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Abstract. Let f be an unpredictable random function taking(b+c)-bit inputs tob-bit
outputs. This paper presents an unpredictable random functionf ′ taking variable-length
inputs tob-bit outputs. This construction has several advantages over chaining, which
was proven unpredictable by Bellare, Kilian, and Rogaway, and cascading, which was
proven unpredictable by Bellare, Canetti, and Krawczyk. The highlight here is a very
simple proof of security.
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1. Introduction

Whenk is kept secret, the function surfk defined in [9], taking 384-bit inputs to 256-bit
outputs, appears to be unpredictable. There is a $1000 reward for anyone who can predict
surfk.

Starting from surfk one can construct efficient secret-key solutions to a variety of
cryptographic problems; see, for example, [8] and [5]. These solutions are provably
secure, in the sense that anyone who can break them can also break surfk, and collect the
$1000 reward, in a few extra steps. Different solutions compete on the exact meaning
they give to “efficient” and “few.”

In this paper I introduce the “protected counter sum” construction. Given a functionf
from 384-bit inputs to 256-bit outputs, I construct a functionf ′ from variable-length in-
puts to 256-bit outputs. I show that iff is an unpredictable random function thenf ′ is also
unpredictable. See Section 4. This construction compares favorably with chaining, which
was proven unpredictable in [7], and cascading, which was proven unpredictable in [3].
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All the ideas in the protected counter sum construction are already present in [5] and
[3]. My main contribution is the exact security analysis, specifically Theorem 3.1.

Implementation. I wrote a portable C library for protected counter sums, using surfk

as the underlying random function. The library, compiled withgcc 2.6 on a Pentium,
occupies 716 bytes. It uses approximately 600 Pentium cycles per surfk call for byte-to-
word conversion and other housekeeping. The total time for a short message (up to one
256-bit block) is 6219 Pentium cycles. The total time for a long message is 3043 cycles
per input block; this is 8.4 million bits per second on a Pentium-100.

Terminology. This paper uses standard terminology from probability theory. See the
Appendix for the definition of “random.” Warning for readers unfamiliar with probability
theory: random variables are not necessarily uniformly distributed.

An oracle algorithm is an algorithm that uses an oracle.

2. Unpredictable Random Functions

Fix setsS and T , with T finite. Let A be an oracle algorithm that prints either 0 or
1. A functionh: S→ T can be viewed as an oracle that printsh(x) given x. Define
A(h) ∈ {0,1} as the result of runningA with this oracle.

Let f andg be random functions fromS to T , i.e., random variables all of whose
values are functions fromS to T . The A-distance betweenf and g is

|Pr[A( f ) = 1]− Pr[A(g) = 1]|.

If the A-distance betweenf andg is negligible for every practical algorithmA then
f and g have indistinguishable distributions. (This concept is parametrized by the
notions of “negligible” and “practical.”)

In particular, letg be a uniform random function fromS to T . A random function
f : S→ T is unpredictable if f andg have indistinguishable distributions.

Examples. A uniform random function is unpredictable.
A uniform random constant function fromSto T is predictable, if #S> 1 and #T > 1.

Let k be a uniform random element ofT , and consider the functionx 7→ k from S to T .
Let A be an oracle algorithm that feeds two distinct inputs to the oracle and prints 1 iff
the outputs are the same. Then theA-distance is 1− 1/#T .

Whenk is a uniform random 1024-bit string, the random function surfk defined in [9]
seems to be unpredictable: there are no known practical algorithms that predict surfk with
any noticeable probability. However, my ignorance does not constitute a proof. Perhaps
every easily computed low-entropy random function is predictable.

Generalizations. For any measurable space and any notion of an oracle on that space,
one can consider distinguishability, using that oracle, of random elements of that space.

For example, a uniform random constant function is unpredictable with aone-time or-
acle, i.e., an oracle that will answer only one question. One-time security is not sufficient
for most practical applications.
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The following random function on a finite field is unpredictable with ann-time
oracle; see page 486 of [17] and [11]. Select independent uniform random elements
k0, k1, . . . , kn−1 in the field, and consider the functionx 7→ k0+ k1x+ · · · + kn−1xn−1.

Notes. In [29], while introducing the Turing test, Turing discussed the claim that an
observer of mechanical behavior could always figure out the underlying rules of behavior.
He pointed out that a particular easily computable low-entropy random function seemed
to be unpredictable. Unfortunately the details of Turing’s example were never published.

