x w Ax Bw

q x w Ax Bxw Cw

f x w Ax Bx w Cxw Dw

 

  

   

 

We can write these as vector-matrix products (though the cubic polynomial is a bit clunky in this notation). 

   

   

   

,

,

,

A
l x w x w

B

A B x
q x w x w

B C w

A B B C x x
f x w x w

B C C D w w

 
  

 

   
    

   

          
          

          

 

The coefficients form tensors of rank 1 (a vector for the linear polynomial), rank 2 (a matrix for the 

quadratic) and rank 3 (for the cubic). Next, we will give names to the tensors and give alternate, indexed, 

names to their elements.  

0

1

00 01

10 11

000 010 001 011

100 110 101 111

LA

LB

Q QA B

Q QB C

A B B C

B C C D

C C C C

C C C C

  
    
   

  
    
   

    
     

    

    
     

    

L

Q

C

 

The vector p will be dot-producted with these. As a bookkeeping convention we will write its elements’ 

indices as superscripts. 
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  0 1x w p p    p  

Then we can write the polynomial functions as nested sums.  

     

 

 

 

,

,

, ,

i

i

i

i j

i j

i j

i j k

ijk

i j k

l p L

q p p Q

f p p p C













p

p

p

  (0.10) 

Note that I’m kinda running out of letters here so I’ve overloaded the notation a bit. I use boldface C to 

represent the tensor and italic C with subscripts to represent its elements, and I use italic C without 

subscripts as one of the elements of C. We will next dispense with explicit indices anyway so this is just 

temporary scaffolding. 

To dispense with explicit indices we write equation (0.10) in diagram form as follows.  

C

p

p

p

Q pp

Lp l p

 q p

 f p

 

Each vector/matrix/tensor is a node. The number of connection points equals the number of indices. Each 

summed-over index is an arc connecting the two nodes containing that index. The arrow on the arc points 

from a connection point on a parameter vector p (representing a superscript or “contravariant” index) to a 

connection point on a coefficient tensor (representing a subscripted or “covariant” index) 

     

I want to point out something here that is pretty obvious, but that we will build on later. Given a tensor, we 

may extract out the coefficients by plugging in particular values for the parameter vector p. For example 

we can plug in the parameter vectors [1, 0] and [0, 1] to get the A and D coefficients. 

     

CA  1,0

1,0

1,0

CD  0,1

0,1

0,1

 (0.11)  

Slightly less obvious is the following. We can extract out the other coefficients by plugging different 

parameter vectors into the three inputs. I have colored the nodes here simply to emphasize the pattern. 

     

CB  CC  0,1

1,0

1,0

1,0

0,1

0,1

    (0.12)  
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Transformations 
If we transform the parameter vector via a matrix  

   
t u

x w x w
s v

 
  

 

p pT

 

The diagram version is 

=p T p
  

Note that the matrix T has one arrow in and one out. This is called a mixed tensor in distinction to the pure 

covariant tensor Q that represents a quadratic polynomial. To see the effect of T on the tensor C we form 

C =

p

p

p C

T

T

T

 

 

 p

p

p

 

So the transformed tensor C  is just the inside portion  

     

 = C

T

T

TC

  (0.13) 

Given the tensor C  we can extract the coefficients , , ,A B C D  by plugging in the parameter vectors [1,0] 

and [0,1] in the patterns from equation (0.11) and (0.12). Given the internal structure of C  from equation 

(0.13) these will go straight into the transformation matrix. We observe that  

T1,0

T0,1

=

=

t,u

s,v

     

This means that the coefficients , , ,A B C D  in terms of elements of the original tensor C are: 
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C

t,u

A 

t,u

t,u C

t,u

B 

t,u

s,v

C

t,u

C  CD  s,vs,v

s,v s,v

s,v

    (0.14)  

This is the diagram version of equation (0.4) and is called blossoming. 

