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ABSTRACT 

Consider n parties having local inpuls X ~ S L ~ ,  .... x, respcctively. and wishing to compute the 
valuef(x,,. . . J,,), where f is a predetermincd function. Loosely speaking. an n -party protocol 
for this purpose has m i m u m  privacy i f  whatcvcr a subset of the users can efficiently compute 
when participating in the protocol, they can also compute from their local inputs and the value 
f ( x 1 . .  . . ,x,>. 

Recently, Goldreich. Micali and Wigderson havc presented a polynomial-time algorithm 
that, given a Turing machine for computing tlic function f. outputs an n-party protocol with 
maximum privacy for distributively Computing f ( x , ,  . . . J,,). The maximum privacy protocol 
output uses as a subprotocol a maximum privacy two-party protocol for computing a particular 
simple function PI(,-). More recently, Habcr and Micali have improved the efficiency of the 
above n-party protocols, using a maximum privacy two-party protocol for computing another 
particular function p2( . : ) .  Both works use a general rcsult of Yao in order to implement proto- 
cols for the particular functions p , and p 2. 

In this paper, we present dircct solulion< to ihc above two particular protocol problems, 
avoiding the use of Yao's general result. In fact. wc picscnt two alternative approaches for solv- 
ing both problems. The first approach consists of a simple reduction of these two problems to a 
variant of Oblivious Transfer. The sccond approach consists of designing direct solutions to 
these two problems, assuming the inlractabilily or thc Quadratic Residuosity problem. Both 
approaches yield simpler and more efficient solutions than the oncs obtained by Yao's result. 
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dation (BSF). Jerusalem, Inael. 

C. Pomerance (Ed.): Advances in Cryptology - CRYPT0 '87, LNCS 293, pp. 73-86, 1988. 
0 Springer-Verlag Berlin Heidelberg 1988 



74 

1. INTRODUCTION 

The main purpose of many cryptographic protocols is to allow parties to collaborate 
towards some common goal, while maintaining thc maximum possible privacy of their secrets. 
Typically, the common goal is to compute sonic function of the local inputs (secrets) held by the 
different parties. Maximum privacy means that this value is distributively computed without 
revealing more about the local inputs than what is rcvcalcd by the value itself. 

More formally, let xi be the local input or party i (151 In) ,  and f be an n -argument func- 
tion. The parties wish to obtain the value f ( x l ,  . . . , x n ) ,  but do not wish to leak any further 
information about their Iocal inputs. To bcttcr understand what is meant by this requirement, 
consider the situation when all parties trust an additional parcy. In this case, each party may 
(secretly) send his local input to the trusred parry, which will then compute the value of the func- 
tion, and announce this value to all panics. A maximum privacy protocol achieves the effect of 
the trusted party without using a trustcd party. Namcly, whatever a party can efficiently compute 
when participating in a maximum privacy protocol, hc could have efficiently computed after par- 
ticipating in the above "trusted party" protocol. 

To better understand what is meant by niaximum privacy, consider the problem of comput- 

ing the sum of the local inputs (i.e. f (x1,x2,  . . . , x , ) = i x i ) .  A maximum privacy protocol for 

cmputing the sum of the local inputs guaranEes lhat whatever a coalition T of parties can effi- 
ciently compute when participating in the protocol, can also be efficiently computed from their 

local inputs ( { x i l i e  T) and the sum of all local inputs (i.e. Ex;). Equivalently, all they learned 

i= l  

n 

i =I 

about the local inputs of the other panies i s  thcir sum ( i t .  C x i ) ,  and this of course can not be 
i6 T 

avoided. 

Goldreich, MiCali and Wigderson [GMWZ] havc proposed a method for generating max- 
h u m  privacy protocols for computing any function f . Their method is in fact a polynomial- 
time algorithm that given as input a Turing Machinc description of the (n -argument) function f , 
outputs a maximum privacy n -party protocol for computing f . These protocols use instances of 
a maximum privacy two-party subprotocol for thc rollowing particular protocol problem (in S5 - 
the symmetric group of 5 elements): 

Input: A 's local input is a permutation. T E S5, while 5 's local input is a permutation d E S5. 

Output: A's local output is a pcrmutation 2' E S j, and 5 's local output is a permutation d E S5 

such that z-cY=~-T'. (Here . means permutation composition.) 

