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1 Introduction

Thanks to integrability, N = 4 super Yang-Mills (SYM) theory should be completely

tractable in the planar limit. However, much work remains to turn this statement of prin-

ciple into a practical computational recipe. A basic class of observables that still defy our

technical abilities are the four-point correlation functions of one-half BPS local operators,

〈Op1(x1)Op2(x2)Op3(x3)Op4(x4)〉 , (1.1)
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with Op(x) = TrX{I1 . . . XIp}(x), Ik = 1, . . . 6, in the symmetric-traceless representation

of the SO(6) R-symmetry. For general weights pi and arbitrary ’t Hooft coupling λ these

correlators are extremely complicated functions of the conformal and R-symmetry cross

ratios, encoding a large amount of non-protected spectral data and operator product coef-

ficients.1 Finding a useful representation for these correlators at any value of the ’t Hooft

coupling λ will be a crucial benchmark for the statement that planar N = 4 SYM has been

exactly solved.2

At strong coupling, planar N = 4 SYM has a dual description in terms of classical IIB

supergravity on AdS5 × S5 [19–21]. Casual readers could be forgiven for supposing that

a complete calculation of (1.1) in the supergravity limit must have been achieved in the

early days of AdS/CFT. Far from it! Kaluza-Klein supergravity is a devilishly complicated

theory — or so it appears in its effective action presentation — and the standard methods

of calculation run out of steam very quickly. Prior to our work only a few non-trivial cases

were known:

(i) The three simplest cases with four identical weights, namely pi = 2 [22], pi = 3 [23],

and pi = 4 [24].

(ii) The next-to-next-to-extremal correlators with two equal weights, i.e. the cases

p1 = n+ k, p2 = n− k, p3 = p4 = k + 2 [25–27].3

The standard algorithm to evaluate holographic correlators is straightforward but very

cumbersome. To the leading non-trivial order in the large N expansion, one is instructed to

calculate a sum of tree-level Witten diagrams, with external legs given by bulk-to-boundary

propagators and internal legs by bulk-to-bulk propagators. The vertices are read off from

the effective action in AdS5 obtained by Kaluza-Klein (KK) reduction of IIB supergravity

on S5. The evaluation of the exchange Witten diagrams is not immediate, but has been

streamlined in a series of early papers [23, 31–36]. A key simplification [36] that occurs for

the AdS5×S5 background is that all the requisite exchange diagrams (see figure 1) can be

written as finite sums of contact diagrams (figure 2), the so-called D-functions. However,

the supergravity effective action is extremely complicated [3, 29, 37]. The scalar quartic

vertices were obtained by Arutyunov and Frolov [29] in a heroic undertaking and they fill

15 pages. Moreover, the number of exchange diagrams grows rapidly as the weights pi are

increased,4 making it practically impossible to go beyond pi of the order of a few. What’s

1On the other hand, two- and three point functions of one-half BPS operators obey non-renormalization

theorems [2–10] and are easily evaluated in free field theory. A non-renormalization theorem also holds for

extremal and next-to-extremal correlators [11–15], defined respectively by the conditions p1 = p2 + p3 + p4
and p1 = p2 + p3 + p4 − 2.

2Four-point functions are the current frontier of the N = 4 integrability program — see, e.g., [16–18]

and references therein for very interesting recent progress.
3As we have remarked in the previous footnote, the extremal and next-to-extremal correlators do not

depend on λ and can thus be evaluated at λ = 0 from Wick contractions in free field theory, yielding some

simple rational functions of the cross ratios. It has been shown that the holographic calculation at λ = ∞

gives the same result [28–30].
4Because of selection rules, the number of diagrams is vastly smaller for correlators near extremality,

which explains why an explicit calculation is possible in those cases.
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worse, the final answer takes the completely unintuitive form of a sum of D-functions. It

takes some work to extract from it even the leading OPE singularities.

This sorry state of affairs is all the more embarrassing when contrasted with the beau-

tiful progress in the field of flat space scattering amplitudes (see, e.g., [38, 39] for recent

textbook presentations). Holographic correlators are the direct AdS analog of S-matrix

amplitudes, to which in fact they reduce in a suitable limit, so we might hope to find

for them analogous computational shortcuts and elegant geometric structures. A related

motivation to revisit this problem is our prejudice that for the maximally supersymmetric

AdS5 × S5 background the holographic n-point functions of arbitrary KK modes must be

completely fixed by general consistency conditions such as crossing symmetry and super-

conformal Ward identities. This is just a restatement of the on-shell uniqueness for the

two-derivative action of IIB supergravity. It should then be possible to directly “bootstrap”

the holographic correlators. The natural language for this approach is the Mellin represen-

tation of conformal correlators, introduced by Mack [40] for a general CFTs and advocated

by Penedones and others [41–44] as particularly natural in the holographic context. The

analogy between AdS correlators and flat space scattering amplitudes becomes manifest in

Mellin space: holographic correlators are functions of Mandelstam-like invariants s, t, u,

with poles and residues controlled by OPE factorization. (For the AdS5 × S5 background,

tree-level correlators are in fact rational functions — this is the Mellin counterpart of the

fact that only a finite number of D-functions are needed in position space.) However, most

applications to date of the Mellin technology to holography (e.g., [41–45]) have focussed

on the study of individual Witten diagrams in toy models. This is not where the real

simplification lies. The main message of our work is that one should focus on the total

on-shell answer of the complete theory and avoid the diagrammatic expansion altogether.

Our principal result is a compelling conjecture for the Mellin representation of the

general one-half BPS four-point functions (1.1) in the supergravity limit. We have found a

very compact formula that obeys all the consistency conditions: Bose symmetry, expected

analytic structure, correct asymptotic behavior at large s and t, and superconformal Ward

invariance. We have checked that our formula reproduces (in a more concise presentation)

all the previously calculated examples. We believe it is the unique solution of our set of alge-

braic conditions, but at present we can show uniqueness only for the simplest case (pi = 2).

We have also developed an independent position space method. This method mimics

the conventional algorithm to calculate holographic correlators, writing the answer as a

sum of exchange and contact Witten diagrams, but it eschews knowledge of the precise

cubic and quartic couplings, which are left as undetermined parameters. The exchange

diagrams are expressed in terms of D-functions, so that all in all one is led to an ansatz

as a finite sum of D-functions. Finally, the undetermined couplings are fixed by imposing

the superconformal Ward identity. This method is completely rigorous, relying only on

the structure of the supergravity calculation with no further assumptions. Despite being

simpler than the conventional approach, it also becomes intractable as the weights pi
increase. We have obtained results for the cases with equal weights pi = 2, 3, 4, 5. The

pi = 5 result is new and it agrees both with our Mellin formula and with a previous

conjecture by Dolan, Nirschl and Osborn [46].
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The remainder of the paper is organized as follows. In section 2 we start with a quick

review of the traditional method of calculation of four-point functions using supergravity.

In section 3 we review and discuss the Mellin representation for CFT correlators and of

Witten diagrams. We place a special emphasis on the simplifications expected in the

large N limit and when the operator dimensions take the special values that occur in

our supergravity case. In section 4, after reviewing the constraints of superconformal

invariance, we formulate and solve an algebraic problem for the four-point Mellin amplitude

of generic one-half BPS operators. We also discuss some technical subtleties about the

relation between the Mellin and position space representations. The position space method

is developed in section 5. We conclude in section 6 with a brief discussion. Four appendices

collect some of the lengthier formulae and technical details.

2 The traditional method

The standard recipe to calculate holographic correlation functions follows from the most

basic entry of the AdS/CFT dictionary [19–21], which states that the generating func-

tional of boundary CFT correlators equals the AdS path integral with boundary sources.

Schematically,

〈
ei

∫
∂AdS ϕ̄iOi

〉
CFT

= Z[ϕ̄i] =

∫

AdS
Dϕi e

iS

∣∣∣∣
ϕi

∣∣
z→0

=ϕ̄∆

. (2.1)

Here and throughout the paper we are using the Poincaré coordinates

ds2 = R2 dz
2 + d~x2

z2
. (2.2)

The AdS radius R will be set to one by a choice of units, unless otherwise stated.

We focus on the limit of the duality where the bulk theory becomes a weakly coupled

gravity theory. As is familiar, for the canonical duality pair of N = 4 SYM and type IIB

string theory on AdS5×S5 this amounts to taking the number of colors N large and further

sending the ’t Hooft coupling λ = g2YMN to infinity. In this limit, the bulk theory reduces

to IIB supergravity with a small five-dimensional Newton constant κ25 = 4π2/N2 ≪ 1.

The task of computing correlation functions in the strongly coupled planar gauge theory

has thus become the task of computing suitably defined “scattering amplitudes” in the

weakly coupled supergravity on an AdS5 background. The AdS supergravity amplitudes

can be computed by a perturbative diagrammatic expansion, in powers of the small Newton

constant, where the so-called “Witten diagrams” play the role of position space Feynman

diagrams. The Witten diagrams are “LSZ reduced”, in the sense that their external legs

(the bulk-to-boundary propagators) have been put “on-shell” with Dirichlet-like boundary

conditions at the boundary ∂AdSd+1.

In this paper we restrict ourselves to the evaluation of four-point correlation functions

of the single-trace one-half BPS operators,

O
(p)
I1...Ip

≡ TrX{I1 . . . XIp} , p > 2 , (2.3)
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fields sk Aµ,k Cµ,k φk tk ϕµν,k

SU(4) irrep [0, k, 0] [1, k − 2, 1] [1, k − 4, 1] [2, k − 4, 2] [0, k − 4, 0] [0, k − 2, 0]

m2 k(k − 4) k(k − 2) k(k + 2) k2 − 4 k(k + 4) k2 − 4

∆ k k + 1 k + 3 k + 2 k + 4 k + 2

∆− ℓ k k k + 2 k + 2 k + 4 k

Table 1. KK modes contributing to exchange diagrams with four external superprimary modes sk.

where XI , I = 1, . . . 6 are the scalar fields of the SYM theory, in the 6 representation of

SO(6) ∼= SU(4) R-symmetry. The symbol {. . .} indicates the projection onto the symmetric

traceless representation of SO(6) — in terms of SU(4) Dynkin labels, this is the irrep

denoted by [0, p, 0]. In the notations of [47], the operators (2.3) are the superconformal

primaries of the one-half BPS superconformal multiplets B
( 1
2
, 1
2
)

[0,p,0]. They are annihilated by

half of the Poincaré supercharges and have protected dimensions ∆ = p. By acting with

the other half of the supercharges, one generates the full supermultiplet, which comprises

a finite number of conformal primary operators in various SU(4) representations and spin

6 2 (see, e.g., [47] for a complete tabulation of the multiplet). Each conformal primary in

the B
( 1
2
, 1
2
)

[0,p,0] multiplet is dual to a supergravity field in AdS5, arising from the Kaluza-Klein

reduction of IIB supergravity on S5 [48], with the integer p corresponding to the KK level.

For example, the superprimary O(p) is mapped to a bulk scalar field sp, which is a certain

linear combination of KK modes of the 10d metric and four-form with indices on the S5.

The traditional method evaluates the correlator of four operators (2.3) as the sum of

all tree level diagrams with external legs sp1 , sp2 , sp3 , sp4 . One needs the precise values of

the cubic vertices responsible for exchange diagrams (figure 1), and of the quartic vertices

responsible for the contact diagrams (figure 2). The relevant vertices have been system-

atically worked out in the literature [3, 29, 37, 49] and take very complicated expressions.

Our methods, on the other hand, do not require the detailed form of these vertices, so we

will only review some pertinent qualitative features.

Let us first focus on the cubic vertices. The only information that we need are selection

rules, i.e., which cubic vertices are non-vanishing. An obvious constraint comes from the

following product rule of SU(4) representations,

[0, p1, 0]⊗ [0, p2, 0] =

min{p1,p2}∑

r=0

min{p1,p2}−r∑

s=0

[r, |p2 − p1|+ 2s, r] , (2.4)

which restricts the SU(4) representations that can show up in an exchange diagram. We

collect in table 1 (reproduced from [24, 47]) the list of bulk fields {ϕµ1...µℓ
} that are a priori

allowed in an exchange diagram with external spi legs if one only imposes the R-symmetry

selection rule.

From the explicit expressions of the cubic vertices [37] one deduces two additional

selection rules on the twist ∆−ℓ of the field φµ1...µℓ
in order for the cubic vertex sp1sp2φµ1...µℓ

– 5 –
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to be non-vanishing,

∆− ℓ = p1 + p2 (mod 2) , ∆− ℓ < p1 + p2 . (2.5)

The selection rule on the parity of the twist can be understood as follows. In order for the

cubic vertex sp1sp2φµ1...µℓ
to be non-zero, it is necessary for the “parent” vertex sp1sp2sp3 be

non-zero, where sp3 is the superprimary of which φµ1...µℓ
is a descendant. By SU(4) selection

rules, p3 must have the same parity as p1 + p2. One then checks that all descendants of

sp3 that are allowed to couple to sp1 and sp2 by SU(4) selection rules have the same twist

parity as p3. On the other hand, the selection rule 〈Op1Op2Op1+p2〉 is not fully explained

by this kind of reasoning. To understand it, we first need to recall that the cubic vertices

obtained in [3, 37] are cast in a “canonical form”
∫

AdS5

cikj ϕiϕjϕk , (2.6)

by performing field redefinitions that eliminate vertices with spacetime derivatives. This is

harmless so long as the twists of the three fields satisfy a strict triangular inequality, but

subtle for the “extremal case” of one twist being equal to the sum of the other two [11]. For

example, for the superprimaries, one finds that the cubic coupling sp1sp2sp1+p2 is absent,

in apparent contradiction with the fact that the in N = 4 SYM three-point function

〈Op1Op2Op1+p2〉 is certainly non-vanishing. One way to calculate 〈Op1Op2Op3=p1+p2〉 is by

analytic continuation in p3 [3, 11]. One finds that while the coupling cp1p2p3 ∼ (p3−p2−p1),

the requisite cubic contact Witten diagram diverges as 1/(p3−p1−p2), so that their product

yields the finite correct answer.5 From this viewpoint, it is in fact necessary for the extremal

coupling cp1p2p1+p2 to vanish, or else one would find an infinite answer for the three-point

function. This provides a rationale for the selection rule ∆ − ℓ < p1 + p2. When it is

violated, the requisite three-point contact Witten diagram diverges, so the corresponding

coupling must vanish. We will see in section 3.2, 3.3 that the selection rule has also a

natural interpretation in Mellin space.

The requisite quartic vertices were obtained in [29]. The quartic terms in the effective

action for the sk fields contain up to four spacetime derivatives, but we argued in [1] that

compatibility with the flat space limit requires that holographic correlators can get contri-

butions from vertices with at most two derivatives. The argument is easiest to phrase in

Mellin space and will be reviewed in section 3.4. That is indeed the case in the handful of

explicitly calculated examples [22–27]. Our claim has been recently proven in full general-

ity [50]. These authors have shown that the four-derivative terms effectively cancel out in

5If one wishes to work exactly at extremality p3 = p1 + p2, one can understand the finite three-point

function as arising from boundary terms that are thrown away by the field redefinition that brings the cubic

vertex to the canonical non-derivative form [11]. One can rephrase this phenomenon as follows [30]: the

field redefinition on the supergravity side (which throws away boundary terms) amounts to a redefinition

of the dual operators that adds admixtures of multi-trace terms, Op → Op + 1/N
∑p

k=2 cpk O
p−kOk + . . . .

The double-trace terms contribute to the extremal three point functions at leading large N order, but are

subleading away from extremality. The operators dual to the redefined fields sp (which have only non-

derivative cubic couplings) are linear combinations of single and double-trace terms such all extremal three-

point functions are zero, in agreement with the vanishing of the extremal three-point vertices sp1sp2sp1+p2 .