The Epsilon Tensor 

Two vectors  0 1K KK and  0 1L LL  are homogeneously equivalent (differ by only a nonzero 

homogeneous scale factor) if the following is true 

0 1
0 1 1 0

0 1

   or    0
K K

K L K L
L L

    

We can write this expression as a matrix product  

  0

0 1 1 0 0 1

1

0 1

1 0

L
K L K L K K

L

  
       

  

We give the name epsilon to the 2x2 anti-symmetric matrix. In diagram notation it would look like a node 

with two connecting arcs joined to the K and L nodes. But we have to be careful. Since epsilon is anti-

symmetric reversing the positions of K and L will flip the sign: 

       0 0

0 1 0 1

1 1

0 1 0 1

1 0 1 0

L K
K K L L

L K

      
              

   (0.15) 

I want to make this visually apparent with the node diagram so I make the node shape itself asymmetric. 

The diagram version of equation (0.15) is 

K L L K= -

  

A rotation of a diagram or other connectivity-preserving rearrangement of its nodes doesn’t affect its 

algebraic meaning. But a mirror reflection of an epsilon node will flip the sign. 

K L
K L= -

   

It’s important to note that, in this diagram, K and L don’t have to be just single vectors. They can represent 

any other more complex collections of nodes and arcs; if you flip an epsilon anywhere inside a complex 

diagram you flip its algebraic sign.  

 

The epsilon tensor is also good for representing determinants of matrices. Consider the following 

Q
0 1

1 0

A B B A

B C C B

     
               
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Now put two of these end to end 

 

Q

2

2

0

0

B A B A B AC

C B C B B AC

      
             

Q

  (0.16) 

This is (minus) the determinant of Q, times an identity matrix. Diagrammatically: 

     
QQ = -det Q

  (0.17) 

You can write the determinant as a simple scalar by connecting the dangling arcs, which is the same as 

taking the trace of the matrix. 

      

Q

Q

2det  Q

  (0.18) 

The factor of 2 on the right hand side comes from taking the trace of the right hand side of equation (0.16). 

Another way to look at this is to take the trace of the version in equation (0.17) and note that a single arc 

represents a 2x2 identity matrix whose trace is 2. 

Why Tensor Diagrams are Cool 
There are several things I like about tensor diagram notation. First of all, they are a good visualization tool 

since they represent certain algebraic properties visually: Symmetry of the tensors is reflected in the 

roundness of the nodes, so that exchanging any two input arcs leaves the algebraic values unchanged. And 

anti-symmetry of the epsilon is reflected in the shape of its node. But there are two main things that are 

particularly nice: tensor diagrams automatically represent transformationally invariant quantities, and they 

allow easy algebraic manipulations. Let’s look at the first of these. 

Invariants 
Consider the following construction 

T

0 1 0

1 0 0

t s t u tv su

u v s v tv su

       
                 

T

  

The right hand side is just the determinant of T times the epsilon matrix. That is: 

 
TT = detT

  (0.19)  

Now look at what happens when we form the determinant of a transformed matrix Q 
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Q

Q

 
2

det T

 

 

Q

Q

T

T

T

T
=

Q

Q

 

Each pair of T’s on either side of an epsilon “extracts out” into a factor of detT for the resulting expression. 

Since there are two such factors here, the sign of the determinant of Q is unchanged by any parameter 

transformation. The mere writing of an expression as a tensor expression (in either diagram or index form) 

constitutes a proof that it represents a transformationally invariant quantity. Each epsilon in the diagram 

will turn into a factor of detT when a transformation is applied. So if the diagram contains an even number 

of epsilons its sign is invariant under transformation. If it contains an odd number just the zeroness is 

invariant. The number of epsilon nodes in a diagram is called the weight. 