Recently, an efficiency improvemcnt of Lhc [GMWZ] algorithm has been suggested by 
Haber and Micali [HM]. The protocols ouiput by Lhcir algorithm use instances of a maximum 
privacy two-party subprotocol for thc following particular problem (in GF(2)  arithmetic): 

Input: A ' s  local input is a pair of bits a and a2, whilc 5 's input consists of the bits b and b2. 

Output: A 's local output is a bit ao, while B 's local ouiput is a bit bo such that ao+bo=Cai.bi. 
2 

i = l  
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Both, IGMW21 and [HM] use for solving the above problems, a general result of Yao Cy21: 

a method for generating maximum privacy two-party protocols for any two-argument function. 
This method (modified in [GMW2] by using ideas from [EGLJ) guarantees maximum privacy 
under the assumption that trapdoor one-way pemiutations exist, 

In this paper, we present direct solutions to the above two particular protocol problems, 
avoiding the use of Yao's general result, In fact, we present two alternative approaches for solv- 
ing both problems. The first approach consists of a simple reduction of these two problems to a 

variant of Obliviow Transfer, which can implcnicntcd assuming the existence of any trapdoor 
one-way permutation. The second approach consists of designing direct solutions to these two 
problems, assuming the intractability of Lhc Quadratic Residuosity problem. Both approaches 
yield simpler and more efficient solutions than thc oncs obtained by Yao's result. 

Our protocols and their applications arc prcscntcd in a model where parties follow the pro- 
tocol properly, except that they may store all inicrmediate computations done during the execu- 
tion. Thus, we concentrate only in guarantccing that the protocols have maximum privacy. 
Using the results of [GMW2]. each maximum privacy protocol in the above model can be 
transformed into a protocol guaranteeing both niaxinium privacy and correcrness of output in a 
model where a minority of the parties may dcviatc lrom the protocol in arbitrary (but 
polynomial-time) manner. 

2. PRELIMINARIES 

In this section, we recall the basic definitions and notations used in this paper. 

2.1. Two-party Cryptographic Protocols 

Loosely speaking, a two-party cryptographic protocol is a pair of programs run by a 

corresponding pair of interacting Turing Machincs. An interactive Turing Machine is a Turing 
machine with the following tapes: 

1) A read only input tape. 

2) A read only random tape. 

3) A readlwrite working tape. 

4) 

5 )  

The machine can be thought of as using the bits or thc random tape as coin tosses, sending mes- 
sages through its write-only communication tapc, and receiving messages on its read-only com- 
munication tape. It should be noted that thc currcnL configuration of the machine is determined 
by the context of its input tape, random tape, and read-only communication tape. 

Two interactive machines A and 3 ,  arc callcd an interactive pair (of Turing machines) if 
they share their communication tapes in the obvious manner (i.e. A 's read-only communication 
tape is B 's write-only communication tape and via versa). 

A pair of communication tapcs, onc bcing rcad-only and the other write-only. 

A write only output tape. 
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We consider only polynomial-time proiocols. These are protocols consisting of pairs of 
programs, such that the running time of each program is polynomial in the length of the input. 

Typically, we will not be interested in a particular execution of a protocol, but rather in the 
probability distribution on the set of possible executions. This probability distribution is a func- 
tion of the local inputs and internal coin tosses of the interacting machines. 

A particularly intersting probability distribution is defined by a party's view of the execu- 
tion. The party's view of an execution contains the contents of his local input and random tapes, 

as well as the contents of his read-only cornrnunicalion tape. We stress that the contents of the 
input tape and the read-only communication tape can not be modified (or erased) by the program. 
We denote by A B ~ ) ( x )  the probability distribution defined by A 's view of an execution, in which 
A has local input x ,  and B has local input y . 

22. Polynomial Indistinguishability 

A fundamental notion regarding probability distributions is the inability to efficiently tell 
them apart. This notion is captured by the definition of polynomially indistinguishable probabil- 
ity ensembles originating in [GM, Y 11 and skctchcd &low. 