A specific asymptotic form of Turing’s notion of unpredictability was introduced by
Goldreich et al. in [15], and studied further by Luby and Rackoff in [19]. The theorems
stated in [15] and [19], being purely asymptotic, are irrelevant to applied cryptography,
though the constructions underlying the theorems are useful.

Several recent papers by Bellare et al., including [7], [5], and [3], continue Turing’s
concrete study of unpredictability, taking constant factors and practical issues into ac-
count.

“Unpredictable” has several aliases in the literature: “cryptographically strong” (see
[26] or [15]), “cryptographically secure” (see [20]), and “pseudorandom” (see, e.g., [19]).
“Fixed-input/variable-input pseudorandom function” is used in [3] where I would say
“unpredictable random function on blocks/messages” respectively. I find it distasteful
to use “pseudorandom” to mean “passes all statistical tests”; for 50 years the standard
meaning of “pseudorandom” has been “passessomestatistical tests.” See [16], [10], [22],
[20], or page 950 of [21].

3. Proving Information-Theoretic Unpredictability

Let SandT be finite sets. Letq1,q2, . . . ,qm be distinct elements ofS. A random function
f from S to T is within ε of uniform on {q1,q2, . . . ,qm} if

Pr[ f (q1) = r1, f (q2) = r2, . . . , f (qm) = rm] ≥ 1− ε
#Tm

for every(r1, r2, . . . , rm) ∈ Tm.

Theorem 3.1. Let f be a random function from S to T. Assume that f is withinε of
uniform on every set of size at most n. Let A be an oracle algorithm that performs at
most n distinct oracle queries. Then the A-distance between f and uniform is at mostε.

The run time ofA is irrelevant.

Proof. Write Pf (E) for the probability ofE if A uses f as an oracle. Letg be a
uniform random function fromS to T . This proof comparesPf (E) with Pg(E) for
various eventsE.

Fix q = (q1,q2, . . . ,qm) ∈ Sm andr = (r1, r2, . . . , rm) ∈ Tm with q1,q2, . . . ,qm

distinct andm ≤ n. DefineXq,r as the event thath(qj ) = r j for each j , whereh is the
oracle used byA. By hypothesisPf (Xq,r ) ≥ (1− ε)/#Tm = (1− ε)Pg(Xq,r ).

Next defineYq,r as the event that (1)A prints 1; (2) A performs exactlym distinct
oracle queries; (3) for eachj , the j th distinct query fromA is qj —i.e., q1 is the first
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query,q2 is the first query different fromq1, etc.; and (4) for eachj , the oracle’s reply
to qj is r j .

The conditional probability ofYq,r given Xq,r is predetermined byA; it does not
depend onh. Indeed, it is the chance thatA decides to doq1, to doq2 given(q1, r1), to
doq3 given(q1, r1,q2, r2), etc., and finally to stop and print 1 given(q1, r1, . . . ,qm, rm).
ThusPf (Yq,r ) ≥ (1− ε)Pg(Yq,r ).

The probability thatA prints 1 is the sum of theYq,r probabilities over all possible
(q, r ). Conclusion: Pr[A( f ) = 1] ≥ (1 − ε)Pr[A(g) = 1] ≥ Pr[A(g) = 1] − ε.
Similarly, Pr[A( f ) 6= 1] ≥ Pr[A(g) 6= 1]− ε. Thus theA-distance betweenf andg is
at mostε.

Theorem 3.1 can be generalized in several ways. It is not necessary to assume thatS
is finite. It is also not necessary to limit the number of queries fromA, as long asf is
within ε of uniform on every possible set of queries.

4. Protected Counter Sums

Let f be a function from(b + c)-bit blocks to b-bit blocks. Let (p1, p2, . . . , pk)

be a sequence ofb-bit blocks, of lengthk between 0 and 2c − 1 inclusive. I define
f +(p1, p2, . . . , pk) as thecounter sum f (1, p1) + f (2, p2) + · · · + f (k, pk), and
f ′(p1, p2, . . . , pk) as theprotected counter sum f (0, f +(p1, p2, . . . , pk)). Here i
means any convenient encoding ofi into c bits, and+ is a convenient group operation
onb-bit blocks, such as exclusive-or.