– 6 –



J
H
E
P
0
4
(
2
0
1
8
)
0
1
4

Figure 1. An exchange Witten diagram.

Figure 2. A contact Witten diagram.

all four-point correlators of one-half BPS operators, thanks to non-trivial group theoretic

identities.

The rules of evaluation of Witten diagrams are entirely analogous to the ones for po-

sition space Feynman diagrams: we assign a bulk-to-bulk propagator GBB(z, w) to each

internal line connecting two bulk vertices at positions z and w; and a bulk-to-boundary

propagator GB∂(z, ~x) to each external line connecting a bulk vertex at z and a boundary

point ~x. These propagators are Green’s functions in AdS with appropriate boundary condi-

tions. Finally, integrations over the bulk AdS space are performed for each interacting ver-

tex point. The simplest connected Witten diagram is a contact diagram of external scalars

with no derivatives in the quartic vertex (figure 2). It is given by the integral of the product

of four scalar bulk-to-boundary propagators integrated over the common bulk point,

Acontact(~xi) =

∫

AdS
dz GB∂(z, ~x1) GB∂(z, ~x2) GB∂(z, ~x3) GB∂(z, ~x4) . (2.7)

Here, the scalar bulk-to-boundary propagator is [20],6

GB∂(z, ~xi) =

(
z0

z20 + (~z − ~xi)2

)∆i

(2.8)

where ∆i is the conformal dimension of the ith boundary CFT operator. The integral can

be evaluated in terms of derivatives of the dilogarithm function. It is useful to give it a

6Note that we are using the unnormalized propagator, to avoid cluttering of several formulae. In a

complete calculation, care must be taken to add the well-known normalization factors [2].
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name, defining the so-called D-functions as the four-point scalar contact diagrams with

external dimensions ∆i,

D∆1∆2∆3∆4(x1, x2, x3, x4) ≡

∫ ∞

0

dz0

zd+1
0

∫
ddx

4∏

i=1

(
z0

z20 + (~z − ~xi)2

)∆i

. (2.9)

The other type of tree-level four-point diagrams are the exchange diagrams (figure 1),

Aexchange(~xi) =

∫

AdS
dzdwGB∂(z, ~x1)GB∂(z, ~x2)GBB(z, w)GB∂(w, ~x3)GB∂(w, ~x4) (2.10)

Exchange diagrams are usually difficult to evaluate in closed form. In [36] a technique was

invented that allows, when certain “truncation conditions” for the quantum numbers of the

external and exchanged operators are met, to trade the propagator of an exchange diagram

for a finite sum of contact vertices. In such cases, one is able to evaluate an exchange Wit-

ten diagram as a finite sum of D-functions. Fortunately, the spectrum and selection rules

of IIB supergravity on AdS5 × S5 are precisely such that all exchange diagrams obey the

truncation conditions. We will exploit this fact in our position space method (section 5).

The formulae for the requisite exchange diagrams have been collected in appendix A.

3 Mellin formalism

In this section we review and discuss the Mellin amplitude formalism introduced by

Mack [40] and developed in [41–44, 51–53].7 After introducing the basic formalism in

section 3.1, we discuss the special features that occur large N CFTs in section 3.2 and re-

view the application to tree-level four-point Witten diagrams in section 3.3. A remarkable

simplification occurs for Witten diagrams with special values of the external and exchanged

operator dimensions: the associated Mellin amplitude is a rational function of the Man-

delstam invariants s and t. We explain that this is dictated by the consistency with the

structure of the operator product expansion at large N . Finally, in section 3.4 we discuss

the asymptotic behavior of the supergravity Mellin amplitude. Compatibility with the flat

space limit gives an upper bound for the asymptotic growth of the supergravity Mellin

amplitude at large s and t.

3.1 Mellin amplitudes for scalar correlators

We consider a general correlation function of n scalar operators with conformal dimensions

∆i. Conformal symmetry restricts its form to be

G∆1,...,∆n(x1, . . . , xn) =
∏

i<j

(x2ij)
−δ0ijG(ξr) , (3.1)

where ξr are the conformally invariant cross ratios constructed from x2ij ,

(xi − xj)
2(xk − xl)

2

(xi − xl)2(xk − xj)2
. (3.2)

7For other applications and recent developments, see [1, 45, 54–64]).
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Requiring that the correlator transforms with appropriate weights under conformal trans-

formations, one finds the constraints

∑

j 6=i

δ0ij = ∆i . (3.3)

The number of independent cross ratios in a d-dimensional spacetime is given by

n < d+ 1 :
1

2
n(n− 3) ,

n > d+ 1 : nd−
1

2
(d+ 1)(d+ 2) ,

(3.4)

as seen from a simple counting argument. We have a configuration space of n points which

is nd-dimensional, while the dimension of the conformal group SO(d+1, 1) is 1
2(d+1)(d+2).

For sufficiently large n, the difference of the two gives the number of free parameters unfixed

by the conformal symmetry, as in the second line of (3.4). However this is incorrect for

n < d + 1 because we have overlooked a nontrivial stability group. To see this, we first

use a conformal transformation to send two of the n points to the origin and the infinity.

If n < d + 1, the remaining n − 2 points will define a hyperplane and the stability group

is the rotation group SO(d + 2 − n) perpendicular to the hyperplane. After adding back

the dimension of the stability group we get the first line of the counting. To phrase it

differently, when the spacetime dimension d is high enough, there are always 1
2n(n − 3)

conformal cross ratios, independent of the spacetime dimension. But when n ≥ d+1 there

exist nontrivial algebraic relations among the 1
2n(n− 3) conformal cross ratios.

The constraints (3.3) admit 1
2n(n− 3) solutions, in correspondence with the 1

2n(n− 3)

cross ratios (ignoring the algebraic relations that exist for small n). Mack [40] suggested

instead of taking δ0ij to be fixed, we should view them as variables δij satisfying the same

constraints,

δij = δji ,
∑

j

δij = ∆i , (3.5)

and write the correlator as an integral transform with respect to these variables. More

precisely, one defines the following (inverse) Mellin transform for the connected8 part of

the correlator,

Gconn
∆1,...,∆n

(x1, . . . , xn) =

∫
[dδij ]M(δij)

∏

i<j

(x2ij)
−δij (3.6)

The integration is performed with respect to the 1
2n(n − 3) independent variables along

the imaginary axis. We will be more specific about the integration in a moment. The

correlator G(ξr)conn is captured by the function M(δij), which following Mack we shall call

the reduced Mellin amplitude.

The constraints (3.5) can be solved by introducing some fictitious “momentum” vari-

ables ki living in a D-dimensional spacetime,

δij = ki · kj . (3.7)

8The disconnected part is a sum of powers of x2
ij and its Mellin transform is singular.
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These variables obey “momentum conservation”

n∑

i=1

ki = 0 (3.8)

and the “on-shell” condition

k2i = −∆i . (3.9)

The number of independent Lorentz invariants δij (“Mandelstam variables”) in a D-

dimensional spacetime is given by

n < D :
1

2
n(n− 3) ,

n > D : n(D − 1)−
1

2
D(D + 1) .

(3.10)

The counting goes as follows. The configuration space of n on-shell momenta in D di-

mensions is n(D − 1)-dimensional, while the Poincaré group has dimension 1
2D(D + 1).

Assuming that the stability group is trivial, there will be n(D − 1) − 1
2D(D + 1) free pa-

rameters, giving the second line of (3.10). However for n < D there is a nontrivial stability

group SO(D − n + 1). This can be seen by using momentum conservation to make the

n momenta lie in a n − 1 dimensional hyperplane — the rotations orthogonal to the hy-

perplane generate the stability group SO(D − n + 1). Adding back the dimension of the

stability group we obtain the first line of (3.10). Again we see when D is high enough,

the number of independent Mandelstam variables is a D-independent number 1
2n(n − 3).

When n ≥ D, the 1
2n(n− 3) Mandelstam variables are subject to further relations. This is

the counterpart of the statement we made about the conformal cross ratios. We conclude

that the counting of independent Mandelstam variables in D dimensions coincides precisely

with the counting of independent conformal cross ratios in d dimensions if we set D = d+1.

The virtue of the integral representation (3.6) is to encode the consequences of the

operator product expansion into simple analytic properties for M(δij). Indeed, consider

the OPE

Oi(xi)Oj(xj) =
∑

k

c k
ij

(
(x2ij)

−
∆i+∆j−∆k

2 Ok(xk) + descendants

)
, (3.11)

where for simplicity Ok is taken to be a scalar operator. To reproduce the leading behavior

as x2ij → 0, M must have a pole at δij =
∆i+∆j−∆k

2 , as can be seen by closing the

δij integration contour to the left of the complex plane. More generally, the location

of the leading pole is controlled by the twist τ of the exchanged operator (τ ≡ ∆ − ℓ,

the conformal dimension minus the spin). Conformal descendants contribute an infinite

sequence of satellite poles, so that all in all for any primary operator Ok of twist τk that

contributes to the OiOj OPE the reduced Mellin amplitude M(δij) has poles at

δij =
∆i +∆j − τk − 2n

2
, n = 0, 1, 2 . . . . (3.12)
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Mack further defined Mellin amplitude M(δij) by stripping off a product of Gamma

functions,

M(δij) ≡
M(δij)∏
i<j Γ[δij ]

. (3.13)

This is a convenient definition because M has simpler factorization properties. In par-

ticular, for the four-point function, the s-channel OPE (x12 → 0) implies that the Mellin

amplitude M(s, t) has poles in s with residues that are polynomials of t. These Mack poly-

nomials depend on the spin of the exchanged operator, in analogy with the familiar partial

wave expansion of a flat-space S-matrix. (The analogy is not perfect, because each operator

contributes an infinite of satellite poles, and because Mack polynomials are significantly

more involved than the Gegenbauer polynomials that appear in the usual flat-space partial

wave expansion.) We will see in section 3.2 that Mack’s definition of M is particularly

natural for large N theories.

Finally let us comment on the integration contours in (3.6). The prescription given

in [40] is that the real part of the arguments in the stripped off Gamma functions be all

positive along the integration contours. To be more precise, one is instructed to integrate
1
2n(n−3) independent variables sk along the imaginary axis, where sk are related to δij via

δij = δ0ij +

1
2
n(n−3)∑

k=1

cij,ksk . (3.14)

Here δ0ij is a special solution of the constraints (3.5) with ℜ(δ0ij) > 0. The coefficients cij,k
are any solution of

cii,k = 0 ,
n∑

j=1

cij,k = 0 ,
(3.15)

which is just the homogenous version (3.5). There are 1
2n(n − 3) independent coefficients

cij,k for each k. We can choose to integrate over cij,k with 2 ≤ i < j ≤ n except for

c23,k, so that the chosen cij,k forms a n(n−3)
2 × n(n−3)

2 square matrix (the row index are

the independent elements of the pair (ij) and the column index is k). We normalize this

matrix to satisfy

| det cij,k| = 1 . (3.16)

For four-point amplitudes, which are the focus of this paper, it is convenient to intro-

duce “Mandelstam” variables s, t, u, and write

δ12 = −
s

2
+

∆1 +∆2

2
, δ34 = −

s

2
+

∆3 +∆4

2
,

δ23 = −
t

2
+

∆2 +∆3

2
, δ14 = −

t

2
+

∆1 +∆4

2
,

δ13 = −
u

2
+

∆1 +∆3

2
, δ24 = −

u

2
+

∆2 +∆4

2
.

(3.17)
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With this parametrization, the constraints obeyed by δij translate into the single constraint

s+ t+ u = ∆1 +∆2 +∆3 +∆4 . (3.18)

We can take s and t as the independent integration variables, and rewrite the integration

measure as ∫
[dδij ] =

1

4

∫ s0+i∞

s0−i∞
ds

∫ t0+i∞

t0−i∞
dt . (3.19)

In fact this simple contour prescription will need some modification. In the context of the

AdS supergravity calculations, we will find it necessary to break the connected correlator

into several terms and associate different contours to each term, instead of using a universal

contour. The are usually poles inside the region specified by ℜ(δ0ij) > 0, and the answer

given by the correct modified prescription differs from the naive one by the residues that

are crossed in deforming the contours.

3.2 Large N

The Mellin formalism is ideally suited for large N CFTs. While in a general CFT the

analytic structure of Mellin amplitudes is rather intricate, it becomes much simpler at

large N . To appreciate this point, we recall the remarkable theorem about the spectrum

of CFTs in dimension d > 2 proven in [65, 66]. For any two primary operators O1 and O2

of twists τ1 and τ2, and for each non-negative integer k, the CFT must contain an infinite

family of so-called “double-twist” operators with increasing spin ℓ and twist approaching

τ1+τ2+2k as ℓ → ∞ [65, 66]. This implies that the Mellin amplitude has infinite sequences

of poles accumulating at these asymptotic values of the twist, so it is not a meromorphic

function.9

As emphasized by Penedones [41], a key simplification occurs in large N CFTs, where

the double-twist operators are recognized as the usual double-trace operators. Thanks to

large N factorization, spin ℓ conformal primaries of the schematic form : O1�
n∂ℓO2 :,

where O1 and O2 are single-trace operators, have twist τ1+ τ2+2n+O(1/N2),10 for any ℓ.

Recall also that the Mellin amplitude is defined in terms of the connected part of the k-point

correlator, which is of order O(1/Nk−2) for unit-normalized single-trace operators. The

contribution of intermediate double-trace operators arises precisely at O(1/N2), so that to

this order we can use their uncorrected dimensions. Remarkably, the poles corresponding

to the exchanged double-trace operators are precisely captured by the product of Gamma

functions
∏

i<j Γ(δij) that Mack stripped off to define the Mellin amplitude M. All in all,

we conclude that the O(1/Nk−2) Mellin amplitude M is a meromorphic function, whose

poles are controlled by just the exchanged single-trace operators.

9In two dimensions, there are no double-twist families, but one encounters a different pathology: the

existence of infinitely many operators of the same twist, because Virasoro generators have twist zero.
10For definiteness, we are using the large N counting appropriate to a theory with matrix degrees of

freedom, e.g., a U(N) gauge theory. In other kinds of large N CFTs the leading correction would have

a different power — for example, O(1/N3) in the AN six-dimensional (2, 0) theory, and O(1/N) in two-

dimensional symmetric product orbifolds.
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Let us analyze in some detail the case of the four-point function. For four scalar

operators Oi of dimensions ∆i, conformal covariance implies

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
1

(x212)
∆1+∆2

2 (x234)
∆3+∆4

2

(
x224
x214

)∆1−∆2
2

(
x214
x213

)∆3−∆4
2

G(U, V ) ,

(3.20)

where U and V are the usual conformal cross-ratios11

U =
x212x

2
34

x213x
2
24

, V =
x214x

2
23

x213x
2
24

. (3.21)

Taking the operators Oi to be unit-normalized single-trace operators, and separating out

the disconnected and connected terms,12

G = Gdisc + Gconn , (3.22)

we have the following familiar large N counting:

Gdisc = O(1) , Gconn =
1

N2
G(1) +

1

N4
G(2) + . . . (3.23)

The Mellin amplitude M is defined by the integral transform

Gconn(U,V )=

∫ i∞

−i∞

ds

2

dt

2
U

s
2V

t
2
−

∆2+∆3
2 M(s, t)Γ

[
∆1+∆2−s

2

]
Γ

[
∆3+∆4−s

2

]

×Γ

[
∆1+∆4−t

2

]
Γ

[
∆2+∆3−t

2

]
Γ

[
∆1+∆3−u

2

]
Γ

[
∆2+∆4−u

2

]
,

(3.24)

with s+ t+ u = ∆1 +∆2 +∆3 +∆4.