A probability ensemble Y=(Y1,Y2, ...) is an infinile sequence of probability distributions. 
where Y k  is a probability distribution on binary strings. Typically, the support of Yk will contain 
strings of length polynomial in k . A test, TI i s  a probabilistic polynomial time algorithm that on 
input a suing x output a bit b . Let Pi denote thc probability that T outputs 1 on input a string 

randomly selected with a probability distribution Yk. Two ensembles X and X' are polynumiaIIy 

indistinguishable if for all  tests T ,  for all constants c >O, and for sufficiently large k ,  

1 

kC 
I Pi -Px', I < - 

23. The Privacy Requirement 

In the introduction. we have motivated maximum privacy protocols as ones allowing the 
distributed computation of functions without rcvealing more about the local inputs than what is 
revealed by the value of the function. I t  was rcquired that whatever a party can efficiently corn- 
pute when participating in a maximum privacy prolocol, lie could have efficiently computed from 

his local input and the value of the function. Clearly. it  suffices to require that he can efficiently 
compute his view of the execution from his local input and the value of the function. A formal 
definition follows. (For first reading of the definition, assume that z is the integer k in unary 
representation and that its sole purpose is to allow the used of the formalism of polynomial indis- 
tinguishability.) 

Definition 1 (A program preserves privacy wilh rcspect to a particular program.): Let n be a pro- 
bability ensemble (111,112, ...) such that Ilk is a probabilily distribution on triples ( ~ , y , z ) .  Pro- 

gram B preserves the privacy of f with respect to program A if there is a probabilistic 
polynomial-time machine M ,  that for every enscmblc n. when given input X J  and f(x,y) Out- 

puts M ( x  .z f ( x  ,y )) such that ensemble M (x  .z ,f ( x  ,y )) is plynomially indistinguishable from 
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the ensemble AB@,(X ,z 1. (Here the triple ( x y  , z )  is chosen wilh probability distribution I lk . )  

In fact, we allow z to be arbitrary. thus capiuiing a priori information that party A might 
have had on the input of B , This way, we guarantce that even with the help of such a priori infor- 
mation, executing the protocol does not reveal morc about the local inputs than is revealed by the 
value off (x ,y ). 

Although maximum privacy is defincd hcrc with respect to the computation of functions, 
the definition naturally extends to the computalion of probability distributions. 

2.4 Two Models of Party's Behavior 

In this paper we consider two typcs of p i t y ' s  bchavior. The first type, called semi-honest 

behavior consists of a party following his program while recording all intermediate computing 
steps on a special tape (called the history tape) and conducting an arbitrary polynomial-time com- 
putation using the history tape as an input. Notc that even if a program of a semi-honest specifies 
that it has to erase the contents of his working tape, this contenrS still appear on the history tape. 
Yao [Y2] (resp. Goldreich, Micali and Wigdcrson [GMW2]) presents a method of "forcing" the 
participants of any two-party (resp. multi-patty) protocol to behave in a semi-honest manner. 
Definition 2 (Protocol which preserves privacy in Uie semi-honest model): A two-party protocol 
(A.B) preserves the privacy off in the semi hoitest model if program A preserves privacy with 
respect to program B and program B prcserves privacy with respect to pmgram A .  

Definition 3 (Maximum privacy protocol.): A promo1 ( A  , B )  has maximum privacy if program A 

preserves privacy with respect to all polynomial-tirnc program B *  and program B preserves 
privacy with respect to all  polynomial-timc program A . 

When talking about a cryptographic protocol we arc usually interesting in two propercia, 
correctness and privacy (correctness means thnt  thc Lruc value o f f  is being compMbg by the 

protocol.). In this paper we arc conceined only with the privacy condition. This can be 
motivuui irr N o  ways. First we believe that privacy and correctness are distinct notions which 
;rrc beUW understood when dealt separately. Correctness is easily dealt using zero-knowledge 
proofs [GMWI], while privacy even in the semi-honest model requires different techniques 
[GMW2]. Secondly, it is natural to consider sctting in which the parties are very interested in 
obtaining the correct value of the function and on top of ulis seek to gain additional information 
(but not at the cost of not getting the correct valuc). This is formulated by the following behavior 
model. 

A value-preserving adversary, consists of n pnily which may deviates from the protocol in 

We introduce two protocols for the samc problem, the first preserve privacy in the semi- 

any manner that does not change the true valuc o f f  . 

honest model while the second has maximum privacy. 



2 5  One-out-of-Two Oblivious Transfer 

Susan and Ron are friends. Susan has two secrct bit, which Ron wants. In order to presewe 
their friendship Susan is willing to give Ron only one of her secret at his choice, but Ron does not 
want her to know which secret he chose. A one-out-of-rwo Oblivious Transfer, denoted OT: , is a 
two-party pmtocol which guarantees that Ron gels only the secret (bit) he has chosen while Susan 
does not know which secret he chose. 