The counters 1, . . . , k hide input patterns. The sumf +(p1, . . . , pk) is predictable
from its linear structure—ifp1 is changed, the output difference is independent ofp2—
but it is protected insidef (0, ·), so an attacker cannot recognize output differences other
than 0.

Let A be an oracle algorithm. Consider the following oracle algorithmA′: run A,
answering a query for(p1, p2, . . . , pk) with h(0, h(1, p1)+ h(2, p2)+ · · · + h(k, pk)),
whereh is the oracle forA′. Note thatA′ using f is the same asA using f ′.

Theorem 4.1. Let f be a random function from(b+ c)-bit blocks to b-bit blocks. Let
A be an oracle algorithm that performs at most n distinct oracle queries. Let ε be the
A-distance between f′ and uniform. Let δ be the A′-distance between f and uniform.
Thenδ ≥ ε − (n2)2−b.

Thus f ′ is unpredictable iff is unpredictable. For example, ifA breaks surf′k with
probability over 2−96, performing fewer than 280 oracle queries, thenA′ breaks surfk
with probability over 2−97. Hereb = 256.

Proof. Let g be a uniform random function from(b+ c)-bit blocks tob-bit blocks.
Thenδ is the A-distance betweenf ′ andg′, since Pr[A′( f ) = 1] = Pr[A( f ′) = 1]
and Pr[A′(g) = 1] = Pr[A(g′) = 1]. By Theorem 5.3, theA-distance betweeng′ and
uniform is at most

(n
2

)
2−b.
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Generalizations. The crucial property off + is that it hascomputationally uniform
differences: f +(p) − f +(d) appears to be uniform for any fixed distinct inputsp,d.
See Theorem 5.1. In particular,f +(p) is almost never equal tof +(d). Unless the attacker
stumbles acrossp andd with f +(p) = f +(d), all his inputs tof (0, ·) will be distinct,
so the outputs will appear to be independent.

The same functionf + was used for authentication in [5]. The crucial property is again
that f + has computationally uniform differences. See Theorem 7 of [24].

There are alternatives tof + that are very fast for long messages andprovablyhave
almost uniform differences. See, for example, [24] and [28].

Other constructions. The usual fixed-length-input chaining MAC, which mapsp1, p2, p3

to f ( f ( f (p1)+ p2)+ p3), is unpredictable whenf is an unpredictable random function
onb-bit blocks. This was proven by Bellare et al. in [7].

Another available construction is cascading, proven unpredictable for fixed-length
inputs by Bellare et al. in [3]. Cascading, unlike chaining and protected counter sums,
demands a low-entropy random function.

Counter sums have several advantages over chaining and cascading, as noted in [5].
First, it is somewhat tricky to modify chaining and cascading to handle variable-length
inputs. Second, chaining and cascading appear to lose security for long messages; counter
sums do not. Third, chaining and cascading are inherently serial; counter sums can be
evaluated quickly for long messages by a parallel machine.

5. The Uniform Case

The proof of Theorem 4.1 reduces to Theorem 5.3, proven below.
In this section “message” means “sequence of fewer than 2c b-bit blocks.”

Theorem 5.1. Let g be a uniform random function from(b + c)-bit blocks to b-bit
blocks. Let p and d be distinct messages. Then g+(p)− g+(d) is uniform.

Proof. Say p = (p1, p2, . . . , pk) andd = (d1,d2, . . . ,dl ). The point is that, among
g(1, p1), . . . , g(k, pk), g(1,d1), . . . , g(l ,dl ), there is at least one term that is indepen-
dent of all the rest. Ifk > l theng(k, pk) is it. If k < l theng(l ,dl ) is it. If k = l and
pi 6= di theng(i ,di ) is it.

That term is uniform. Thus the difference betweeng(1, p1)+g(2, p2)+· · ·+g(k, pk)

andg(1,d1)+ g(2,d2)+ · · · + g(l ,dl ) is also uniform.

Theorem 5.2. Let g be a uniform random function from(b + c)-bit blocks to b-bit
blocks. Let q1, . . . ,qm be distinct messages, and let r1, . . . , rm be b-bit blocks. Then
g′(qj ) = r j for all j with probability at least(1− (m2)2−b)2−mb.