An Invariant of the Cubic 
As we stated in part 1 of this series [3], the Hessian of the cubic is a quadratic polynomial formed as the 

determinant of the matrix of second derivatives. What does this look like in diagram notation?  The first 

derivative of f(x,w) is a vector composed of the partial derivatives  ,x wf f  which can be written in diagram 

notation by simply lopping off one input node: 

     

  2 2 2 23 2 2x wf f Ax Bxw Cw Bx Cxw Dw      

= 3

x,w

C

x,w

   (0.20)   

The second derivative matrix comes from lopping of two nodes  

x,w6 6
xx xw

xw ww

f f Ax Bw Bx Cw

f f Bx Cw Cx Dw

    
       

C

  

The determinant of this, as prescribed by equation (0.18), will be 

x,wdet 18
xx xw

xw ww

f f

f f

 
  

 
C C x,w

   

I decided, for convenience, to define the Hessian matrix H (equation (0.1)) without the constant factor of 

18 giving us 

     

C C= -H

  (0.21)  

Next we look at the cubic discriminant, det  H , which in diagram form is 
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H

H

2det 2    H

   

Plug in equation (0.21) twice, once for each H, and the minus’s from that equation go away leaving us with 

the cubic invariant 

C C

C C

2  

  

The existence of six epsilons in this diagram immediately verifies the statement made in part 1 that the 

discriminant of a transformed cubic differs from the discriminant of the original by a factor of  
6

det T   

Covariants 
Now let’s look at what happens to the Hessian when we transform the C tensor. The Hessian of the 

transformed tensor is 

  = - H C C

  

Applying equation (0.13) and then equation (0.19) gives us 

 

C C= -

T

T

T

 

T

T

T

C C= - T T 
2

det T

H= T T 
2

det T

H

  

So the Hessian transforms, as a quadratic, by the same transform that was applied to the cubic; the 

transform of the Hessian is the Hessian of the transform. This not-entirely-surprising fact is still important. 

It means that the Hessian is geometrically locked to the cubic and represents a transformationally invariant 

property. This type of object is called a covariant of the cubic. In fact, the main difference between an 

invariant and a covariant is that an invariant is a scalar and a covariant is a tensor—it still has some 

dangling arcs.  

 

Much of the early work on invariants and covariants of homogeneous polynomials (also called forms or 

quantics) was due to David Hilbert. A good resource is [4] which is a recent reprint of a series of lectures 

originally given in 1897 and which gave me a lot of the inspiration for this and later derivations. Hilbert did 

not use diagrams, but rather developed what amounts to a set of lexicographic rules for testing whether 

polynomials in A,B,C,D  like equation (0.2) were invariants. For example if you rename the coefficients 
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with indices 3 2 1 0, , ,A a B a C a D a     and consider powers to be just replications of a quantity (so that 
2 2

3 3 0 0A D a a a a ) then a necessary (but not sufficient) condition for a polynomial in the ai’s to be an 

invariant is that the sum of the subscripts in each term is the same. For equation (0.2) you can verify for 

yourself that that index sum for each term is 6 (which equals the weight of the expression, or diagramwise, 

the number of epsilons).  

Depression in diagram form 
To make 0B   we had to choose the second row of the transformation according to Equation (0.8). We 

can write this in terms of epsilon with 

  2 2 2 2

2 2 2 2

2 2

0 1
2 2

1 0

s v t B tuC u D t A tuB u C

t A tuB u C t B tuC u D

      
 

 
          

 

Comparing this to the first derivative diagram of equation (0.20) shows us the diagram form of [s,v] 

     

= C

t,u

t,u

s,v

  (0.22)   

Plugging this into the diagrams of equation (0.14) gives us the following. For B  we have  

C

t,u

B 

t,u

s,v C

t,u

t,u

C

t,u

t,u

=

   

This is of form  

K K

   

Which is identically zero, as we expect, since we designed (s,v) to make this happen. Next, for C  we have 

C 

t,u

s,v

t,u

t,u t,u

=

s,v

C C C

C

t,u

t,u

   

and for D  we have 
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D  s,v

t,u

t,u

=

s,v

s,v

C C C

C

C t,u

t,u

t,u

t,u

  

Now let’s see how to manipulate these diagrams into something simpler. 