The OTJ as motivated above, must be related to a model of behavior. Wc consider OT: in 
the semi-honest model and in the value-preserving adversary model. When we say that a proto- 
col implements OTd in a specific model we mean that the OTJ properties hold when the party's 
behavior is restricted to is model. 

2.6. The Quadratic Residuosity Problem 

the multiplicative group modulo m . The set of quadratic residue modulo m is denoted by 
Q,=(a : 3 E 2; s.t. u IX' ( m ) }  

For every u E 2;. the Jacobi symbol of a mod m ,  dcnoted (a). is defined as (a).(-). where 

("1 is +1 if a is a quadratic residue modulo p and -1 otherwise. The Jacobi symbol can be 

easily computed from u and m . Clearly, (a)-l impljes a $ Q,,, , but the converse does not 

hold. In fact, distinguishing elements of Q, from quadratic mn-residues mod m (with Jacobi 
Symbol 1) is considered intractable. (This computation is easy if the factorization of rn is 
known.) To concentrate on elements with Jacobi Symbol 1. we denote 

Let m be a composite integer, the product of two large primes p and q . We denote by Z i  

U 

m P 4  

P m 

m 

U zZ')= ( a  E z;: (-)=+I), 
m 

N,,, =Z>')-Q, 

The Quadratic Churacter of x mod m , dcnoicd QC, ( x ) ~  is defined as 0 if x E Q, and 1 
otherwise. The Quadratic Residuosiry problem is to determine, on input x and m ,  the value of 
QC,,,(x). This task is considered intractable in the following sense 

Intractability Assumption of Quadratic Resicluosity [ G L ~ :  Let C=(Ci}  be an infinite 
sequence of Boolean circuits such that Ci has 2i input bits. Let fc, denote the fraction of 

integers m product of two primes, of Icnglh i i 2  bits cach, such that for every x E Zk'). 

Ci(x.m)=QC,(x). For every family of polynomial size circuits, C=(Ci], every constant c>O 

and sufficiently large i ,fc,<i-c. (Here the size of a circuit famiiy C=(Ci } is a function mapping 
i to the number of gates in Ci .) 

We use the fact that, under the intractability assumption of Quadratic Residuosity, it is 
infeasible to guess the quadratic character with any non-negligible advantage over 112. 

Definition: We say that C polynomiully approximates Quadratic Residuosity, if there exist a con- 
stant c >O such that for infinitely many i 's 
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where the probability is taken over all possible m =p q (with p and (I being two primes of length 
i /2  each) and aLI x E a') with uniform probability distribution. 

Theorem [GM]: Under the intracability Assumption of Quadratic Residuosity, there exist no 
family of polynomial size circuits that polynoniially approximates Quadratic Residuosity. 

2.7. Notations 

Let S be a finite set. By e E RS we mean an element randomly chosen from the set S with 
uniform probability distribution. 

We denote by Ss the group formed by Ihc sct of all pennutations over { 12,3,4,5}, and per- 

mutation composition as operator. (This group is k n o w  as the symmetric group.) 

3. THE GF(2) SCALAR PRODUCT PROTOCOL 

In this section we present a maximum privacy two-party protocol for the problem of distri- 
butively computing scalar product in GF (2), defincd as follows: 

Input: A 's local input is a t-dimensional binary vector ii=ja,,a2, , . . ,a,). while B 's input 
is another t dimensional binary vector i=(b ,b 2, . . . , b!). 

Output: A *s local output is a bit a", whilc B ' s  local output is a bit bo such that 
I 

ao+biJ=Cai+i. 
i=l 

In fact, we are interested in the case t=2, which is cxactly the subprotocol required for the Haber 
Micali protocol generator [HM]. For simplicity, we prcscnr a protocol for the following related 
problem: 

Input: A 's local input is a pair of bits a. and a ,, whiIe B 's input is a single bit bl. 

Output: B 's local output is a bit bo which cquals a,+a1~b1. (A has no local output.) 

It is easy to reduce the original problem to thc latcr problem. Alternatively, one may use the 
ideas of the protocol described below to directly solve the original problem. 

3.1 Protocol For Semi-Honest Using Or:. 

A defines its first secret to be a0 and his second secm to be aoia l .  Using OT: B chooses 
one of A 's secrets according to the value of b I .  I f  b ,=O then B chooses the first secret, otherwise 
he chooses the second secret. 