Let us first assume that the dimensions ∆i are generic. In the s-channel OPE, we expect

contributions to Gconn from the tower of double-trace operators of the form13 : O1�
n∂ℓO2 :,

with twists τ = ∆1 +∆2 + 2n + O(1/N2), and from the tower : O3�
n∂ℓO4 :, which have

twists τ = ∆1 +∆2 + 2n+O(1/N2). The OPE coefficients scale as

〈O1 O2 : O1�
n∂ℓO2 :〉 = O(1) , 〈O3 O4 : O1�

n∂ℓO2 :〉 = O(1/N2) , (3.25)

〈O3 O4 : O3�
n∂ℓO4 :〉 = O(1) , 〈O1 O2 : O3�

n∂ℓO4 :〉 = O(1/N2) ,

so that to leading O(1/N2) order, we can neglect the 1/N2 corrections to the conformal

dimensions of the double-trace operators. All in all, we expect that these towers of double-

trace operators contribute poles in s at

s = ∆1 +∆2 + 2m12 , m12 ∈ Z>0 ,

s = ∆3 +∆4 + 2m34 , m34 ∈ Z>0 .
(3.26)

11We use capital letters because the symbol u is already taken to denote the Mandelstam invariant, (3.17).
12The disconnected term Gdisc will of course vanish unless the four operators are pairwise identical.
13In fact for fixed n and ℓ, there are in general multiple conformal primaries of this schematic form, which

differ in the way the derivatives are distributed.
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These are precisely the locations of the poles of the first two Gamma functions in (3.24).

In complete analogy, the poles in t and u in the other Gamma functions account for the

contributions of the double-trace operators exchanged in the t and u channels.

If ∆1 + ∆2 − (∆3 + ∆4) = 0 mod 2, the two sequences of poles in (3.26) (partially)

overlap, giving rise to a sequence of double poles at

s = max{∆1 +∆2,∆3 +∆4}+ 2n , n ∈ Z>0 . (3.27)

A double pole at s = s0 gives a contribution to Gconn(U, V ) of the from U s0/2 logU . This

has a natural interpretation in terms of the O(1/N2) anomalous dimensions of the ex-

changed double-trace operators. Indeed, a little thinking shows that in this case both OPE

coefficients in the s-channel conformal block expansion are of order one (in contrast with

the generic case (3.26)), so that the O(1/N2) correction to the dilation operator gives a

leading contribution to the connected four-point function.

Let’s see this more explicitly. Let’s take for definiteness ∆1 +∆2 6 ∆3 +∆4, so that

∆3+∆4 = ∆1+∆2+2k for some non-negative integer k. Then the double-trace operators

of the schematic form

: O1�
n+k∂ℓO2 : and : O3�

n∂ℓO4 : (3.28)

have the same conformal dimension to leading large N order, as well as the same Lorentz

quantum numbers. They are then expected to mix under the action of the O(1/N2)

dilation operator. It is important to realize that the mixing matrix that relates the ba-

sis (3.28) to the double-trace dilation eigenstates ODT
α is of order one. The OPE coefficients

〈O1O2O
DT
α 〉 = c12α and 〈O3O4O

DT
α 〉 = c34α are then both O(1), as claimed. The twist

τα = ∆α− ℓ has a large N expansion of the form τα = ∆3+∆4+2n+ γ
(1)
α /N2+O(1/N4).

All is all, we find a contribution to Gconn of the form

c12αc34α γ
(1)
α

N2
U

∆3+∆4
2

+n logU . (3.29)

In Mellin space, this corresponds to a double-pole at s = ∆3 +∆4 +2n, just as needed. In

summary, the explicit Gamma functions that appear in Mack’s definition provide precisely

the analytic structure expected in a large N CFT, if we take the O(1/N2) Mellin amplitude

M to have poles associated with just the exchanged single-trace operators. The upshot is

that to leading O(1/N2) order, fixing the single-trace contributions to the OPE is sufficient

determine the double-trace contributions as well.14

By following a similar reasoning, we will now argue that compatibility with the large N

OPE imposes some further constraints on the analytic structure of M. We have seen that

to leading O(1/N2) order the Mellin amplitude M(s, t, u) is a meromorphic function with

only simple poles associated to the exchanged single-trace operators. In the generic case,

a single-trace operator OST of twist τ contributing to the s-channel OPE is responsible for

an infinite sequence of simple poles at s = τ + 2n, n ∈ Z>0 (and similarly for the other

14This is particularly apparent in Mellin space but can also be argued by more abstract CFT

reasoning [67–70].
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channels). But this rule needs to be modified if this sequence of “single-trace poles” overlaps

with the “double-trace poles” from the explicit Gamma functions in (3.24). This happens if

τ = ∆1+∆2 mod 2, or if τ = ∆3+∆4 mod 2. (We assume for now that ∆1+∆2 6= ∆3+∆4

mod 2, so that only one of the two options is realized.) In the first case, the infinite sequence

of poles in M must truncate to the set {τ, τ + 2, . . . , τ +∆1 +∆2 − 2}, and in the second

case to the set {τ, τ + 2, . . . , τ + ∆3 + ∆4 − 2}.15 This truncation must happen because

double poles in s, translating to ∼ logU terms in Gconn, are incompatible with the large N

counting. Indeed, the OPE coefficients already provide an O(1/N2) suppression, so that

we should use the O(1) dilation operator, and no logarithmic terms can arise in Gconn to

leading O(1/N2) order.16

3.3 Mellin amplitudes for Witten diagrams

The effectiveness of Mellin formalism is best illustrated by its application to the calcu-

lation of Witten diagrams. Conceptually, Mellin space makes transparent the analogy of

holographic correlators and S-matrix amplitudes. Practically, Mellin space expressions for

Witten diagrams are much simpler than their position space counterparts. For starters,

the Mellin amplitude of a four-point contact diagram, which is the building blocks of AdS

four-point correlators as we reviewed in section 2, is just a constant,

D∆1∆2∆3∆4 =

∫
[dδij ]

(
πd/2Γ[

∑
∆i

2 − d/2]∏
Γ[∆i]

)
×
∏

i<j

Γ[δij ](x
2
ij)

−δij . (3.30)

As was shown in [41], this generalizes to n-point contact diagram with a non-derivative

vertex: their Mellin amplitude is again a constant. Contact diagrams with derivative

vertices are also easily evaluated. It will be important in the following that the Mellin

amplitude for a contact diagram arising from a vertex with 2n derivatives is an order n

polynomial in the Mandelstam variables δij .

Exchange diagrams are also much simpler in Mellin space. The s-channel exchange

Witten diagram with an exchanged field of conformal dimension ∆ and spin J has a Mellin

amplitude with the following simple analytic structure [44],

M(s, t) =
∞∑

m=0

QJ,m(t)

s− τ − 2m
+ PJ−1(s, t) , (3.31)

where τ = ∆−J is the twist. Here QJ,m(t) are polynomials in t of degree J and PJ−1(s, t)

polynomials in s and t of degree J − 1. These polynomials depend on the dimensions

∆1,2,3,4, ∆, as well as the spin J . The detailed expressions for these polynomials are quite

15Note that the first set empty if ∆1 + ∆2 < τ (again we are assuming ∆1 + ∆2 = τ mod 2) and the

second is empty if ∆3 +∆4 < τ (with ∆3 +∆4 = τ mod 2). In these cases, OST does not contribute any

poles to M.
16In the even more fine-tuned case τ = ∆1 +∆2 = ∆3 +∆4 mod 2, clearly the poles in s in the O(1/N2)

Mellin amplitude M must truncate to the set {τ, τ + 2, . . . , τ +min{∆1 +∆2,∆3 +∆4} − 2}. The double

poles at {min{∆1 + ∆2,∆3 + ∆4},min{∆1 + ∆2,∆3 + ∆4} + 2 . . . ,max{∆1 + ∆2,∆3 + ∆4} − 2} can be

ruled out by the same reasoning, while the triple poles at s = max{∆1 +∆2,∆3 +∆4}+2n would give rise

to ∼ (logU)2 terms, which absolutely cannot appear to O(1/N2).
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complicated but will not be needed for our analysis. The m = 0 pole at s = τ is called the

leading pole, corresponding to the primary operator that is dual to the exchanged field,

while the m > 0 poles are called satellite poles, and they are associated with conformal

descendants.

It has been observed (see, e.g., [41]) that the infinite series of poles in (3.31) truncates

to a finite sum if τ = ∆1 + ∆2 mod 2 or if τ = ∆3 + ∆4 mod 2. One finds that the

upper limit of the sum mmax is given by τ −∆1 −∆2 = 2(mmax + 1) in the first case and

by τ − ∆3 − ∆4 = 2(mmax + 1) in the second case. This is the Mellin space version of

the phenomenon described in section 2: an exchange Witten diagram with these special

values of quantum numbers can be written as a finite sum of contact Witten diagrams. As

we have explained in the previous subsection, this remarkable simplification is dictated by

compatibility with the large N OPE in the dual CFT.

3.4 Asymptotics and the flat space limit

In the next section we will determine the supergravity four-point Mellin amplitude using

general consistency principles. A crucial constraint will be provided by the asymptotic

behavior of M(s, t) when s and t are simultaneously scaled to infinity. On general grounds,

one can argue [41] that in this limit the Mellin amplitude should reduce to the flat-space

bulk S-matrix (in Rd,1).

A precise prescription for relating the massless17 flat-space scattering amplitude T (Ki)

to the asymptotic form of the holographic Mellin amplitude was given in [41] and justified

in [71],

M(δij) ≈
Rn(1−d)/2+d+1

Γ(12
∑

i∆i −
d
2)

∫ ∞

0
dββ

1
2

∑
i ∆i−

d
2
−1e−βT

(
Sij =

2β

R2
sij

)
, (3.32)

where Sij = −(Ki+Kj)
2 are the Mandelstam invariants of the flat-space scattering process.

We have a precise opinion for asymptotic behavior of the flat-space four-point amplitude

T (S, T ) — it can grow at most linearly for large S and T . Indeed, a spin ℓ exchange

diagrams grows with power ℓ− 1, and the highest spin state is of course the graviton with

ℓ = 2. Similarly, contact interactions with 2n derivatives give a power n growth, and IIB

supergravity (in ten-dimensional flat space) contains contact interactions with at most two

derivatives. From (3.32) we then deduce

M(βs, βt) ∼ O(β) for β → ∞ . (3.33)

It is of course crucial to this argument that we are calculating within the standard two-

derivative supergravity theory. Stringy α′-corrections would introduce higher derivative

terms and invalidate this conclusion.18

Curiously, the asymptotic behavior (3.33) is not immediately obvious if one computes

holographic correlators in AdS5 × S5 by the standard diagrammatic approach. Exchange

17For massive external particles, see the discussion in [57].
18In a perturbative α′-expansion, we expect increasing polynomial growth, but for finite α′ the behavior

should be very soft, as in string theory.
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Witten diagrams have the expected behavior, with growth at most linear from spin two

exchanges, see (3.31).19 However, the AdS5 effective action [29] obtained by Kaluza-Klein

reduction of IIB supergravity on S5 contains quartic vertices with four derivatives (or

fewer). The four-derivative vertices are in danger of producing an O(β2) growth, which

would ruin the expected flat space asymptotics. On this basis, we made the assumption

in [1] that the total contribution of the four-derivative vertices to a holographic correlator

must also grow at most linearly for large β. Indeed, this was experimentally the case in all

the explicit supergravity calculations performed at the time. Fortunately, the conjectured

cancellation of the O(β2) terms has been recently proved in full generality [50].

4 The general one-half BPS four-point amplitude in Mellin space

As we have just reviewed, holographic correlators are most naturally evaluated in Mellin

space. Mellin amplitudes have an intuitive interpretation as scattering processes in AdS

space, and their analytic structure is simple and well understood. We have also discussed

the additional simplification that occurs for one-half BPS correlators in AdS5 × S5 super-

gravity. The Kaluza-Klein spectrum satisfies the “truncation conditions” that allow ex-

change Witten diagrams to be expressed as finite sum of contact diagrams. This translates

into the statement that the Mellin amplitude for these correlators is a rational function,

with poles at predictable locations controlled by the single-particle spectrum. We have not

yet imposed the constraints of superconformal invariance. They turn out to be so stringent

that when combined with the analytic structure of the Mellin amplitude they appear to

completely fix the answer! In this section we derive a set of algebraic and analytic con-

ditions on the Mellin amplitude for one-half BPS correlators with arbitrary weights. We

have found a simple solution of these constraints, which we believe to be unique.

We start in section 4.1 by reviewing the superconformal Ward identity in position

space. A useful technical step is the introduction of auxiliary variables σ and τ to keep

track of the R-symmetry quantum numbers. We translate the Ward identity in Mellin

space in section 4.2. The Mellin amplitude M(s, t;σ, τ) is written in terms of a difference

operator acting on an auxiliary object M̃(s, t;σ, τ). A purely algebraic problem is then

formulated in section 4.3 by imposing a set of consistency conditions on M(s, t;σ, τ). We

find a simple elegant solution to this problem in section 4.4. While we lack a general proof,

we believe that this is the unique solution, and we do show uniqueness in section 4.4.1 in

the simplest case where all pi = 2. Finally, in section 4.5 we discuss some subtleties with

the contour prescription in the inverse Mellin transform. We show in particular how the

“free” piece of the correlator can arise as a regularization effect.

4.1 Superconformal Ward identity: position space

The global symmetry group of N = 4 SYM is PSU(2, 2|4), which contains as subgroups

the four-dimensional conformal group SO(4, 2) ∼= SU(2, 2) and the R-symmetry group

19The AdS5 effective theory contains an infinite tower of spin two massive states that arise from the

Kaluza-Klein reduction of the ten-dimensional graviton, and of course no states of spin higher than two.
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Figure 3. Solution to the γij constraints.

SO(6) ∼= SU(4). As we have already mentioned, the one-half BPS operators O
(pi)
I1...Ipi

trans-

form in the symmetric traceless representation of SO(6). Their R-symmetry structure can

therefore be conveniently kept track of by contracting the SO(6) indices with a null vector ti,

O(pi)(xi, ti) ≡ tI1i . . . t
Ipi
i O

(pi)
I1...Ipi

(xi), ti · ti = 0 . (4.1)

The four-point function

G(xi, ti) ≡ 〈O(p1)(x1, t1)O
(p2)(x2, t2)O

(p3)(x3, t3)O
(p4)(x4, t4)〉 (4.2)

is thus a function of the spacetime coordinates xi as well as the “internal” coordinates ti.

The R-symmetry covariance and null property requires that the ti variables can only show

up as sum of monomials
∏

i<j(tij)
γij with integer powers γij > 0, where we have defined

tij ≡ ti · tj . Moreover the exponents γij are constrained by
∑

i 6=j γij = pj , as seen by

requiring the correct homogeneity under independent scaling of each null vector ti → ζiti.

We can solve this set of constraints by using the following parameterization,

γ12 = −
a

2
+

p1 + p2
2

, γ34 = −
a

2
+

p3 + p4
2

,

γ23 = −
b

2
+

p2 + p3
2

, γ14 = −
b

2
+

p1 + p4
2

,

γ13 = −
c

2
+

p1 + p3
2

, γ24 = −
c

2
+

p2 + p4
2

,

(4.3)

with the additional condition a+ b+ c = p1 + p2 + p3 + p4.