Doing Things with Diagrams 
So far, I’ve used tensors only as a representation scheme for polynomial expressions. The real power is in 

using them to manipulate expressions. The technique is based on the observation that there can be only two 

linearly independent 2-vectors. Any third vector must be a linear combination of the first two. A little 

fiddling can show that the scale factors in the linear combination are given by the following identity: 

     0 1 1 0 0 1 1 0 0 1 1 0K L K L M L M L K M K M    M K L  

In diagram notation this looks like 

= +
K

M

L M L

K

K M

L

  

Rearranging this a bit to put K, L and M in a fixed position, and plugging in another tensor as a 

placeholder, we get  

     

= +

K

p M

L K

p

K

p

L

M

L

M

 (0.23)   

Now the cool thing is that this works even if p, K, L, and M are not simply vectors. They can be more 

general tensors with any number of other arrows pointing into and out of them that don’t directly 

participate in the identity, but just go along for the ride. This basic identity then allows us to reconnect the 

arrows of any diagram to construct two new diagrams whose sum is equal to the original one.  

 

As a useful example, suppose the nodes K and M were actually quadratics R and Q with an epsilon 

between them. Our diagram equation would look like 

= +

R

p Q

L R

p

R

p

L

Q Q

L

     

Clean this up with a couple of epsilon mirrors (and associated sign flips) for neatness and get the following 

identity: 
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=

+

Rp Q L

R

p L

Q

- Qp R L

 (0.24) 

As a special case of this identity, consider what happens if you plug in R=Q. The identity turns into 

something we’ve seen before, a combination of equations (0.17) and (0.18). 

     

=Qp Q L

Q

p L

Q

1

2

 (0.25) 

So whenever we see a chain of two identical quadratics, we can apply this identity and split the diagram 

into two disjoint pieces. This trick applies immediately to our diagram for C  

Simplifying C  

Lets start with the C  diagram and bend it around a bit (with a sign flip) to get 

t,u

t,u

= -C C

C

t,u

t,u

C

t,u

t,ut,u

C C

t,u t,u

t,u

 

We can now apply identity (0.25), treating the two diagram pieces inside the gray ellipses as the quadratic 

Q. We get  

     

t,u

t,u

t,u

C

t,u t,uC C

1

2
C  

 (0.26) 

The diagram has fallen apart into two disjoint pieces. Each piece is an independent factor of the net 

expression. And one of the pieces is, as advertised, the value of A . 

Simplifying D   

To simplify the diagram for D  we again start by bending the diagram around a bit and flipping an epsilon 

(and the sign). 
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t,u

t,u

= - C C

C

C t,u

t,u

t,u

t,u

t,u

t,u

C

t,u

t,u

t,u

t,u

CC

C

     

This time we apply the more general identity of Equation (0.24) to the to gray regions and get 

    

t,u

t,u

C

t,u

t,u

t,u

t,u

CC

C

D 

t,u C

t,u

t,u

t,u

t,u

C C Ct,u

-

 

Now look at the first term on the right hand side. What do you see? Let me give you a hint by the following 

grouping. 

t,u

t,u

C

t,u

t,u

t,u

t,u

CC

C

 

Remarkably, this is two identical things (indicated by the blue areas) on each side of an epsilon (the middle 

one of the three). So it’s… ZERO. This is great. We like things that are zero. This makes D  equal to just 

the second term.  