It easy to see that B 's output bit cquals no+a ,h thus correctness holds. The privacy in the 

An OT; is simply implemented in the semi-honest modcl, assuming the existence Of trap- 
door one way permutation [GMW21, unfortunately this implementation does not have maximum 

semi-honest model hoIds by the definition of OT: in  the scni-honest model. 



privacy. Zero knowledge proofs can be used in order to ensure that this OT; protocol has max- 
imum privacy, however the modified protocol is no longer simple and efficient. 

the scalar product problem, that is under the Quadratic Residuosity Assumption. 
An efficiency improvement have been achievcd in the next maximum privacy protocol for 

3.2. The Protocol in the  Value-Preserving Adversary model. 

hepmcessing: B chooses at random two k -bii primcs p ,q . ( k  is the security parameter) 
B computes m=p -4. Next, B chooses y E N,,, and publishes the couple rn y . 

i) B chooses s E R Z ~  and computes P=(s2,yb' mod rn). B sends B to A .  

ii) A chooses r E R Z ~  and computes a=(r2.yao pa' mod m). A sends cz to B .  

iii) B checks the quadratic residuosity of a, and scts bo=QCm (a). 

33. Correctness of the Protocol 

We first show, that the above protocol is correct: namely that the output satisfies the specif- 
ication conditions. 

Claim 1: The bit bo computed by B does equal ao+a ,.hl. 

Proof: B gets 

B setbo=QCm(a)=ao+al.bt (mod 2). 0 

a3r2.yao.pal r2.yuO(J2.Ybl)aI I ( p  2 .yu&lbl  (mod m). 

3.4. Maximum Privacy of the Protocol 

We now prove that the above protocoi has thc maximum privacy property. First we use the 
Intractability Assumption of subsection 2.6 to provc h a t  B preserves privacy with respect to any 
A * ,  and next we prove that A preserves privacy wilh respect to any B* (using no assumptions). 

By Definition 1. program B preserves privacy with respect to A* if there exists a machine 
which, on input the local inputs of A* and the value of h e  function, simulates the interaction 
between A* and B . This requirement has to be satisfied for any possible input that A may have. 
including encoding of possible a-priori information on B 's inputs (denoted z). However, if thz 

modulus m is chosen in the preprocessing and is input to the protocol then z may depend on it. 
In particular, z may contain the prime factorizalion of m and in such a case clearly B does not 
preserve privacy. This problem may be rcsolvcd i n  onc of thc following ways: 

1) Having B choose m at random each timc thc protocol is executed, instead of having it 
chosen in a preprocessing stage. This complcicly solves the problem, at the cost of substan- 
tially decreasing the efficiency of the protocol. 

Leaving the protocol as it is. and relaxing the definition of privacy preserving. The defini- 
tion is relaxed by restricting z to bc polynomial-time computable. In particular, 
z =R(b l ,my) ,  where R is a probabilistic polynomial-time algorithm. (Thus, z may be a 
random variable.) This restriction is justificd by the applications of the above protocol. 

2) 
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Typically, the protocol will be used many times, each time with the same modulus (m)  but 
with possibly different uo,aI,b 1. When considering the i-th application of the protocol, the 
input to A* is the history of the previous i-1 applications. One can then use induction on i 
to show that privacy is preseved in i successive applications of the protocol. In the induc- 
tion step, we use the fact that the history of the previous i-1 can be simulated by a proba- 
bilistic polynomial-time machine, and thus the input z in the cumnt application satisfies 
the resuiction 

In the following Claim, we use adopt the second alternative. The reader may easily modify our 

proof to show that the modified protocol (as suggested in the first alternative) presewes privacy 
in the original sense (of -finition 1). 

Claim 2: Assuming intractability of Quadratic Residuosity and restricting z to be polynomial- 
time computable (see (2) above), program B of the above protocol preserves privacy with respect 
toanyA’. 
Proofs Sketch: To prove the claim, we demonstrate a machine M which on input uo,a 1, m ,y and 
t (as restricted above) outputs a probability distribution M(ao.aIm,y , z )  which is plynomially 
indistinguishable itom Ai(b lp ,qm,y )  (ao,aI,m ,y ,z). Machine M proceeds as follows: 

(Simulates step (i) of machine B ) :  Sets b’,=l, chooses s E RZ:, and computes pl=(s2yb” 

mod m). Outputs its inputs together with p’ and stops. 