Without loss of generality we can assume p1 > p2 > p3 > p4. Then we should

distinguish two possibilities,

p1 + p4 6 p2 + p3 (case I) and p1 + p4 > p2 + p3 (case II) . (4.4)

In either case the inequality constraints γij > 0 define a cube inside the parameter

space (a, b, c), as shown in figure 3. The solution is further restricted by the condition
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a+ b+ c = p1 + p2 + p3 + p4, which carves out the equilateral triangle inside the cube

shown shaded in the figure. It is useful to find the coordinates of vertices of the cube closest

and furthest from the origin, which we denote as (amin, bmin, cmin) and (amax, bmax, cmax).

Then in case I,

amax = p3 + p4 , amin = p3 − p4 ,

bmax = p1 + p4 , amin = p1 − p4 ,

cmax = p2 + p4 , amin = p2 − p4 ,

(4.5)

and in case II,

amax = p3 + p4 , amin = p1 − p2 ,

bmax = p2 + p3 , amin = p1 − p4 ,

cmax = p2 + p4 , amin = p1 − p3 .

(4.6)

Denoting by 2L the length of each side of the cube, we find in the two cases

L = p4 (case I) ,

L =
p2 + p3 + p4 − p1

2
(case II) .

(4.7)

From the parametrization (4.3) we see that γij ≥ γ0ij , where γ
0
ij are obtained by substituting

the maximal values (amax, bmax, cmax),

γ012 =
p1 + p2 − p3 − p4

2
,

γ013 =
p1 + p3 − p2 − p4

2
,

γ034 = γ024 = 0 ,

γ014 = 0 (case I),
p1 + p4 − p2 − p3

2
(case II) ,

γ023 =
p2 + p3 − p1 − p4

2
(case I), 0 (case II) .

(4.8)

Factoring out the product
∏

i<j

(
tij
x2
ij

)γ0
ij

from the correlator, we are left with an object with

the same scaling properties of a four-point function with equal weights L. This motivates

the definition

G(xi, ti) =
∏

i<j

(
tij
x2ij

)γ0
ij (

t12t34
x212x

2
34

)L

G(U, V ;σ, τ) , (4.9)

where besides the usual conformal cross ratios

U =
(x12)

2(x34)
2

(x13)2(x24)2
, V =

(x14)
2(x23)

2

(x13)2(x24)2
(4.10)

we have introduced analogous R-symmetry cross ratios

σ =
(t13)(t24)

(t12)(t34)
, τ =

(t14)(t23)

(t12)(t34)
. (4.11)
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It is easy to see that G(U, V ;σ, τ) is a polynomial of degree L in σ and τ . So far we have

only imposed covariance under the bosonic subgroups of the supergroup PSU(2, 2|4). The

fermionic generators impose further constraints on the four-point function. It is useful to

introduce the following change of variables

U = zz̄ ,

V = (1− z)(1− z̄) ,

σ = αᾱ ,

τ = (1− α)(1− ᾱ) .

(4.12)

In terms of these variables, the superconformal Ward identity reads [72, 73]

∂z̄

[
G(zz̄, (1− z)(1− z̄);αᾱ, (1− α)(1− ᾱ))

∣∣
ᾱ→1/z̄

]
= 0 . (4.13)

Its solution can be written as [72, 73]20

G(U, V ;σ, τ) = Gfree(U, V ;σ, τ) +RH(U, V ;σ, τ) , (4.14)

where Gfree is the answer in free SYM theory and

R = τ 1 + (1− σ − τ)V + (−τ − στ + τ2)U + (σ2 − σ − στ)UV + σV 2 + στ U2

= (1− zα)(1− z̄α)(1− zᾱ)(1− z̄ᾱ) . (4.15)

All dynamical information is contained in the a priori unknown function H(U, V ;σ, τ).

Note that H(U, V ;σ, τ) is a polynomial in σ, τ of degree L− 2.

4.2 Superconformal Ward identity: Mellin space

We now turn to analyze the constraints of superconformal symmetry in Mellin space. We

rewrite (4.14) for the connected correlator,

Gconn(U, V ;σ, τ) = Gfree,conn(U, V ;σ, τ) +R(U, V ;σ, τ)H(U, V ;σ, τ) , (4.16)

and take the Mellin transform of both sides of this equation. The transform21 of the

left-hand side gives the reduced Mellin amplitude M ,

M(s, t;σ, τ) =

∫ ∞

0
dUU− s

2
+

p3+p4
2

−L−1

∫ ∞

0
dV V − t

2
+

min{p1+p4,p2+p3}
2

−1Gconn(U, V ;σ, τ) ,

(4.17)

20There is an implicit regularity assumption for H(U, V ;σ, τ) as ᾱ → 1/z̄, otherwise the following equation

would be an empty statement.
21This definition should be taken with a grain of salt. In general, the integral transform of the full

connected correlator is divergent. In the supergravity limit, there is a natural decomposition of Gconn into

a sum of D̄ functions, each of which has a well-defined Mellin transform in a certain region of the s and t

complex domains. However, it is often the case that there is no common region such that the transforms

of the D̄ functions are all convergent. On the other hand, the inverse Mellin transform (4.23) is well-

defined, but care must be taken in specifying the integration contours. We will come back to this subtlety

in section 4.5.
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from which we define the Mellin amplitude M,

M(s, t;σ, τ) ≡
M(s, t;σ, τ)

Γp1p2p3p4

, (4.18)

where as always

Γp1p2p3p4 ≡ Γ

[
−
s

2
+

p1 + p2
2

]
Γ

[
−
s

2
+

p3 + p4
2

]
Γ

[
−
t

2
+

p2 + p3
2

]

× Γ

[
−
t

2
+

p1 + p4
2

]
Γ

[
−
u

2
+

p1 + p3
2

]
Γ

[
−
u

2
+

p2 + p4
2

]
,

u ≡ p1 + p2 + p3 + p4 − s− t .

(4.19)

On the right-hand side of (4.16), the first term is the free part of the correlator. It consists

of a sum of terms of the form σaτ bUmV n, where m, n are integers and a, b non-negative

integers. The Mellin transform of any such term is ill-defined. As we shall explain in

section 4.5, there is a consistent sense in which it can be defined to be zero. The function

Gfree,conn(U, V ;σ, τ) will be recovered as a regularization effect in transforming back from

Mellin space to position space.22

We then turn to the second term on the on the right-hand side of (4.16). We define

an auxiliary amplitude M̃ from the Mellin transform of the dynamical function H,

M̃(s, t;σ,τ)=

∫∞
0 dUU− s

2
+

p3+p4
2

−L−1
∫∞
0 dV V − t

2
+

min{p1+p4,p2+p3}
2

−1H(U,V ;σ,τ)

Γ̃p1p2p3p4

, (4.20)

with

Γ̃p1p2p3p4 ≡ Γ

[
−
s

2
+

p1 + p2
2

]
Γ

[
−
s

2
+

p3 + p4
2

]
Γ

[
−
t

2
+

p2 + p3
2

]

× Γ

[
−
t

2
+

p1 + p4
2

]
Γ

[
−
ũ

2
+

p1 + p3
2

]
Γ

[
−
ũ

2
+

p2 + p4
2

]
.

(4.21)

Note that we have introduced a “shifted” Mandelstam variable ũ,

ũ ≡ u− 4 = p1 + p2 + p3 + p4 − 4− s− t . (4.22)

This shift is motived by the desire to keep the crossing symmetry properties of H as simple

as possible, as we shall explain shortly. Let us also record the expressions of the inverse

transforms,

Gconn(U, V ;σ, τ) =

∫
ds

2

dt

2
U

s
2
−

p3+p4
2

+LV
t
2
−

min{p1+p4,p2+p3}
2 M(s, t;σ, τ)Γp1p2p3p4 (4.23)

H(U, V ;σ, τ) =

∫
ds

2

dt

2
U

s
2
−

p3+p4
2

+LV
t
2
−

min{p1+p4,p2+p3}
2 M̃(s, t;σ, τ)Γ̃p1p2p3p4 , (4.24)

where the precise definition of the integration contours will require a careful discussion in

section 4.5 below.
22Our treatment for the free part of the correlator also turns out to be consistent in the context of

holographic higher spin theory, as is discussed in v3 of [74].
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We are now ready to write down the Mellin translation of (4.16). It takes the

simple form

M(s, t;σ, τ) = R̂ ◦ M̃(s, t, ;σ, τ) . (4.25)

The multiplicative factor R has turned into a difference operator R̂,

R̂= τ 1+(1−σ−τ) V̂ +(−τ−στ+τ2) Û+(σ2−σ−στ) ÛV +σV̂ 2+στ Û2 , (4.26)

where the hatted monomials in U and V are defined to act as follows,

ÛmV n◦M̃(s, t;σ,τ)≡M̃(s−2m,t−2n);σ,τ)

×

(
p1+p2−s

2

)

m

(
p3+p4−s

2

)

m

(
p2+p3−t

2

)

n

×

(
p1+p4−t

2

)

n

(
p1+p3−u

2

)

2−m−n

(
p2+p4−u

2

)

2−m−n

,

(4.27)

with (a)n ≡ Γ[a+ n]/Γ[a] the usual Pochhammer symbol.

4.2.1 Crossing symmetry and ũ

The Mellin amplitudeM satisfies Bose symmetry, namely, it is invariant under permutation

of the Mandelstam variables s, t, u if the external quantum numbers are also permuted

accordingly. The auxiliary amplitude M̃ has been defined to enjoy the same symmetry

under permutation of the shifted Mandelstam variables s, t, ũ. The point is that the factor

R multiplying H is not crossing-invariant, and the shift in u precisely compensates for this

asymmetry. Let us see this in some detail.

To make expressions more compact, we introduce some shorthand notations for the

following combinations of coordinates,

A = x212x
2
34 , B = x213x

2
24 , C = x214x

2
23 ,

a = t12t34 , b = t13t24 , c = t14t23 .
(4.28)

In the equal-weights case (on which we focus for simplicity), the four-point function G(xi, ti)

is related to G(U, V ;σ, τ) by

G(xi, ti) =
( a
A

)L
G(U, V ;σ, τ) . (4.29)

Substituting into this expression the inverse Mellin transformation (4.23), one finds

G(xi, ti) =

∫ i∞

i∞
dsdt

∑

I+J+K=L

A
s
2
−LB

u
2
−LC

t
2
−LaKbIcJMIJK(s, t)

× Γ2
[
−
s

2
+ L

]
Γ2

[
−
t

2
+ L

]
Γ2
[
−
u

2
+ L

]
,

(4.30)

where we defined
∑

I+J+K=L aKbIcJMIJK(s, t) ≡ aLM(s, t;σ, τ). In terms of these new

variables, crossing amounts to permuting simultaneously (A,B,C) and (a, b, c):

1 ↔ 4 :

{
σ ↔ 1/σ, τ ↔ σ/τ,

U ↔ 1/U, V ↔ V/U

}
or

{
A ↔ B

a ↔ b

}
,

1 ↔ 3 :

{
σ ↔ σ/τ, τ ↔ 1/τ,

U ↔ V, V ↔ U

}
or

{
A ↔ C

a ↔ c

}
.

(4.31)
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Invariance of the four-point function under crossing implies that the Mellin amplitude

M(s, t;σ, τ) must obey

σLM(u, t; 1/σ, τ/σ) = M(s, t;σ, τ) ,

τLM(t, s;σ/τ, 1/τ) = M(s, t;σ, τ) .
(4.32)

On the other hand, a similar representation exists for RH. The factor R can be expressed as

R =
1

a2B2

(
a2BC + b2AC + c2AB − abAC − abBC + abC2

− acAB + acB2 − acBC + bcA2 − bcAB − bcAC
)

≡
R

a2B2
,

(4.33)

with a crossing-invariant numerator R but a non-invariant denominator. When we go to

the Mellin representation of
(
a
A

)L
RH by substituting in (4.24), we find that the power of

B receives an additional −2 from the denominator of R in (4.33), explaining the shift from

u to ũ,

( a
A

)L
RH =

∫ i∞

i∞
dsdt

∑

i+j+k=L−2

A
s
2
−LB

ũ
2
−LC

t
2
−Lak bi cj R M̃ijk(s, t)

× Γ2
[
−
s

2
+ L

]
Γ2

[
−
t

2
+ L

]
Γ2

[
−
ũ

2
+ L

]
.

(4.34)

Here we have similarly defined

∑

i+j+k=L−2

ak bi cj R M̃ijk(s, t) = aL−2M̃(s, t;σ, τ) . (4.35)

Invariance of this expression under crossing implies the following transformation rules

for M̃,

σL−2M̃(ũ, t; 1/σ, τ/σ) = M̃(s, t, ;σ, τ) ,

τL−2M̃(t, s;σ/τ, 1/τ) = M̃(s, t;σ, τ) .
(4.36)

We see that in the auxiliary amplitude M̃, the role of u is played by ũ. This generalizes

to the unequal-weight cases.

4.3 An algebraic problem

Let us now take stock and summarize the properties of M that we have demonstrated so far:

1. Superconformal symmetry. The Mellin amplitude M can be expressed in terms of an

auxiliary amplitude M̃,

M(s, t;σ, τ) = R̂ ◦ M̃(s, t;σ, τ) , (4.37)

with the help of the difference operator R̂ defined in (4.26).
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2. Bose symmetry. M is invariant under permutation of the Mandelstam variables,

if the quantum numbers of the external operators are permuted accordingly. For

example, when the conformal dimensions of the four half-BPS operators are set to

equal pi = L, Bose symmetry gives the usual crossing relations

σLM(u, t; 1/σ, τ/σ) = M(s, t, ;σ, τ) ,

τLM(t, s;σ/τ, 1/τ) = M(s, t;σ, τ) .
(4.38)

3. Asymptotics. The asymptotic behavior of the Mellin amplitude M is bounded by

the flat space scattering amplitude. At large values of the Mandelstam variables, M

should grow linearly

M(βs, βt;σ, τ) ∼ O(β) for β → ∞ . (4.39)

4. Analytic structure. M has only simple poles and there are a finite number of such

simple poles in variables s, t, u, located at

s0 = sM − 2a , s0 ≥ 2 ,

t0 = tM − 2b , t0 ≥ 2 ,

u0 = uM − 2c , u0 ≥ 2 (4.40)

where

sM = min{p1 + p2, p3 + p4} − 2 ,

tM = min{p1 + p4, p2 + p3} − 2 ,

uM = min{p1 + p3, p2 + p4} − 2 , (4.41)

and a, b, c are non-negative integers. The position of these poles are determined by

the twists of the exchanged single-trace operators in the three channels — see table

1 and related discussion in section 2. Moreover, at each simple pole, the residue of

the amplitude M must be a polynomial in the other Mandelstam variable.

These conditions define a very constraining “bootstrap” problem. To start unpacking their

content, let us recall that the dependence on the R-symmetry variables σ and τ is polyno-

mial, of degree L and L− 2 for M and M̃, respectively,

M(s, t;σ, τ) =
∑

I+J+K=L

σIτJMIJK(s, t) ,

M̃(s, t;σ, τ) =
∑

i+j+k=L−2

σiτ jM̃ijk(s, t) .
(4.42)

Bose symmetry amounts to the invariance of MIJK(s, t) under permutation of (I, J,K)

accompanied by simultaneous permutation of (s, t, u), with u ≡
∑4

i=1 pi − s − t. Analo-

gously, M̃ijk(s, t) is invariant under simultaneous permutation of (i, j, k) and (s, t, ũ), with
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Figure 4. R-symmetry monomials in M.

Figure 5. R-symmetry monomials in M̃.