Proof. By Theorem 5.1,g+(qi ) = g+(qj ) with probability 2−b for fixed i 6= j . Thus
g+(q1), . . . , g+(qm) are distinct with probability at least 1− (m2)2−b. Assume that in fact
they are distinct; theng(0, g+(q1)), . . . , g(0, g+(qm)) are uniform and independent, so
they equalr1, . . . , rm with conditional probability 2−mb.
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Theorem 5.3. Let g be a uniform random function from(b + c)-bit blocks to b-bit
blocks. Let A be an oracle algorithm that performs at most n distinct oracle queries.
Then the A-distance between g′ and uniform is at most

(n
2

)
2−b.

Proof. Defineε = (n2)2−b. By Theorem 5.2,g′ is within ε of uniform on every set of
sizem≤ n, since

(m
2

)
2−b ≤ ε. Apply Theorem 3.1.

Notes. Lemma 3.1 of [7], which is analogous to Theorem 5.3, is proven in [7] with
several pages of analysis of various conditional probabilities. It would be easier to use
the “end-to-end” approach illustrated here, combining Theorem 3.1 with a bound similar
to Theorem 5.2.

6. An Attack

The bound
(n

2

)
2−b in Theorem 5.3 is almost optimal whenever it is smaller than, say, 1%.

Indeed, fixn ≤ 2b, and fixn distinctb-bit blocksq1, . . . ,qn. Consider the following
algorithmA using an oracleh: feedq1, . . . ,qn toh; print 1 if the resultsh(q1), . . . , h(qn)

are all distinct; otherwise print 0.
If h is an oracle for a uniform random function, then the resultsh(qk) are distinct with

probability p, wherep =∏0≤k<n(1− k2−b).
If, on the other hand,h is an oracle forg′, whereg is a uniform random function, then

the resultsh(qk) = g(0, g(1,qk)) are distinct with probabilityp2.
The A-distance betweeng′ and uniform is thusp − p2. Note that 1− x ≤ p ≤

1−x+x2/2 wherex = (n2)2−b; hencep− p2 = p(1− p) ≥ (1−x)(x−x2/2) = x(1−
x)(1− x/2). Compare this lower bound with the upper bound ofx from Theorem 5.3.
If x < 1/100 then the two bounds are almost exactly the same.

Appendix. Basic Probability Theory

Probability theory considers a set Pr of possible universes. Pr is a probability space, i.e.,
a measure space of total measure 1. For an introduction to measure theory see, e.g., [25].

An event is a measurable subset of Pr. The measure of an eventE is called the
probability of E, written Pr[E]. For example, flip a fair coin. LetE be the event that the
coin comes up heads, i.e., the set of universes in which the coin comes up heads. Fairness
means that the measure ofE—the probability that the coin comes up heads—is 1/2.

Let E andC be events, with the probability ofC nonzero. Theconditional probability
of E givenC is the probability ofE ∩ C divided by the probability ofC.

Random variables. Let X be a measurable space. Arandom element ofX is a measur-
able function from Pr toX. If the elements ofX are “objects” then “random element of
X” is abbreviated as “random object.”

Let v be a random element ofX. Thedistribution of v is the measure onX induced
by v. Under this measure,X is a probability space. For example, the result of a fair coin
flip is a random element of the set{heads, tails}, with distribution 1/2 heads, 1/2 tails.
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A random element ofX can be used in a formula as if it were an element ofX. If v
is a random element ofX, andϕ is a measurable function fromX to Y, thenϕ(v)—i.e.,
the composition ofϕ andv—is a random element ofY.

Letv1, v2, . . . , vn be random elements of various sets. If the distribution of(v1, v2, . . . ,

vn) is the product measure induced by the distribution of eachvi thenv1, v2, . . . , vn are
independent.

Uniform random variables. Theuniform distribution on a finite setX is the measure
assigning value 1/#X to each element ofX. A random element ofX is uniform if its
distribution is uniform. For example, a uniform random 4-bit string is a random 4-bit
string that takes each possible value with probability 1/16.

Let S andT be sets, withT finite. Let X be the set of functions fromS to T . The
uniform distribution onX is the product measure induced by the uniform distribution on
T . (For finiteX this is the same as the uniform distribution defined above.) Ifs1, s2, . . . , sn

are distinct elements ofS, andt1, t2, . . . , tn are elements ofT , then a uniform random
function g: S→ T satisfiesg(s1) = t1, g(s2) = t2, . . . , g(sn) = tn with probability
1/#Tn.
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