We will show that the output of A4 is polynomially indistinguishable from the contenrs of the 
input and read-only communication tapes of A * (when interacting with B ). The only potential 
difference betweenM(a&a1Jn,y,z) and A B l ~ b , p , q m y ) ( a o , a l ~ , y , r )  may be created by a differ- 
ence between the distribution of p and p’. 
There are essentially two cases. 
Case 1: Prob(b,=l)>l-kT. for all c >O and sufficiently large k. In such a case, the ensembles 
M ( - * )  and Ag(...)(.-) are almost the same and can not be polynomiaUy distinguished (regardless of 
the difficulty of determining Quadratic Residuosity). 
Case 2: There exist a constant c >O such that Prob(bl=O)>k~ for infinitely many k’s .  Assume, 
on the contrary, that there is a (polynomial-time) test T distinguishing M(ao,al,rn,y,z) from 

A B l ( 6 , g a ~ m y ) ( a ~ , a ~ , m , y s ) ,  when ( ~ O J Z I ~ J ) ,  ( b ~ , p , q , m , y )  andz aretaken from adisnibution, 
denoted I l k ,  in which p , q  are randomly selected k-bit primes, m=pq, y ERN,,,, and 
r=R(b,,rny), where R is a probabilistic polynomial-time machine. In such a case, we use the 
test T to construct a family of circuits for approximating Quadratic Residuosity. Let I k  be a 
value of (ao,a for which the test T distinyishcs the above two ensembles. With no loss of gen- 
erality, assume that T outputs 1 with higher probability on lhe ensemble M ( . - * )  than on the 
ensemble ABC..)(-). 
The k- th  circuit incorporates I ,  and the test T ,  working as follows: On input a k-bit composite m 
and x E Z!$’), the circuit computes y and z as explained below, feeds T with ( I k ~ n y  SS) and 

outputs T ’ s  answer. (z is placed in the position of p (p’).) It is left to specify the computation of 
y andz. 
The circuit chooses y E Z$’), and ampules z = R (b .m y 1 using the probabilistic polynomial- 
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time machine R (which is incorporated in the circuit). Note that the test T wiU determine 
correctly the quadratic character of x E Zi ‘ ) ,  in case y E N,. We do not know how T behaves in 
case y E Q,. Therefore, before using y to test the quadratic character of x we estimate the 
behavior of the test with this y .  Namely, we select many ri E RQ,,, (by letting ri=s?, where 
si E R Z ~ )  and feed the test T with either (Ik ,m y ,z ,ri) or (lk m ,y J ,ri.y). If the test T distin- 

guishes these two cases. we use this y for determining the quadratic character of x (i.e. feed T 

with (Zk ,m y ,z AX)). Otherwise, we try again. 
One can show that the circuits constructed as above do approximate Quadratic Residuosity with a 
non-negligible advantage. The technical details are quite standard, and are. omitted here. We 
reach a contradiction to the Quadratic Residuosity Assumption, and the Claim follows. 0 

We now prove preservation of privacy with rcspect to B . This time we use no intractability 
assumptions. 

Claim 3: The protocol preserves privacy with respect to B . 
Proofs Sketch: We will show that there exist a machine M which on input bl,k,z and 
f (u0,u 1,b 1) (=a 1.b IMO mod 2). outputs a probability distribution which is identical to the distri- 
bution on B ’s input and read-only tapes during interaction with A .  M operates as follows. 

1) M randomly chooses two k-bit primes p , q ,  computes r n 9 . q .  and chooses 
Y ‘2 R <z$’’-f?rn)- 

2) 

Recall thatA calculate a a s  a s r 2 . y u o - ~ a L s ( r ~ S a l )  .yuacalbl (rnodm). whelr: r E RZ:. Since both 
r .so‘ and f are UniformIy distributed in Z i ,  a and a’ have identical probability distribution. The 
Qaim follows. 0 

M chooses f E ~2:. computes d=r’2.yf (uap1nb1)  (mod m), and outputs (its input and) d.  
1 

35. Summing Up 

Combining claims 1.2 and 3. we get 

Theorem I: The above protocol is a maximum privacy protocol for the simplified GF(2)  scalar 

product problem. 

A protocol for the originaI GF(2)  scalar product problem, can be easily derived and proven 
using the above ideas. The protocol of subscction 3.1 is modified as follows. In step (i), B 

chooses S ~ S Z ,  . . . ,st E RZ;, computes Pi=(s~ .yh’  mod m),  and sends PI,&, . . . , p, to A .  In step 
(ii>,A computes cq=p?. chooses r E R Z ~  and a0c (0,l) .  computes a=(r2.yrro.r&lai rnodm), 

and sends ato B .  In step (iii), B setS b&C,(a) ( = a o + ~ a i b i ) .  
I 

i-I  

4. THE PERMUTATION SWITCHING PROTOCOL 

In this section, we present a two-party protocol with maximum degree privacy for the pmb- 
lem of switching permutations defined as follows: 
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Input: A 's local input is a permutation, T E Ss, while B 's local input is a permutation CTE S5. 