     

t,u C

t,u

t,u

t,u

t,u

C C Ct,u

D  

    (0.27)   

Again notice the factor of A .   
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General Depression 
Let’s put all this together. Using the general transformation of equation (0.3) with the second row, [s,v], 

defined by equation (0.22) we have depressed our polynomial into the form 3 2 33Ax Cxw Dw  . Then 

looking at equations (0.26) and (0.27) we see that we can remove the constant factor of  ,A f t u  from 

this expression giving the net equation we need to solve as: 

    3 2 33 0x Cxw Dw    

Where 

     

t,u

t,u

C C Ct,uD  

t,u t,uC C
1

2
C  

 (0.28)  

Algorithms A and D are simply special cases of this with [t,u]=[1,0] and [t,u]=[0,1] respectively. But now 

we have a whole continuum of C  and D values parameterized by [t,u]. We now think of C and D as 

polynomial functions of (t,u). The expression for C is something we’ve seen already; it’s just the half of the 

Hessian evaluated at (t,u). But what about D ? 

What is D ?  
D  is now a homogeneous cubic polynomial in (t,u). And, since equation (0.28) shows it written as a tensor 

diagram, it is also a covariant of the original cubic tensor C. (Hilbert calls this the skew covariant because 

the weight is odd.) So you can also think of D as a mapping of one cubic polynomial to another one, 

 D C . For concreteness, let’s explicitly find this mapping. Equation (0.28), written as a matrix product 

looks like 

       ,
s

D t u t u
v

 
  

 
H   

Plugging in equation (0.8) for [s,v], expanding out and collecting like terms for   t
3
 etc gives 

      3 2 2 3, 3 3
D D D D

D t u A t B t u C tu D u     

with 

     

2 3

2 2

2 2

2 3

3 2

2

2

3 2

D

D

D

D

A A D ABC B

B AC ABD B C

C ACD B D BC

D AD BCD C

   

   

   

   

    (0.29) 

Let’s see what else we can find out about this mapping.  
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D  is a transformation of C 
I will now show that the mapping  D C is just a parameter-space transformation of C. Of course any cubic 

of a particular type is just a parameter transformation of other cubics of the same type. But this 

transformation is special; it’s just the product of H with epsilon, H . In diagram form this is 

T H=
   

Note that plugging in an epsilon has changed the two-arrows-in matrix H to a one-in-and-one-out matrix 

that typifies a transformation matrix. 

 

The transformed cubic is then 

Hˆ C

H

C

H

   

To see why Ĉ  is homogeneously equivalent to  D C  we again do a derivation using tensor diagrams. I’m 

not going to do this in detail here, but the process is very similar to what we’ve seen before. The net result 

is 

H

H

C

H

p

p

p

1

2
 H Cp

H H p

p

 

We can see that this is at least reasonable since the number of nodes, epsilons and arcs is the same; they are 

just connected together differently. The only slightly tricky part in the proof is that you will encounter the 

following diagram fragment 

= -CH

C

C

C

  

This fragment is identically zero, which you can prove by applying the basic identity of equation (0.23) to 

the arcs marked in red. 

 

Now what about the Hessian of the cubic D ? Since the Hessian operation is a covariant and since we 

transform C by H  to get  D C  we can simply transform the Hessian of C by H  to find the Hessian of 

D . We get 
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=HH H
H

H

H

1

2


  

So we get almost trivially that the Hessians of C and  D C  are the same up to a homogeneous scalar. In 

part 1 we talked about the space of possible cubics as being foliated by a network of lines of constant 

Hessian. We have just shown that C and  D C  lie on the same line in this space. 

 

Finally let’s think about what happens if we apply the D  operation twice; what is   D D C ?  Well, 

Equation (0.17) basically tells us that the matrix H  is its own inverse (up to a homogeneous scale factor). 

In other words applying the D  operation twice gets us back to the original cubic. 

D  is a function of other covariants 
At first it might seem that the discovery of D  gives us something new about the cubic polynomial. But in 

fact it turns out that D  is a function of the other three in/covariants that we already know about. Just 

looking at equation (0.28) it’s not immediately obvious how this can be. Any attempt to process the 

diagram for D into something else, using the basic identity in Equation (0.23), doesn’t get us anywhere. 