ũ ≡
∑4

i=1 pi − s − t − 4. A little combinatoric argument shows that the number NL of

independent MIJK functions is given by

NL =
(L+ 5)(L+ 1)

12
+

17

72
+

(−1)L

8
+

2

9
cos

(
2πL

3

)
. (4.43)

The superconformal Ward identity (4.37) expresses the NL functions MIJK(s, t) in terms

of the NL−2 functions M̃ijk(s, t). Clearly since NL > NL−2 the difference operator R̂

cannot be invertible, i.e., (4.37) represents a non-trivial constraint on M. By assumption

4, MIJK(s, t) are rational functions of s and t. We will now show that compatibility

with (4.37) requires that M̃ijk(s, t) must also be rational functions. (The argument that

follows is elementary but slightly elaborate and can be safely skipped on first reading.)

The two sets of R-symmetry monomials {σIτJ} and {σiτ j} can be conveniently ar-

ranged into two equilateral triangles, illustrated respectively by figure 4 and figure 5. The

Bose symmetry that relates different R-symmetry monomials corresponds to the S3 the

symmetry of the equilateral triangle. Let us start by considering the monomial 1 in M,

which is associated to the coefficient M0,0,L(s, t). This monomial can only be reproduced
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by the monomial 1 in M̃, i.e., the term M̃0,0,L−2(s, t), via the action of the operator V̂ in R̂,

M0,0,L(s, t)= V̂ ◦M̃0,0,L−2(s, t) (4.44)

=M̃0,0,L−2(s, t−2)

(
p2+p3−t

2

)(
p1+p4−t

2

)(
p1+p3−u

2

)(
p2+p4−u

2

)
.

We can then M̃0,0,L−2(s, t) in terms of M0,0,L(s, t)

M̃0,0,L−2(s, t) =
M0,0,L(s, t)(p2+p3−t

2

) (p1+p4−t
2

) (p1+p3−u
2

) (p2+p4−u
2

)
∣∣∣∣
t→t+2

, (4.45)

which makes it clear that M̃0,0,L−2(s, t) is rational given that M0,0,L(s, t) is assumed

to be rational. Similarly, one can easily see that σLML,0,0(s, t) can only be reproduced

from σL−2M̃L−2,0,0(s, t) via the action of σ2ÛV and τLM0,L,0(s, t) can only come from

τL−2M̃0,L−2,0(s, t) with the action τ2Û . These two sets of MIJK and M̃ijk correspond

to the six corners of the two triangles and are in the same orbit under the action of the

Bose symmetry. Using the explicit form of the operators ÛV and Û it is apparent that

both M̃L−2,0,0(s, t) and M̃0,L−2,0(s, t) can be analogously solved and have finitely many

poles in the Mandelstam variables. Now let us move on to consider σM1,0,L−1(s, t) which

receives contribution from M̃0,0,L−2(s, t) with the action of −σV̂ − σÛV + σV̂ 2 as well as

from σM̃1,0,L−3(s, t) with the action of V̂

M1,0,L−1(s, t) = (−V̂ − ÛV + V̂ 2) ◦ M̃0,0,L−2(s, t) + V̂ ◦ M̃1,0,L−3(s, t) . (4.46)

Since we have deduced the finiteness of the number of poles in M̃0,0,L−2(s, t), it is ob-

vious from the above equation that M̃1,0,L−3(s, t) also has a finite number of poles. By

the same logic, one can easily convince oneself that the number of poles in M̃0,1,L−3(s, t),

M̃L−3,1,0(s, t), M̃L−3,0,1(s, t), M̃0,L−3,1(s, t), M̃1,L−3,0(s, t) is also finite. The strategy is

now clear. We start from the corners of the triangle and move along the edges. Each time

we encounter a new element of M̃i,j,k(s, t) multiplied by a single difference operator of the

type ÛmV n and by recursion we can prove this new term has finitely many poles. After

finishing the outer layer of the R-symmetry triangle, we move onto the adjacent layer, again

starting from the three corners and then moving along the edges. It is not hard to see that

at each step the same situation occurs and we only need to deal with one new element

at a time. For example, στM1,1,L−2(s, t), which is on the top corner of the second layer,

is generated by M̃0,0,L−2(s, t) with the action of −στÛ − στÛV + στÛ2, σM̃1,0,L−3(s, t)

with −τ V̂ − τÛ + τ 1̂, τM̃0,1,L−3(s, t) with −σV̂ − σÛV + σV̂ 2 and στM̃1,1,L−3(s, t) with

V̂ . Among these four elements of the auxiliary amplitude M̃0,0,L−2(s, t), σM̃1,0,L−3(s, t),

τM̃0,1,L−3(s, t) belong to the outer layer which are determined to be rational in the pre-

vious round. Only the element στM̃1,1,L−3(s, t) belongs to the inner layer and is acted on

by the simple difference operator V̂ . This concludes by recursion that M̃1,1,L−3(s, t) is also

rational. In finitely many steps, we can exhaust all the elements of M̃ijk. This concludes

the proof of rationality of M̃. It might at first sight appear that this procedure amounts

to an algorithm to invert the difference operator R̂, but of course this is not the case. For

general MIJK , one would find contradictory results for some element M̃ijk applying the

recursion procedure by following different paths in the triangle.
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4.4 Solution

Experimentation with low-weight examples led us to the following ansatz for M̃,

M̃(s, t, ũ;σ, τ) =
∑

i+j+k=L−2

0≤i,j,k≤L−2

aijkσ
iτ j

(s− sM + 2k)(t− tM + 2j)(ũ− ũM + 2i)
(4.47)

where

sM = min{p1 + p2, p3 + p4} − 2 ,

tM = min{p1 + p4, p2 + p3} − 2 ,

ũM = min{p1 + p3, p2 + p4} − 2 .

(4.48)

The reader can check that this ansatz leads to an M that satisfies the asymptotic require-

ment, obeys Bose symmetry and has simple poles at the required location. The further

requirements that the poles have polynomials residues fixes the coefficients aijk uniquely

up to normalization,

aijk =
Cp1p2p3p4

(
L−2
i,j,k

)
(
1 + |p1−p2+p3−p4|

2

)
i

(
1 + |p1+p4−p2−p3|

2

)
j

(
1 + |p1+p2−p3−p4|

2

)
k

, (4.49)

where
(
L−2
i,j,k

)
is the trinomial coefficient. The overall normalization

Cp1p2p3p4 =
f(p1, p2, p3, p4)

N2
(4.50)

cannot be fixed from our homogenous consistency conditions. In principle, it can be de-

termined by transforming back to the position-space expression (4.16). As we shall show

below, the term Gfree,conn arises as a regularization effect in the inverse Mellin transforma-

tion. The constant f(p1, p2, p3, p4) is fixed by requiring that the regularization procedure

gives the correctly normalized free-field correlator. In practice, this is very cumbersome,

and it is easier to take instead Gfree,conn as an input from free-field theory. The overall

normalization of M is then fixed by imposing the cancellation of spurious singularity as-

sociated to single-trace long operators [46], which are separately present in Gfree,conn and

in RH but must cancel in the sum. This method has been used in [75] to determine

f(p, p, q, q), the normalization in all cases with pairwise equal weights. The normalization

for arbitrary weights f(p1, p2, p3, p4) has been recently determined in [76] by further taking

a light-like limit.

4.4.1 Uniqueness for pi = 2

Uniqueness of the ansatz (4.47) is in general difficult to prove. However in simple examples

it is possible to solve the algebraic problem directly, thereby proving that the answer is

unique. In this subsection we demonstrate it for the simplest case, the equal-weights case

with p = 2. This case is particularly simple because M̃ has no σ, τ dependence.

Recall that the Mellin amplitude M has simple poles in s, t and u whose positions

are restricted by the condition (4.41). Specifically in the case of pi = 2, it means that
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the Mellin amplitude can only have simple poles at s = 2, t = 2 and u = 2. On the

other hand, M̃ must also have poles because the Pochhammer symbols in the difference

operators (4.27) do not introduce additional poles. To fix the position of these poles in

M̃, let us look at the R-symmetry monomial σIτJ in M(s, t;σ, τ) with I = J = 0. The

σIτJ term in M(s, t;σ, τ) with I = J = 0 can then only be produced from M̃(s, t) with

the action of the term V̂ in (4.26)

V̂ ◦ M̃(s, t) = M̃(s, t− 2)

[(
4− t

2

)

1

(
4− u

2

)

1

]2
. (4.51)

For s to have simple pole at s = 2 in M, it is easy to see that the only possible s-pole in

M̃(s, t) is a simple pole at s = 2. For t, a simple pole at t = 0 in M̃(s, t) is allowed, which

after the shift on the right side of (4.51) gives a simple pole at t = 2 in M. But there is

also an additional pole in t allowed due to the presence of the Pochhammer symbol. Since

the Pochhammer symbol gives a degree-two zero at t = 4 we can have a pole at t = 2 in

M̃(s, t) with pole degree up to two. These two possibilities exhaust all the allowed t-poles

in M̃(s, t) that are compatible with the pole structure of M. Now the story for ũ-poles is

exactly the same as t. To see this, we note that under the shift t → t− 2,

ũ → ũ+ 2 = (u− 4) + 2 = u− 2 . (4.52)

By the same argument ũ can have in M̃(s, t) a simple pole at ũ = 0 and at most a double

pole at ũ = 2.

Now we use the constraints from Bose symmetry (actually crossing symmetry in this

case) and the asymptotic condition to further narrow down the possibilities. Bose symmetry

requires

M̃(s, t) = M̃(s, ũ) = M̃(t, s) . (4.53)

Since M̃(s, t) cannot have a pole at s = 0, the poles at t = 0, ũ = 0 are prohibited. On

the other hand the asymptotic condition further requires M(s, t) to have growth rate one

at large s, t, u. Consequently by simple power counting M̃(s, t) should have growth rate

−3. This leaves us with the unique crossing symmetric ansatz

M̃(s, t) ∝
1

(s− 2)(t− 2)(ũ− 2)
(4.54)

which is just our solution (4.47).

4.5 Contour subtleties and the free correlator

In this section we address some subtleties related to s and t integration contours in the

Mellin representation. These subtleties are related to the decomposition of the position

space correlator into a “free” and a dynamical term. In transforming to Mellin space, we

have ignored the term Gfree,conn. We are going to see how this term can be recovered by

taking the inverse Mellin transform with proper integration contours.

The four-point function calculated from supergravity with the traditional method is a

sum of four-point contact diagrams, known as D̄-functions. (Their precise definition is given

in (5.4)). Through the repeated use of identities obeyed the D̄ functions, the supergravity
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answer can be massaged into a form that agrees with the solution to the superconformal

Ward identity — with a singled-out “free” piece. Manipulations of this sort can be found

in, e.g., [23, 24, 27, 77]. Most of the requisite identities have an elementary proof either in

position space or in Mellin space, but the crucial identity which is key to the separation of

the free term, namely

(
D̄∆1+1∆2∆3+1∆4 + UD̄∆1+1∆2+1∆3∆4 + V D̄∆1∆2+1∆3+1∆4

) ∣∣∣∣
∆4=∆1+∆2+∆3

=
3∏

i=1

Γ(∆i),

(4.55)

requires additional care. The Mellin transform of the r.h.s. is clearly ill-defined. We will

now show that the Mellin transform of the l.h.s. is also ill-defined, because while each

of the three terms has a perfectly good transform for a finite domain of s and t (known

as the “fundamental domain”), the three domains have no common overlap. A suitable

regularization procedure is required to make sense of this identity. Let us see this in detail.

Recall that the Mellin transform of an individual D̄-function is just a product of

Gamma functions. Its fundamental domain can be characterized by the condition that all

the arguments of Gamma functions are positive [78]. For the three D̄-functions appearing

on the l.h.s. of (4.55), we have

D̄∆1+1∆2∆3+1∆4
=

1

4

∫

C1

dsdtUs/2V t/2Γ
[
−
s

2

]
Γ

[
−
t

2

]
Γ

[
s+t+∆1+∆2+∆3−∆4+2

2

]

×Γ

[
−
s

2
+
∆4+∆3−∆1−∆2

2

]
Γ

[
−
t

2
+
∆4+∆1−∆2−∆3

2

]
Γ

[
s+t

2
+∆2

]
,

D̄∆1+1∆2+1∆3∆4
=

1

4

∫

C2

dsdtUs/2V t/2Γ
[
−
s

2

]
Γ

[
−
t

2

]
Γ

[
s+t+∆1+∆2+∆3−∆4+2

2

]

×Γ

[
−
s

2
+
∆4+∆3−∆1−∆2

2
−1

]
Γ

[
−
t

2
+
∆4+∆1−∆2−∆3

2

]
Γ

[
s+t

2
+∆2+1

]
,

D̄∆1∆2+1∆3+1∆4
=

1

4

∫

C3

dsdtUs/2V t/2Γ
[
−
s

2

]
Γ

[
−
t

2

]
Γ

[
s+t+∆1+∆2+∆3−∆4+2

2

]
.

×Γ

[
−
s

2
+
∆4+∆3−∆1−∆2

2

]
Γ

[
−
t

2
+
∆4+∆1−∆2−∆3

2
−1

]
Γ

[
s+t

2
+∆2+1

]
.

(4.56)

Here ∫

Ci

dsdt =

∫ s0i+i∞

s0i−i∞
ds

∫ t0i+i∞

t0i−i∞
dt , (4.57)

so the contours are specified by selecting a point inside the fundamental domains,

(s0i, t0i)∈Di. With ∆4=∆1+∆2+∆3, one finds that the fundamental domains are given by

D1 = D2 = D3 = {(s0, t0)|ℜ(s) < 0,ℜ(t) < 0,ℜ(s) + ℜ(t) > −2} . (4.58)

Multiplication by U and V in the second and the third terms, respectively, shifts23 the

domains D2 and D3 into new domains D′
2 and D′

3,

D′
2 = {(s0, t0)|ℜ(s) < 2,ℜ(t) < 0,ℜ(s) + ℜ(t) > 0} ,

D′
3 = {(s0, t0)|ℜ(s) < 0,ℜ(t) < 2,ℜ(s) + ℜ(t) > 0} .

(4.59)

23To absorb UmV n outside the integral into Us/2V t/2 inside the integral and then shift s and t to bring

it back to the form Us/2V t/2. Doing so amounts to shift D to D′ by a vector (2m, 2n).
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This is problematic because

D1

⋂
D′

2

⋂
D′

3 = ∅ . (4.60)

Clearly it makes no sense to add up the integrands if the contour integrals share no common

domain. On the other hand, if one is being cavalier and sums up the integrands anyway,

one finds that the total integrand vanishes. This is “almost” the correct result, since the

r.h.s. of the identity (4.55) is simply a constant, whose Mellin transform is ill-defined and

was indeed set to zero in our analysis in the previous section. We can however do better

and reproduce the exact identity if we adopt the following “regularization” prescription:

we shift s + t → s + t + ǫ, with ǫ a small positive real number. After this shift, the three

domains develop a small common domain of size ǫ (figure 6),

D1

⋂
D′

2

⋂
D′

3 ≡ Dǫ = {(s0, t0)|ℜ(s) < 0,ℜ(t) < 0,ℜ(s) + ℜ(t) > −ǫ} . (4.61)

We can therefore place the common integral contour inside Dǫ and combine the integrands,

l.h.s. =
1

4

∫

Dǫ

dsdtU s/2V t/2

(
s+ t+ ǫ

2
−

s

2
−

t

2

)
Γ
[
−
s

2

]
Γ

[
−
t

2

]
Γ

[
s+ t+ ǫ

2

]

× Γ
[
−
s

2
+ ∆3

]
Γ

[
−
t

2
+ ∆1

]
Γ

[
s+ t

2
+ ∆2

]

=
1

4

∫

Dǫ

dsdtU s/2V t/2 ǫ

2
Γ
[
−
s

2

]
Γ

[
−
t

2

]
Γ

[
s+ t+ ǫ

2

]

× Γ
[
−
s

2
+ ∆3

]
Γ

[
−
t

2
+ ∆1

]
Γ

[
s+ t

2
+ ∆2

]
.