Output: A's  local output is a permutation T'E S 5 ,  and B 's local output is a permutation d e  SS 

such that ~ e d . ~ ' .  

An equivalent formulation used in the sequel is 
Input: A's  local input is a pair of pcrmutations, T,T' E S 5 .  B 's local input is a permutation 

Output: B 's local output is d=t-o~.'. ( A  has no local output.) 
(3E s5. 

One-our-of 120 Oblivious Transfer can be implcments to solve the above problem in the 
semi-honest model. A maximum privacy protocol for he  permutation switching problem is fol- 

lowing presents, that is under the Quadratic Residuosity Assumption. 

4.0. Conventions 

Throughout this section. we use quite non-standard representation of permutations. The 
reason for this representation is that it allows to composite a non-encrypted permutation with an 
encrypted permutation resulting in an encrypted pennutation. 

We represent permutations in S5 by quintuples of distinct elements in (1.2,3,4,5). By 
(il,i2..i5) we mean the permutation mapping i, to k (Vk=l. .S) .  For example let 0=(3,5,1,2,4), 

then 0. (A  3 , C 9  E )  = (C ,E A ,B 9). 

Assume that we encrypt quintuples (i ,, . . . , i 5) by encrypting each element separately; namely 
E(i1, . , . ,if) = E(i  l),..J?(i5). Then, given 0=(3,5,1,2,4) and E(il, . . . ,is) we can compute 

E(CT.(il,iZBi3.i4,i~)) = E(i3,i5,iI,i2,i4) = E( i3 ) ,E ( i5 ) .E ( i ! )E( i2 )~ ( i4 )  = a E ( i l .  . . . , i s )  

The representation used above allows us to compute E(7.a) from z and E ( 0 ) ) .  We wish to 
be able to compute E (7.0) from E (T) and 0. Using two particular encryption formats, E and B, 
we axe able to compute E(z.0) from E (T) and Q. 

We encrypt quintuples o=(i 1, . . . , is) by encrypting each element separately. Namely E((3) 

= ~ ( i ~ ) , . . . , ~ ( i ~ ) .  TO encrypt an element i E ( I ,  L.., 51 we use a quintuple of elements in 22') 
(rn=p.q is composed of two large primes), with a quadratic residue in the i-th location and qua- 
dratic non-residues in all other locations. Specifically E,(i) is a probabilistic encryption equal- 
ing (S ~Sz..,s-j), where si E R Q, and sj  E N,, , for all j t i  . For notational convenience we use 
E(.)  instead of Em(.). For simplicity, we usc the shorthand '(Qfl,N,N.N) for E ( 1 )  

((N.Q ,N &,N) for E (2). etc.), where Q denotes s E R &, and N denotes s E R (Z$1)4m). 

The advantage of this encryption melhod is that it allows us to compute an encryption of the 
Boolean predicate i=j  from E(i)  and E U ) .  wihout yielding any additional infOrmatiOn about 
i j E { 1,2,3,4,5]. Given E (i) and E (j), we first apply coordinate-wise multiplication to the two 
quintuples. and next apply a random permutation to the result. In case i = j ,  coordinate-wise mul- 
tiplication yields a quintuple of Quadratic residues. In case i # j , coordinate-wise multiplication 
yieIds a quintuple with Quadratic Non-residues in the i-th and j - th location, and Quadratic resi- 
dues elsewhere. For example, coordinak-wisc multiplication of E(2)=4N,Q f l f l f l )  by 

E(4)=(N,N,N,Q, iV)  yields (Q J , Q  , N , Q ) .  Applying a random permutation to the result, yields 
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(in case i # j )  a quintuple with two Quadratic Non-rcsiducs. 

4.1. The Protocol in the Value-Preserving Adversary model. 

Preprocessing: B chooses at random two k -bi t primes p ,q. (k is the security parameter) 
B computes m=p ' q  . Next, B chooses y E RN,,, and publishes the couple m ,y . 

1) B encrypt (his input) 6, using Quadratic non-residues and residues mod rn . (Encryption is 
as specified above.) B sends E (a) to A .  