But if we instead start playing with the square of D  (formed by just placing two copies side by side) we 

make some progress. The first step uses Equation (0.23) on this pair as follows  

    

+
C

C

=
C

C

C

p p

p

p
C

p p

C

C

C

C

C

p p

p

p
C

p p

C

C

C

C

C

p p

p

p
C

p p

   

Figure 1 shows the ultimate result (which requires a few more applications of Equation (0.23)). Again, as a 

visual sanity check note that each term in figure 1 has the same number of C’s, p’s and epsilons; they are 

just connected together in different ways.  
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C

C

C

C

C

p p

p

p
C

p p

C

p p

p

C

C

C

C

C

p p

p

C

CC

pp

C

p p

C

C

p

p

1

2
= +

1

2

 

Figure 1 – Syzygy relating the in/covariants of C 

 

We can write the diagram of figure 1 algebraically as 

             
32 21 1

, , 2 2 ,
2 2

D x w A x w C x w         

Which simplifies to 

         
2 3 2

, 4 , ,D x w C x w A x w      

This is the generalization of equation 13 of part 2 to a general [t,u] instead of [1,0]. This sort of relation is 

called a syzygy. As a general principle, any diagram that contains an odd number of epsilons can usually be 

related to simpler in/covariants by processing its square in this fashion. 

Examples 
Let’s round out our intuition about the Hessian and the D  operation by looking at what they do to each of 

the four types of cubics. I’ll start with a specific example of each type and apply equation (0.1) to get the 

Hessian, both in the form of the matrix H and of its associated quadratic polynomial which I’ll write as 

H(f), and then apply equation (0.29) to calculate  D f . Then I’ll discuss how this looks for a more general 

cubic of that type.  

Type 3 

The simplest exemplar of triple-root cubics is   3,f x w x . Plugging this into equation (0.1) shows that 

the Hessian is identically zero (this is the defining characteristic of a triple-root cubic). Then equation 

(0.29) shows that D  is also identically zero. We’ll catalog these as 

 

 

3

3

0 0
0

0 0

0 0
0

0 0

H x

D x

 
  
 

 
  
 

H

H

 

Type 21 

This is typified by the function   2, 3f x w x w  which leads to 
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 

 

2 2

2 3

2 0
3 2

0 0

0 2
3 2

0 0

H x w x

D x w x

 
   
 

 
  
 

H

H

 

The transformation H  that maps f to D  is singular, so it is able to change the type of the cubic from Type 

21 to Type 3—that is, to the cubic that has a triple root where the original f has a double root. There’s a 

nice geometric interpretation of this phenomenon. Recall that in part 1 we found that the discriminant 

surface 0  , where all type 21 cubics reside, is a ruled surface. A particular ruling line is the set of all 

type 21 cubics that share the same Hessian. The set of all type 3 cubics lies on a crease in the discriminant 

surface and each ruling line crosses this crease exactly once. The operation of forming the D  of a type 21 

cubic then consists of following along its ruling line to the crease. 

 

Generalizing the single root at w=0 to instead be at 3 0Ax Bw   gives us, after the appropriate 

computation: 

 

 

2

3 2 2 2

2

3 2 3 3

2 0
, 3 2

0 0

0 2
, 3 2

0 0

B
H Ax Bx w B x

B
D Ax Bx w B x

 
    
 

 
   
 

H

H

 

The coefficient A does not appear in the formulas for H and D ; only the location of the double root 

matters. This means that a ruling line (a line of constant Hessian) is also a line of constant double root. 

Sliding up and down along this line just changes the single root until, at the crease, the single root 

momentarily coincides with the double root.  