(4.62)

As ǫ → 0, we can just substitute s = t = 0 into the non-singular part of the integrand.

The resulting integral is easily evaluated,

l.h.s.=
1

2
Γ[∆1]Γ[∆2]Γ[∆3]

∫

Dǫ

ds

2

dt

2
ǫΓ
[
−
s

2

]
Γ

[
−
t

2

]
Γ

[
s+t+ǫ

2

]
=Γ[∆1]Γ[∆2]Γ[∆3] = r.h.s. .

(4.63)

This amounts to a “proof” of the identity (4.55) directly in Mellin space. This exercise

contains a useful general lesson. As we have already remarked, the identity (4.55) is

responsible for generating the term Gfree,conn by collapsing sums of D̄ functions in the

supergravity answer. We have shown that it is consistent to treat the Mellin transform of

Gfree,conn as “zero”, provided that we are careful about the s, t integration contours in the

inverse Mellin transform. In general, when one is adding up integrands, one should make

sure the integrals share the same contour, which may require a regularization procedure

of the kind we have just used. A naively “zero” Mellin amplitude can then give nonzero

contributions to the integral if the contour is pinched to an infinitesimal domain where the

integrand has a pole. In appendix C we illustrate in the simplest case of equal weights

pi = 2 how the free field correlator is correctly reproduced by this mechanism.

We conclude by alerting the reader about another small subtlety. The free term

Gfree,conn depends on the precise identification of the operators dual to the supergravity

modes sp. As explained in footnote 5, if one adopts the scheme where the fields sp contain

no derivative cubic couplings, the dual operators are necessarily admixtures of single- and
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Figure 6. The regularized domains. The common domain of size ǫ is depicted as the shaded region.

multi-trace operators. While the multi-trace pieces are in general subleading, they can

affect the free-field four-point function if the four weights are sufficiently “unbalanced”.

This phenomenon was encountered in [26, 27], where the four-point functions with weights

(2, 2, p, p) were evaluated from supergravity. A discrepancy was found for p ≥ 4 between

the function Gfree,conn obtained by writing the supergravity result in the split form (4.16)

and the free-field result obtained in free field theory from Wick contractions, assuming

that the operators are pure single-traces. The resolution is that supergravity is really com-

puting the four-point function of more complicated operators with multi-trace admixtures.

Note that the contribution to the four-point functions from the multi-trace terms takes the

form of a product of two- and three-point functions of one-half BPS operators, and is thus

protected [30]. The ambiguity in the precise identification of the dual operators can then

only affect Gfree,conn and not the dynamical part.

5 The position space method

We now switch gears and describe a logically independent position space method. This

methods mimics the traditional recipe for computing four-point functions in super-

gravity, but eschews detailed knowledge supergravity effective action and complicated

combinatorics.

The idea is to write the write full amplitude as a sum of exchange diagrams and contact

diagrams, but parametrizing the vertices with undetermined coefficients. The spectrum of

IIB supergravity on AdS5 × S5 is such that all the exchange diagrams can be written as

a finite sum of contact diagrams, i.e., D-functions, making the whole amplitude a sum of

D-functions. We then use the property of D-functions to decompose the amplitude into a

basis of independent functions. The full amplitude is encoded into four rational coefficient

functions. Imposing the superconformal Ward identity we find a large number of rela-

tions among the undetermined coefficients. Uniqueness of the maximally supersymmetric

Lagrangian guarantees that all the coefficients in the ansatz can be fixed up to overall

rescaling. Finally the overall constant can be determined by comparing with the free field
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result after restricting the R-symmetry cross ratios to a special slice [73] (this is related the

chiral algebra twist [79]). We emphasize that there is no guesswork anywhere. The position

space method is guaranteed to give the same results as a direct supergravity calculation,

but it is technically much simpler.

We will discuss the method only for the equal-weight case pi = p, but its generaliza-

tion to the unequal-weight case is straightforward. In addition to reproducing the known

examples p = 2, 3, 4, we computed the new case of p = 5 and found it to be an agreement

both with the conjecture of [46] and with our Mellin amplitude conjecture (4.47), (4.49).

We have included these results in the form of tables of coefficients in appendix D. Explicit

form of the results as sums of D-functions is also available as a Mathematica notebook

included in the ArXiv version of this paper.

We start by reviewing some facts about exchange and contact Witten diagrams, some

of which have already been mentioned in the previous sections. We then explain in detail

how to decompose the position space ansatz into a basis and how to implement the super-

conformal Ward identity. We end the section with a demonstration of the method in the

simplest pi = 2 case. Explicit formulae and technical details are given in the appendices.

5.1 Exchange diagrams

The Kaluza-Klein fields that can appear in the internal propagator of an exchanged dia-

grams have been listed in table 1. The allowed fields are restricted by the R-symmetry

selection rule,

[0, p, 0]⊗ [0, p, 0] = ⊕0≤m≤n≤p[n−m, 2m,n−m] , (5.1)

and by a twist cut-off,

τ < 2p . (5.2)

This origin of the twist cut-off has been discussed in section 2, and an alternative expla-

nation from the Mellin amplitude perspective was given in section 3.3.

The requisite exchange diagrams have been computed in the early days of the

AdS/CFT correspondence. They can all be represented as finite sums of D̄-functions. We

have summarized the relevant formulae in appendix A. As each exchanged field belongs to

a certain R-symmetry representation [n−m, 2m,n−m], we should multiply the exchange

Witten diagrams by the corresponding R-symmetry polynomial Ynm. These polynomials

were derived in [73],

Ynm(α, ᾱ) =
Pn(α)Pm(ᾱ)− Pm(α)Pn(ᾱ)

α− ᾱ
, (5.3)

with Pn(α) are the usual Legendre polynomials. The R-symmetry polynomials are eigen-

functions of the R-symmetry Casimir operator and are thus the “compact” analogue of the

conformal partial waves.

5.2 Contact diagrams

In addition to the exchange diagrams, the four-point functions receive contribution from

contact diagrams. The contact vertices in the effective Lagrangian have been explicitly
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worked out in [29], with the number of derivatives going up to four. However as we argued,

the requirement of a good flat space limit forbids genuine four-derivative contributions.

This was recently confirmed in [50] by explicit computation. Therefore only zero-derivative

vertices and two-derivative vertices will effectively contribute to the four-point function.

We also observe a further simplification that for the equal-weight case: the zero-derivative

contributions can be absorbed into the two-derivative ones when the external dimension

satisfies p 6= 4. The proof of this statement is presented in appendix B.

5.3 Reducing the amplitude to four rational coefficient functions

As always, it will be convenient to write the amplitude as function of the conformal and

R-symmetry cross-ratios, pulling out an overall kinematic factor. The D̄-functions are

defined in terms of contact Witten diagrams (known as D-functions, see (4.47)) by the

extraction of such a kinematic factor,

∏4
i=1Γ(∆i)

Γ(Σ− 1
2d)

2

π
d
2

D∆1∆2∆3∆4(x1,x2,x3,x4)=
rΣ−∆1−∆4
14 rΣ−∆3−∆4

34

rΣ−∆4
13 r∆2

24

D̄∆1∆2∆3∆4(U,V ) , (5.4)

where 2Σ ≡
∑4

i=1∆i.

The set of D̄-functions is overcomplete, as they are related by several identities, but

our method requires a basis of independent functions. To remove this redundancy we will

represent the D̄-functions in a way that makes the identities manifest. We use the fact that

all D̄∆1∆2∆3∆4 can be obtained from Φ(U, V ) ≡ D̄1111(U, V ) with the action of differential

operators of U and V . The following six differential operators allow to move around in the

weight space (∆1,∆2,∆3,∆4) of D̄-functions (see, e.g., [23]),

D̄∆1+1,∆2+1,∆3,∆4 = D12D̄∆1,∆2,∆3,∆4 := −∂U D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2,∆3+1,∆4+1 = D34D̄∆1,∆2,∆3,∆4 := (∆3 +∆4 − Σ− U∂U )D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2+1,∆3+1,∆4 = D23D̄∆1,∆2,∆3,∆4 := −∂V D̄∆1,∆2,∆3,∆4 ,

D̄∆1+1,∆2,∆3,∆4+1 = D14D̄∆1,∆2,∆3,∆4 := (∆1 +∆4 − Σ− V ∂V )D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2+1,∆3,∆4+1 = D24D̄∆1,∆2,∆3,∆4 := (∆2 + U∂U + V ∂V )D̄∆1,∆2,∆3,∆4 ,

D̄∆1+1,∆2,∆3+1,∆4 = D13D̄∆1,∆2,∆3,∆4 := (Σ−∆4 + U∂U + V ∂V )D̄∆1,∆2,∆3,∆4 .

(5.5)

The “seed” D̄-function Φ(U, V ) is the famous scalar one-loop box integral in four dimensions

and can be expressed in closed form in terms logarithms and dilogarithms. After the change

of variable into U = zz̄ and V = (1− z)(1− z̄), the integral can be written as

Φ(z, z̄) =
1

z − z̄

(
log(zz̄) log

(
1− z

1− z̄

)
+ 2Li(z)− 2Li(z̄)

)
. (5.6)

The function Φ obeys the following differential relations [72],

∂zΦ = −
1

z − z̄
Φ−

1

z(z − z̄)
log(−1 + z)(−1 + z̄) +

1

(−1 + z)(z − z̄)
log(zz̄) ,

∂z̄Φ =
1

z − z̄
Φ+

1

z̄(z − z̄)
log(−1 + z)(−1 + z̄)−

1

(−1 + z̄)(z − z̄)
log(zz̄) .

(5.7)
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The recursive use of these two identities makes it clear that each D̄-function can be uniquely

written as

D̄∆1∆2∆3∆4 = RΦΦ(U, V ) +RV log V +RU logU +R0 (5.8)

where RΦ,U,V,0 are rational functions of z and z̄. As a result, the supergravity amplitude

also admits such a unique decomposition as

Asugra(z, z̄;α, ᾱ) = Rsugra
Φ Φ(z, z̄) +Rsugra

V log V +Rsugra
U logU +Rsugra

0 . (5.9)

The coefficient functions Rsugra
Φ,U,V,0 are now polynomials of the R-symmetry variables α and

ᾱ, where each R-symmetry monomial αmᾱn is multiplied by a rational function of U and

V . The coefficients functions Rsugra
Φ,U,V,0 depend linearly on the undetermined coefficients

that we have used to parameterize the vertices.

Our ansatz Asugra must satisfy superconformal Ward identity. The solution can be

simply written as

Asugra(z, z̄;α, 1/z̄) = Gfree(z, z̄;α, 1/z̄) (5.10)

with Gfree(z, z̄;α, 1/z̄) being a rational function that depends only on z and α and can be

obtained from free field theory [73]. Under our decomposition, the superconformal Ward

identity becomes a set of conditions on the rational coefficient functions,

RΦ(z, z̄;α, 1/z̄) = 0 ,

RV (z, z̄;α, 1/z̄) = 0 ,

RU (z, z̄;α, 1/z̄) = 0 .

(5.11)

These conditions imply a large set of linear equations for the undetermined parameters.

Uniqueness of two-derivative IIB supergravity strongly suggests that these conditions must

admit a unique solution, up to overall rescaling. This is indeed what we have found in

all examples. Finally, the overall normalization is determined by comparing the coefficient

function of R0 with the free-field result,

R0(z, z̄;α, 1/z̄) = Gfree,conn(z, z̄;α, 1/z̄) . (5.12)

5.4 An example: pi = 2

We now illustrate the position space method in the simplest case pi = 2. The four-point

amplitude with four identical external scalar has an S3 crossing symmetry. Since the total

amplitude is a sum over all Witten diagrams, we can just compute one channel and use

crossing symmetry to relate to the other two channels. In the s-channel, we know from

table 1 and the twist cut-off τ < 4 that there are only three fields which can be exchanged:

there is an exchange of scalar with dimension two and in the representation [0, 2, 0],

Ascalar =
1

8
π2λsU(3σ + 3τ − 1)D̄1122 , (5.13)

a vector of dimension three in the representation [1, 0, 1]

Avector =
3

8
π2λvU(σ − τ)

(
D̄1223 − D̄2123 + D̄2132 − V D̄1232

)
, (5.14)
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and a massless symmetric graviton in the singlet representation,

Agraviton =
1

3
(−2)π2λgU

(
2D̄1122 − 3

(
D̄2123 + D̄2132 − D̄3133

))
. (5.15)

In the above expressions we have used the formulae for exchange Witten diagrams from

appendix A and multiplied with the explicit expression of R-symmetry polynomials Y00,

Y11, Y10 given by (5.3). The constants λs, λv and λg are undetermined parameters.

For the contact diagram, following the discussion of appendix B, we only need to

consider two-derivative vertices. The most general contribution is as follows (only in the

s-channel, as we will sum over the channels in the next step),

Acontact = −


 ∑

0≤a+b≤2

cabσ
aτ b


 2π2U2(−2D̄2222 + D̄2233 + UD̄3322) (5.16)

where cab = cba because the s-channel is symmetric under the exchange of 1 and 2.

We can obtain the amplitudes in t- and u-channels by crossing. The total amplitude is

the sum of the contributions from the three channels. Denoting the s-channel contribution

as As,

As = Ascalar +Avector +Agraviton +Acontact , (5.17)

the ansatz for the crossing-symmetric total amplitude is

Asugra(U,V ;σ,τ)=As+At+Au (5.18)

=As(U,V ;σ,τ)+

(
Uτ

V

)2
As(V,U ;σ/τ,1/τ)+

(
Uσ
)2
As(1/U,V/U ;1/σ,τ/σ).

Being a sum of D̄-functions, Asugra can be systematically decomposed into Φ, lnU , lnV

and the rational part. For example, the coefficient function of Φ is of the form

Rφ(z, z̄, α, ᾱ) =
T (z, z̄, α, ᾱ)

(z − z̄)6
(5.19)

where the numerator T (z, z̄, α, ᾱ) a polynomial of degree 2 in α, ᾱ and of degree 12 in z

and z̄. The superconformal Ward identity then requires T (z, z̄;α, 1/z̄) = 0 and reduces to

a set of homogenous linear equations. Their solution is

λs = ξ, λv = −
1

2
ξ, λg =

3

16
ξ ,

c00 =
3

32
ξ, c01 = −

3

8
ξ, c02 =

3

32
ξ, c11 = −

3

16
ξ ,

(5.20)

where ξ is an arbitrary overall constant. We then compute “twisted” correlator

Asugra(α, 1/z̄, z, z̄) = −
3π2ζ

(
α2z2 − 2αz2 + 2αz − z

)

8N2(z − 1)
, (5.21)

and compare it to the free field result

Gfree,conn(α, 1/z̄, z, z̄) = −
4
(
α2z2 − 2αz2 + 2αz − z

)

N2(z − 1)
. (5.22)
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The functional agreement of the two expressions provides a consistency check, and fixes

the value of the last undetermined constant,

ξ =
32

3N2π2
. (5.23)

The final answer agrees with the result in the literature [22].

6 Conclusion

The striking simplicity of the general Mellin formula (4.47), (4.49) is a real surprise. Like the

Parke-Taylor formula for tree-level MHV gluon scattering amplitudes, it encodes in a suc-

cinct expression the sum of an intimidating number of diagrams. The authors of [75, 80, 81]

have used the information contained in our Mellin formula to disentangle the degeneracies

and compute the O(1/N2) anomalous dimensions of double-trace operators of the form

Op�
n∂ℓOq. The solution of this mixing problem turns out to be remarkably simple, giving

further evidence for some hidden elegant structure.