A computes E@a) by applying (his first input) r to E(o),  as described above. 2) 

Let(i1,ia.. . , i ~ ) = ~ c d , ( < ~ , T ' ~ ,  . . . ,-f5)=ZI,and(el,ez,. . . . e j ) = E ( m ) .  

for j = l  to 5 do begin (steps 3.j and 4. j ) :  

3 . j )  A computes g(i,) as follows. First, A picks new probabilistic encryptions 
E ( 1 ) 3 ( 2 ) ,  ... € ( 5 )  (using m and y ) .  

for !=I to 5 A computes the coordinate-wise multiplication of e, and E ( I ) ,  and randomly 
permutes the resulting quintuple. Denote the randomly permuted result by r j J .  

A forms five pairs ( ~ j ,  ~,T',),(  fj ,~,r' ~,...,( f j , ~ , ~ ' ~ ) ,  orders the pairs by their rightmost element, 
and sends the pairs (in this order) to B . 

4.j) B remeves ii as follows. Among the five pairs received from A ,  party B finds a pair with a 
leftmost element consisting of an "al l  Quadratic residues" quintuple. B sets dj to be the 
rightmost element of that pair. 

B 's local output is d = (dl,d2, . . . , d5). 5 )  

4.2. Correctness of the Protocol 

We first show, that the above protocol is corrcct; namely rhat the output satisfies the specif- 
ication conditions. 
Claim 4: The permutation d localIy output by B equals TOT'. 

Proof: Clearly, in step 2 A correctly computes E (z 0) We now show that dj computed by B in 

step4.j equals ij. for every j (11jS). The coordinate-wise multiplication of e, and E(Z) equals 
(Q .Q ,Q .Q ,a) if and only if the j- th element of (thc quintuple representing the permutation) 26 
equals 1. Thus. d, is set to Y I ,  where 1 is the j - t h  element of to. It follows that d equals 
(Z.O).-f. c7 

43. Maximum Privacy o f  the Protocol 

We now prove that the above protocol has the maximum privacy property. First we use the 
Intractability Assumption of subsection 2.6 to provc that B preserves privacy with respect to any 
A * .  and next we prove that A preserves privacy with respect to any B' The proofs use ideas 
similar to those used in the proofs of Claims 2 and 3. 

Claim 5: Assuming intractability of Quadratic Residuosity (as in subsection 2.4), the above pro- 
tocol preserves privacy with respect to A .  
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Proofs Sketch: To prove the claim, we construct a machine M that on input T,?, rn y and a RS- 
Uicted polynomial-time computable auxiliary input z ,  (see (2) at subsection 3.4) outputs the 
inputs together with the encryption of the identity permutation. As in the proof of Claim 2, abil- 
ity to distinguish this output from the contents of A 's (input and read-only communication) tapes 

will be converted to a contradiction of the Intractability Assumption of Quadratic Residuosity. 0 

We now prove preservation of privacy with respect to B .  This time we use no intractability 
assumptions. 

Claim 6: The protocol preserves privacy with respect lo B . 

Motivation to the P r o d  What docs B learn from the E(i,)'s? Since A uses independently 
chosen probabilistic encryptions in each step 3. j ,  we concentrate on what is learned from d(i 1). 

B has received five pairs. the left element of one of them is @ ,Q ,Q .Q ,Q) while the left ele- 
ments of the other pairs are quintuples with thrcc Q 's and two N ' s .  It is crucial that the location 
of the N 's in these quintuples is "random" and thus docs not leak any information. 

Proof Sketch: We will show that there exist a machine M which on input om,y,z and d 
(=td), outputs a probability distribution which is idcntical to the dismbution on B 's input and 
~ a d - o n l y  tapes during interaction with A .  M operates as follows 

for j = l  to 5 do begin 

1.1) M co11structs five pairs (v,,l,l),(vj,2,Z) ,..., (v,,5,5), where the quintuple vd, is (a random) 
(Q,Q,Q.Q.Q) and all the other quintuplcs have three (random) quadratic residues in 

(independent) randomly selected locations and (random) quadratic non-residues in the 
remaining locations. 

M outputs his inputs and all (25) pairs constructcd in step 1 .  2) 

One can easily show that the probability distribution corned by ,M is identical to the distribution 
of B when interacting wih A . The claim follows. 0 

4.4. Summing Up 

Combining Claims 4.5 and 6, we get 

Theorem 2: The above protocol is a maximum privacy protocol for the permutation switching 
problem. 
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