Type 111 

A nice example of a type 111 cubic is      3 2, 3 3 3f x w x x w x w x xw     . If you plot the three 

roots as lines through the origin in the x,w  plane you find that they are equally spaced 60 degrees apart, 

Figure 2. Some computation gives: 

   

 

   

3 2 2 2

3 2

2 0
, 3 2

0 2

30 2
,

2 0 2 3 3

H x xw x w

D x xw

x w x w w


 
      

  
  

   

H

H

 

The Hessian has no real roots. The matrix H  that transforms f to D  is a 90 degree rotation so D  has 

three roots interleaved between the three roots of f, again see figure 2. 
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x

w

Roots of f

Roots of  D f

   

Figure 2. Roots of type 111 cubic and its covariants 

 

For a general type 111 cubic, the Hessian will always have no real roots and be negative definite. Now 

recall that the roots of H correspond to the eigenvectors of H , so the transformation from f to D  has no 

real eigenvectors. This means that it is always a generalized rotation—that is, one with some possible 

additional shearing. So we have the situation that sliding a type 111 cubic along a line of constant Hessian 

basically rotates its roots until it gets to D . But there’s something else that’s interesting. In figure 2 note 

that a rotation of 90 degrees is not the only rotation that can change f into D . A rotation of 30 degrees and -

30 degrees will also work. In the general case the matrix H  is not the only transformation that does the 

job. Another matrix that works is one that is effectively the cube root of H .  

Type 11  

Here our concrete example will be    2 2 3 2, 3 3f x w x x w x xw     so it has one real root at [x,w]=[0,1]. 

Computation reveals 

   

   

3 2 2 2

3 2 2 3

2 0
, 3 2

0 2

0 2
, 3 2 3

2 0

H x xw x w

D x xw x w w

 
     

 
     
 

H

H

 

The Hessian has two real roots, [x,w]=[1,1] and [x,w]=[-1,1]. The transformation matrix H  simply 

exchanges x and w; it is a mirror about the line x=w. So D  is a cubic with one real root at [x,w]=[1,0]. See 

figure 3.   
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x

w

Root of f

Root of  D f

Roots of  H f
 

Figure 3. Roots of type 11  cubic and its covariants 

 

In the general case H  will always have two real eigenvectors and a negative determinant (since 0  ). 

So it will mirror the single real root of f into the single real root of  D f . But here’s the really interesting 

thing: Recall that in part 1 I showed that lines of constant Hessian for type 11  cubics intersect the triple-

root curve at two points. These two triple-root cubics are the cubes of the roots of the Hessian. In our 

special case these are  
3

x w  and  
3

x w . Now we have a new cubic,  D f , that is also on this constant 

Hessian line. This means that these four cubic polynomials are linearly dependent; in particular in our 

special case we can easily see that:  

   

   

3
1
2

3
1
2

f D f x w

f D f x w

  

  

 

So traveling along the constant-Hessian line we encounter, in order,      
3 3

, , ,f x w D f x w   and then 

get back to f. 

What can we do with this? 
Our ultimate goal here is twofold. We want to get insight into how cubic polynomials work: what are the 

in/covariants and their geometric interpretations, how does a transformation in parameter space relate to the 

transformation in coefficient space, etc. But, more practically, we are also interested in finding numerically 

sound ways to calculate the roots of a cubic. To do this it is useful to have more than one way to calculate 

the roots. For example, when we were solving quadratics we found numerical problems in the expression 

 2 /B B AC A    when B is positive and 2AC B . But knowing about the problem was only useful 

because there was another way to calculate the same value:  2/C B B AC   , that didn’t have 

numerical problems . Similarly, last time we found two algorithms that complement each other in solving 

type 11  cubics so that at least one of them (pretty much) will be numerically nice. In part 4 we will show a 

preliminary solution to type 111 cubics, and in part 5, with the insights gained in this article, we will work 

on finding numerically nice solutions to all cubics.  

 

Meanwhile, I’ll get back to my Lost DVD’s. I wonder if Walt will get rescued. (I’ll bet he does.) 
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