An interesting question is whether our results could be recovered by a more constructive

approach, perhaps in the form of a Mellin version of the BCFW recursion relations.24 Such

an approach would lend itself more easily to the generalization to higher n-point correlators.

A preliminary step in this direction is setting up the Mellin formalism for operators with

spin (see [42, 53] for the state of the art of this problem).

Our work admits several natural extensions. At tree level, a direct generalization of the

methods developed here has led to structurally similar results for holographic correlators

in AdS7 × S4, which will be described in an upcoming paper [84]. The extension to

AdS3 × S3 × M4 also appears within reach [85].25 In all these backgrounds, the KK

spectrum obeys the truncation conditions, and Mellin amplitudes for tree level correlators

are rational functions. This is not the case for a generic holographic background. The most

important example that violates the truncation conditions is the maximally supersymmetric

case AdS4×S7. New techniques will have to be developed to handle such cases [87]. At the

loop level, impressive progress has been made recently by several authors [45, 75, 80, 81]

and it will be interesting to push this program using the insights of our methods.

In conclusion, holographic correlators in N = 4 SYM theory appear to be much simpler

and elegant than previously understood. We believe that this warrants their renewed

exploration, following the spirit of the modern approach to perturbative gauge theory

amplitudes.
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A Formulae for exchange Witten diagrams

We are interested in here the case where the exchange diagrams truncate to a finite number

of D-functions, as a result of the conspiracy of the spectrum and the space-time dimension.

A simple general method for calculating such exchange diagrams in AdSd+1 was found [36].

We collect in this appendix the relevant formulae needed in the computation of four-point

function of identical scalars. The external operators have conformal dimension ∆ and the

exchanged operator conformal dimension δ.

Scalar exchanges.

S(x1, x2, x3, x4) =
∆−1∑

k=δ/2

ak|x12|
−2∆+2kDk,k,∆,∆ , (A.1)

where

ak−1 =
(k − δ

2)(k − d
2 + δ

2)

(k − 1)2
ak (A.2)

and

a∆−1 =
1

4(∆− 1)2
. (A.3)

Vector exchanges.

V (x1, x2, x3, x4) =

kmax∑

k=kmin

|x12|
−2∆+2kak∆

(
x24

2Dk,k+1,∆,∆+1 + x13
2Dk+1,k,∆+1,∆

− x23
2Dk,k+1∆+1,∆ − x14

2Dk+1,k,∆,∆+1

)
,

(A.4)

where

kmin =
d− 2

4
+

1

4

√
(d− 2)2 + 4(δ − 1)(δ − d+ 1) ,

kmax = ∆− 1 ,

ak−1 =
2k(2k + 2− d)− (δ − 1)(δ − d+ 1)

4(k − 1)k
ak ,

a∆−1 =
1

2(∆− 1)
.

(A.5)

Graviton exchanges.

G(x1, x2, x3, x4) =

kmax∑

k=kmin

x12
−2∆+2kak

((
∆2 +

1

d− 1
∆(∆− d)

)
Dk,k,∆,∆

− 2∆2
(
x13

2Dk+1,k,∆+1,∆ + x14
2Dk+1,k,∆,∆+1

)

+ 4∆2x13
2x14

2Dk+2,k,∆+1,∆+1

)
,

(A.6)
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where

kmin =
d

2
− 1 ,

kmax = ∆− 1 ,

ak−1 =
k + 1− d

2

k − 1
ak ,

a∆−1 = −
∆

2(∆− 1)
.

(A.7)

Massive symmetric tensor exchanges. The Witten diagrams for massive symmetric

tensor exchange were worked out in [23] for the general case26 of AdSd, and applied to the

AdS5 case. We fixed a small error in [23], which only affects the results for d 6= 5 and thus

leaves the conclusions of [23] unaltered. For future reference, we reproduce the general

calculation here. Due to the complexity of the explicit form of the general solution, we

will not present here the answer as a sum of D-functions. Instead we will break down the

evaluation into a few parts and give the prescription of how to assemble them into a sum

of D-functions.

The four-point amplitude T (x1, x2, x3, x4) due to the exchange of a massive symmetric

tensor of dimension δ is

T (x1, x2, x3, x4) =

∫

AdS
dwAµν(w, x1, x2)T

µν(x3, x4, w) (A.8)

where

Tµν = ∂µK∆(x3)∂νK∆(x4)−
gµν
2

(
∂ρK∆(x3)∂ρK∆(x4)+

1

2
(2∆(∆− d+ 1)− f)K∆(x3)K∆(x4)

)
.

(A.9)

Here f = δ(δ − d+ 1) is the m2 of the exchanged massive tensor and

Kn(xi) =

(
w0

(w − x)2

)n

(A.10)

is the scalar bulk-to-boundary propagator. By conformal inversion and translation Aµν

can be rewritten as

Aµν(w, 0, x) =
1

x2∆w4
JµλJνρIλρ(w

′ − x′) , (A.11)

with w′
µ =

wµ

w2 , x
′
µ =

xµ

x2 . The ansatz is

Iµν(w) = gµνh(t) + PµPνφ(t) + ▽µ▽νX(t) + ▽(µPν)Y (t) . (A.12)

For any scalar function b(t),

▽µ▽νb(t) =
2wµwν

w4
tb′(t) + 6

(
Pµ −

wµ

w2

)(
Pν −

wν

w2

)
tb′(t)

+ 4
(
Pµ −

wµ

w2

)(
Pν −

wν

w2

)
t2b′′(t)− 2gµνtb

′(t) ,
(A.13)

▽(µPν)b(t) = 2(PµPν − gµν)b(t) + 2

(
2PµPν −

Pµwν + Pνwµ

w2

)
tb′(t) . (A.14)

26For easier comparison with the equations of [23], in this subsection we change our conventions such

that d is the bulk dimension. In this subsection and in this subsection only, we are working in AdSd rather

than in AdSd+1..
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Here, as standard in the literature, we have denoted

Pµ =
δ0µ
w0

, t =
(w0)

2

w2
. (A.15)

The functions h(t), φ(t), X(t), Y (t) are subject to the following set of equations,

h(t)=−
1

d−2
φ(t)+

f

d−2
X(t) , (A.16)

Y (t)= a+
1

2f
(4t(t−1)φ′(t)+(2d−6)φ(t)+2∆t∆) , (A.17)

X(t)=
1

2(d−1)f(d+f−2)

(
2a(d−2)(2d−3)f+

[
2(d−3)(d−2)2+df

]
φ(t)

+(d−2)

[
t∆(−f+2(−∆2+∆(d−2)+2∆2t))+2t(2t+d−3)(4t−3)φ′(t)

+4t2(t−1)(2t−1)φ′′(t)

])
,

(A.18)

4t2(t−1)φ′′(t)+(12t2+(2d−14)t)φ′(t)+(f+2d−6)φ(t)+2fa+2∆(∆+1)t∆=0 , (A.19)

where a is an integration constant that will cancel out when we substitute the solution into

the ansatz for Iµν . These equations come from the action of the modified Ricci operator

Wµν
ρλ,27 on Aµν and equating terms of the same structure. We omitted the tedious

algebra here.

We start from the last equation and look for a polynomial solution for φ(t). As we

will see shortly, a polynomial solution will lead to a truncation of the exchange diagram to

finitely many D-functions. We find

φ(t) = −
2aδ(δ − d+ 1)

(δ − 2)(δ − d+ 3)
+

kmax∑

k=kmin

akt
k ,

kmin =
δ − 2

2
,

kmax = ∆− 1 ,

ak−1 =
(k + 3−d+δ

2 )(1 + k − δ
2)

(k − 1)(k + 1)
ak ,

a∆−1 = −
∆

2∆− 1
.

(A.21)

For the polynomial solution to exist, kmax − kmin = ∆ − δ/2 must be an non-negative

integer. When 2∆ = δ− 2, which is the extremal case, we see the polynomial solution will

stop from existing.

27There is an error in (E.4) of [23] that must be fixed in order to generalize to arbitrary d. The correct

equation is [88]

Wµν
ρλφρλ =−▽ρ▽

ρφµν+▽ν▽
ρφρµ+▽ν▽

ρφρν−▽µ▽
νφρ

ρ−

(

(2−f)φµν+
2d−4+f

2−d
gµνφ

ρ
ρ

)

(A.20)
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After obtaining the polynomial solution for φ(t), we can easily solve out h(t), X(t),

Y (t) from the rest three equations. And it is easy to see Iµν(t) contains only finitely many

terms of the following four types

gµνt
n,

Pµwν

w2
tn,

wµwν

w4
tn, PµPνt

n . (A.22)

We can get Aµν from Iµν(w
′ − x′) with the following substitutions:

P ′
ν

Jµν
w2

→ Rµ ≡ Pµ − 2
(w − x1)µ
(w − x1)2

,

Jµν
w2

(w′ − x′)µ
(w′ − x′)2

→ Qµ ≡ −
(w − x1)µ
(w − x1)2

+
(w − x2)µ
(w − x2)2

,

Jµρ
w2

g′ρλ
Jλν
w2

→ gµν , t′n → x2n12Kn(x1)Kn(x2) .

(A.23)

The last step is to contract Aµν with Tµν . We list below the following handy contraction

formulae,

QµQµ = x212K1(x1)K1(x2) ,

Qµ∂µK∆(xi) = ∆K∆+1(xi)(−x21iK1(x1) + x22iK1(x2)) ,

RµRµ = 1 ,

Rµ∂µK∆(xi) = ∆(K∆(xi)− 2x21iK1(x1)K∆+1(xi)) ,

RµQµ = x212K1(x1)K1(x2) .

(A.24)

The above derivation amounts to an algorithm to write the requisite exchange diagrams as

a sum of D-function. The explicit final result is too long to be reproduced here.

B Simplification of contact vertices

In this appendix we show that the zero-derivative contact vertex can be absorbed into

the two-derivative ones when the dimension of external scalar particle does not equal the

spacetime dimension of the boundary theory.

A zero-derivative contact vertex takes the form of

V0−∂ = Cα1α2α3α4

∫

AdSd+1

dXsα1(X)sα2(X)sα3(X)sα4(X) , (B.1)

while a two-derivative contact vertex is

V2−∂ = Sα1α2α3α4

∫

AdSd+1

dX▽sα1(X)▽sα2(X)sα3(X)sα4(X) . (B.2)

Here αi collectively denotes the R-symmetry index of ith field s.
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Following the standard procedure in AdS supergravity calculation, we substitute in

the on-shell value of scalar field

sα(X) =

∫

Rd

dPK∆(X,P )sα(P ) (B.3)

so that it is determined by its boundary value sα(P ). Then the two types of contact vertices

become

V0−∂ =Cα1α2α3α4

∫

AdSd+1

dX

∫

Rd

∏
dPi

×K∆(X,P1)K∆(X,P2)K∆(X,P3)K∆(X,P4)s
α1(P1)s

α2(P2)s
α3(P3)s

α4(P4) ,

(B.4)

V2−∂ =Sα1α2α3α4

∫

AdSd+1

dX

∫

Rd

∏
dPi

×▽K∆(X,P1)▽K∆(X,P2)K∆(X,P3)K∆(X,P4)s
α1(P1)s

α2(P2)s
α3(P3)s

α4(P4) .

(B.5)

Because the external fields are identical, Cα1α2α3α4 is totally symmetric while Sα1α2α3α4

is only required to be symmetric under α1 ↔ α2, α3 ↔ α4 and (α1α2) ↔ (α3α4). This

in particular means that the totally symmetric Cα1α2α3α4 can be a Sα1α2α3α4 . Let us see

what the consequence is if we take Sα1α2α3α4 = Cα1α2α3α4 ,

V2−∂ = Cα1α2α3α4

∫
dX

∫ ∏
dPi▽K1▽K2K3K4s

α1sα2sα3sα4

=
1

6
Cα1α2α3α4

∫
dX

∫ ∏
dPi

× (▽K1▽K2K3K4 + ▽K1K2▽K3K4 + ▽K1K2K3▽K4

+K1▽K2▽K3K4 +K1▽K2K3▽K4 +K1K2▽K3▽K4)

× sα1sα2sα3sα4

(B.6)

Here Ki ≡ K∆(Pi) and we have used the total symmetry of Cα1α2α3α4 to symmetrize the

expression. If we now perform the AdS integral first, each term can be written as a sum

of D-functions. For example
∫

AdSd+1

dX▽K1▽K2K3K4 = ∆2(D∆,∆,∆,∆ − 2x12
2D∆+1,∆+1,∆,∆) . (B.7)

The two-derivative vertex then becomes

V2−∂ =
∆2

6
Cα1α2α3α4

∫ ∏
dPis

α1sα2sα3sα4 (B.8)

× (6D∆,∆,∆,∆ − 2x12
2D∆+1,∆+1,∆,∆ − 2x13

2D∆+1,∆,∆+1,∆ − 2x14
2D∆+1,∆,∆,∆+1

− 2x23
2D∆,∆+1,∆+1,∆ − 2x24

2D∆,∆+1,∆,∆+1 − 2x34
2D∆,∆,∆+1,∆+1) .

Using the identity

(2∆− d/2)

∆
D∆,∆,∆,∆ = x214D∆+1,∆,∆,∆+1 + x224D∆,∆+1,∆,∆+1 + x234D∆,∆,∆+1,∆+1 , (B.9)
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we simplify the expression to

V2−∂ =
∆2

6
Cα1α2α3α4

∫ ∏
dPis

α1sα2sα3sα4

(
6D∆,∆,∆,∆ −

(2∆− d/2)

∆
× 4×D∆,∆,∆,∆

)

=
∆(d−∆)

3
Cα1α2α3α4

∫ ∏
dPis

α1sα2sα3sα4D∆,∆,∆,∆

=
∆(d−∆)

3
V0−∂ . (B.10)

We have therefore proved that when ∆ 6= d, we can absorb the contribution from zero-

derivative contact vertices into the two-derivative ones.

C The p = 2 case: a check of the domain-pinching mechanism

We computed the p = 2 correlator from supergravity, using the position space method of
section 5. We found

Gsugra,conn(U,V ;σ,τ)=−
2U

N2V
×

(
−στD̄3,2,1,2U

2+τD̄3,2,1,2U
2+V σD̄3,2,2,1U

2

−V στD̄3,2,2,1U
2+V σ2D̄3,3,2,2U

2+V τ2D̄3,3,2,2U
2+V D̄3,3,2,2U

2−4V σD̄3,3,2,2U
2

−4V τD̄3,3,2,2U
2−2V στD̄3,3,2,2U

2+2τ2D̄2,1,1,2U−2στD̄2,1,1,2U−2τD̄2,1,1,2U

+2V σ2D̄2,1,2,1U−2V σD̄2,1,2,1U−2V στD̄2,1,2,1U−2τ2D̄2,1,2,3U−στD̄2,1,2,3U

+τD̄2,1,2,3U−2V σ2D̄2,1,3,2U+V σD̄2,1,3,2U−V στD̄2,1,3,2U+στD̄2,2,1,3U

−τD̄2,2,1,3U−6V σ2D̄2,2,2,2U−6V τ2D̄2,2,2,2U−6V D̄2,2,2,2U+20V σD̄2,2,2,2U

+20V τD̄2,2,2,2U+20V στD̄2,2,2,2U−V 2σD̄2,2,3,1U+V 2στD̄2,2,3,1U

+V σ2D̄2,2,3,3U+V τ2D̄2,2,3,3U+V D̄2,2,3,3U−4V σD̄2,2,3,3U−4V τD̄2,2,3,3U

−2V στD̄2,2,3,3U+V σ2D̄2,3,2,3U+V τ2D̄2,3,2,3U+V D̄2,3,2,3U−4V σD̄2,3,2,3U

−2V τD̄2,3,2,3U−4V στD̄2,3,2,3U+V 2D̄2,3,3,2U+V 2σ2D̄2,3,3,2U+V 2τ2D̄2,3,3,2U

−2V 2σD̄2,3,3,2U−4V 2τD̄2,3,3,2U−4V 2στD̄2,3,3,2U−2V σ2D̄3,1,2,2U

−2τ2D̄3,1,2,2U−V σD̄3,1,2,2U+V στD̄3,1,2,2U+στD̄3,1,2,2U

−τD̄3,1,2,2U+2V σ2D̄3,1,3,3U+2τ2D̄3,1,3,3U+V σ2D̄3,2,2,3U+V τ2D̄3,2,2,3U

+V D̄3,2,2,3U−2V σD̄3,2,2,3U−4V τD̄3,2,2,3U−4V στD̄3,2,2,3U+V σ2D̄3,2,3,2U

+V τ2D̄3,2,3,2U+V D̄3,2,3,2U−4V σD̄3,2,3,2U−2V τD̄3,2,3,2U−4V στD̄3,2,3,2U

+2V D̄1,1,2,2−2V σD̄1,1,2,2−2V τD̄1,1,2,2+V σD̄1,2,2,3−V τD̄1,2,2,3

−V 2σD̄1,2,3,2+V 2τD̄1,2,3,2−2V D̄2,1,2,3−V σD̄2,1,2,3+V τD̄2,1,2,3

−2V D̄2,1,3,2+V σD̄2,1,3,2−V τD̄2,1,3,2+2V D̄3,1,3,3

)
.

(C.1)

We can get the Mellin transform of Gsugra,conn(U, V ;σ, τ) by Mellin-transforming each D̄-

function in Gsugra,conn. Formally, the transformation reads

M(s, t;σ, τ) =

∫ ∞

0
dUdV U−s/2−1V −t/2+2−1Gsugra,conn(U, V ;σ, τ) , (C.2)

but notice each D̄-function may come with a different fundamental domain of s and t in

which the integrals converge. These fundamental domains are defined by the positivity con-

dition of the Gamma function arguments. Although no ambiguity arises when analytically
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continue the Mellin transformation outside this domain due to the absence of branch cuts,

it is imperative to have the knowledge of the fundamental domain as the contour needs to

be placed inside the fundamental domain in order to reproduce precisely the D̄-function

via the inverse Mellin-transformation. To keep track of this information, in the following

expression we simply keep the Gamma functions from each D̄-function, and the domain

information can be extracted by requiring that the arguments of the Gamma functions

have positive real part. With this proviso, the reduced Mellin amplitude reads

M(s, t;σ,τ)=
4

N2
Γ
[
2−

s

2

]
Γ

[
2−

t

2

]
Γ

[
1

2
(s+t−4)

]

×

{
Γ
(
2−

s

2

)
×

[
Γ

(
3−

t

2

)
×

(
σ(σ−τ+1)Γ

(
1

2
(s+t−6)

)

−
(
σ2−2σ(2τ+1)+τ2−4τ+1

)
Γ

(
1

2
(s+t−4)

))

+Γ

(
2−

t

2

)
×

((
−3σ2+10σ(τ+1)−3τ2+10τ−3

)
Γ

(
1

2
(s+t−4)

)

+
(
σ2−4σ(τ+1)+(τ−1)2

)
Γ

(
1

2
(s+t−2)

)
+σ(σ−τ−1)Γ

(
1

2
(s+t−6)

))

+τΓ

(
1−

t

2

)
×

(
(σ−τ+1)Γ

(
1

2
(s+t−4)

)
+(−σ+τ+1)Γ

(
1

2
(s+t−2)

))]

+Γ
(
3−

s

2

)
×

[
Γ

(
2−

t

2

)
×

(
σ(σ+τ−1)Γ

(
1

2
(s+t−6)

)

−
(
σ2−2σ(τ+2)+τ2−4τ+1

)
Γ

(
1

2
(s+t−4)

))
−σ2Γ

(
3−

t

2

)
Γ

(
1

2
(s+t−6)

)

+τΓ

(
1−

t

2

)
×

(
(σ+τ−1)Γ

(
1

2
(s+t−4)

)
−τΓ

(
1

2
(s+t−2)

))]

+Γ
(
1−

s

2

)
×

[
Γ

(
3−

t

2

)
×

(
(σ−τ+1)Γ

(
1

2
(s+t−4)

)
−Γ

(
1

2
(s+t−2)

))

+Γ

(
2−

t

2

)
×

(
(σ+τ−1)Γ

(
1

2
(s+t−4)

)
+(−σ+τ+1)Γ

(
1

2
(s+t−2)

))]}
.

(C.3)

We can use this example to illustrate how the free field correlator Gfree,conn arises when

one takes the inverse Mellin transform by the “contour pinching mechanism” described

in section 4.5. We will compare the expression that arises directly from the explicit su-

pergravity calculation and the expression in the split form (4.14), both written as inverse

Mellin transformations. Each summand in (C.3) contains a common Gamma function

factor Γ[2 − s
2 ]Γ[2 − t

2 ]Γ[
s+t−4

2 ] which sets common bounds for the boundaries of all the

fundamental domains — the real parts of s and t must be inside the big black-framed trian-

gle in figure 7. A closer look shows that some the summands in (C.3) have smaller domains.

Imposing positivity of the rest of the Gamma functions in each term shows that there are

four types of domains: the red {(2, 4), (4, 2), (4, 4)}, green {(2, 2), (4, 0), (4, 2)} and orange

{(0, 4), (2, 2), (2, 4)} triangles of size two (where by size we mean the length of its projection

onto the ℜ(s) axis or ℜ(t) axis) and the bigger grey triangle {(0, 4), (4, 0), (4, 4)} of size four.

Now we take a look at the other form of the result where it has been split into two parts,

Gconn = Gfree,conn +RH . (C.4)
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Figure 7. The fundamental domains for the “unmassaged” supergravity result.

The factor R was introduced before and we repeat here for reader’s convenience,

R = τ1 + (1− σ − τ)V + (−τ − στ + τ2)U + (σ2 − σ − στ)UV + σV 2 + στU2 . (C.5)

The first term Gfree,conn is the connected free field four-point function, which can be com-

puted by Wick contractions,

Gfree,conn =
4

N2

U

V
(τ + V σ + Uστ) . (C.6)

The function H was obtained in [89],

H = −
4

N2
U2D̄2422 . (C.7)

We write H as an inverse Mellin transform,

H=−
4

N2
×
1

4

∫

C
dsdtU s/2V t/2−2Γ

[
2−

s

2

]
Γ
[
1−

s

2

]
Γ

[
2−

t

2

]
Γ

[
1−

t

2

]
Γ

[
s+t

2
−1

]
Γ

[
s+t

2

]
,

(C.8)

where C is associated with a point inside the fundamental domain

(s0, t0) ∈ D = {(s0, t0)|ℜ(s) < 2,ℜ(t) < 2,ℜ(s) + ℜ(t) > 2} , (C.9)

represented by the yellow size-two triangle in figure 8. When multiplied by R, this domain

will lead to six different domains generated by the six different shifts in R, namely, 1, U ,

V , UV , U2, V 2. They are the six colored triangles28 in figure 8.

Having stated the results for the two sides of (C.4) (the “unmassaged” lhs, whose

Mellin transform is given by (C.3), and the “massaged” rhs, where the Mellin transform

28In addition to the previously defined red, green, orange triangles, there are also size-two pink

{(0, 6), (2, 4), (2, 6)}, yellow {(0, 2), (2, 0), (2, 2)} and blue {(4, 2), (6, 0), (6, 2)} triangles.
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Figure 8. The fundamental domains for the Mellin transform of RH.

of H is given by (C.8)), we will now try to match them. Compared to the supergravity

answer, there are three more size-two triangles on the right side. They are in the colors of

yellow, pink and blue, and are respectively due to the shifts caused by the terms τ , V 2σ

and U2στ . Using the regularization procedure we introduced in section 4.5, they can be

eliminated by combining with terms from the other triangles that we want to keep. Let us

now describe in detail how this can be done.

We first pay attention to the terms multiplied by τ in R. We will combine it with

terms multiplied by −τV and −τU from R. Naively the three shifted domains will not

overlap. Under the regularization, these three domains grow a small overlap and allows us

to add the integrands once the contours have all been moved there

τ(1−V −U)H=−τ
4

N2
×
1

4

∫

C(2,2),ǫ

dsdtU s/2V t/2−2×

[
st−4

2
+
s+t−3

2
ǫ+

ǫ2

4

]

×Γ
[
2−

s

2

]
Γ
[
1−

s

2

]
Γ

[
2−

t

2

]
Γ

[
1−

t

2

]
Γ

[
s+t+ǫ

2
−2

]
Γ

[
s+t+ǫ

2
−1

]
.

(C.10)

Here C(2,2),ǫ denotes that we put the contour inside the size-ǫ triangle (not shown in the

picture) at (2, 2) shared by these three triangles. We now analyze the terms in this integral.

The ǫ1 term is the same integral as the one that we have encountered in the proof of

the identity. It is evaluated to give

− τ
4

N2
UV −1 . (C.11)

The ǫ2 term is easily seen to be zero. For the ǫ0 term, we rewrite it as

st− 4

2
=

1

2
(s− 2)(t− 2) + (s− 2) + (t− 2) . (C.12)

The point of this rewriting is that these zeros of (s−2) and (t−2) will cancel the same poles

in the Gamma functions, such that one is allowed to “open up the boundaries” to enter a
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bigger domain. For example, consider the above term (s − 2). Its contour was originally

placed at the size-ǫ domain at (2, 2) but now it can be moved into size-two green triangle

because (s − 2) cancels the simple pole at s = 2 from Γ[1 − s
2 ]. Similarly the domain of

the 1
2(s− 2)(t− 2) term can be extended to the size-four grey triangle and the (t− 2) term

extended to the size-two orange triangle with the same reason.

On the other hand, for the σV 2 triangle, we will combine it into σ(−V + V 2 −UV )H.

The goal of splitting the O(ǫ0) term here is to open up the boundaries into the orange, red

and grey triangle and from the ǫ1 term one will get a monomial −σ 4
N2U . For the στU2

triangle, one combines into στ(−U + U2 − UV )H. The ǫ term from the rewriting gener-

ates a monomial −στ 4
N2U

2V −1. Already, collecting these monomials, one get −Gfree,conn,

canceling precisely the free field part in the split formula.

To carry out the rest of the check, it is simplest to check by gathering terms with the

same R-symmetry monomial. In the p = 2 case one has six R-symmetry monomials and one

can divide them into two groups: first check 1, σ2 and τ2, then τ , σ, στ . In fact, checking

just one term in each class is enough, because both the supergravity result and the result

written in a split form have crossing symmetry. These two classes of monomials form two

orbits under the S3 crossing symmetry group. One will need also to use the above trick

of using zeros to open up boundaries (or the opposite, use poles to close). But the here

one will find it is only necessary to shrink or expand between the size-four grey triangle

and a size-two orange, red, green triangles. Because the manipulation is from a finite-size

domain to another finite-size domain, the contour will always have room to escape and one

will never get additional terms from the “domain-pinching” mechanism. We performed

this explicit check and found a perfect match.

D The p = 3, 4, 5 results from the position space method

p = 3. The p = 3 computation is very similar to the p = 2 case. In total there are 6

exchange diagrams in the s-channel. They include the full k = 2 multiplet s2, A2, ϕ2 and 3

fields s4, A4, ϕ4 from the k = 4 multiplet. We have the following ansatz for the s-channel

exchange amplitude

As−channel = λs2As2 + λA2AA2 + λϕ2Aϕ2 + λs4As4 + λA4AA4 + λϕ4Aϕ4 +Acontact (D.1)

where

Acontact =


 ∑

0≤a+b≤3

cabσ
aτ b


 3π2U2

8
(9D̄3333 − 8UD̄4433) . (D.2)

Note here Afield contains in it R-symmetry polynomial Ynm and the exchange formulae as

sum of D̄-functions can be found in appendix A.
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Imposing the superconformal Ward identity, we get the following solution

λs2 =
384

π2N2
, λA2 = −

72

π2N2
, λϕ2 =

8

π2N2
,

λs4 =
1152

5π2N2
, λA4 = −

144

5π2N2
, λϕ4 =

2

π2N2
,

c00 =
8

π2N2
, c01 = −

26

π2N2
, c02 = −

26

π2N2
,

c03 =
8

π2N2
c11 = −

192

π2N2
, c12 = −

20

π2N2
.

(D.3)

p = 4. p = 4 is special in that we cannot use two-derivative contact vertices to absorb

the contribution of zero-derivative ones by redefinition the parameters. So in this case we

must include both types of contributions in the ansatz. The s-channel ansatz is given by

As−channel = λs2As2 + λA2AA2 + λϕ2Aϕ2

+ λs4As4 + λA4AA4 + λϕ4Aϕ4 + λC4AC4 + λφ4Aφ4

+ λs6As6 + λA6AA6 + λϕ6Aϕ6

+Acontact

(D.4)

where

Acontact=


 ∑

0≤a+b≤4

cabσ
aτ b


 5π2U2

216
(4D̄4444−3UD̄5544)+


 ∑

0≤a+b≤4

c′abσ
aτ b


 5π2U2

108
D̄4444.

(D.5)

The superconformal Ward identity is expected not to fix all the coefficients because we

know certain crossing symmetric choice of the two-derivative contact coupling will give

a zero contribution. As it turned out, all these unsolved coefficients are multiplied by a

common factor

− 8D̄4444 + D̄4455 + D̄4545 + V D̄4554 + D̄5445 + D̄5454 + UD̄5544 (D.6)

which is identically zero by D̄-identities. These coefficients can be set to zero at our

convenience.

The solution is

λs2 =
3456

π2N2
, λA2 = −

384

π2N2
, λϕ2 =

18

π2N2
,

λs4 =
18432

5π2N2
, λA4 = −

1728

5π2N2
, λϕ4 =

288

25π2N2
, λC4 = −

192

25π2N2
, λφ4 =

576

5π2N2
,

λs6 =
15552

35π2N2
, λA6 = −

5184

175π2N2
, λϕ6 =

18

25π2N2
,

c12 =
1728

5π2N2
, c13 =

576

5π2N2
, c22 =

2304

5π2N2
,

c′04 =
216

5π2N2
, c′12 = −

16848

5π2N2
, c′13 →

576

5π2N2
, c′22 = −

8928

5π2N2
(D.7)

with all the other unlisted coefficients being zero.
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p = 5. The computation of p = 5 is similar to that of p = 2 and p = 3. The ansatz is

given by

As−channel = λs2As2 + λA2AA2 + λϕ2Aϕ2

+ λs4As4 + λA4AA4 + λϕ4Aϕ4 + λC4AC4 + λφ4Aφ4 + λt4At4

+ λs6As6 + λA6AA6 + λϕ6Aϕ6 + λC6AC6 + λφ6Aφ6

+ λs8As8 + λA8AA8 + λϕ8Aϕ8

+Acontact ,

(D.8)

where

Acontact =


 ∑

0≤a+b≤5

cabσ
aτ b


 7π2U2

11520
(25D̄5555 − 16UD̄6655) . (D.9)

The solution to this case is

λs2 =
51200

3π2N2
, λA2 =−

4000

3π2N2
, λϕ2 =

32

π2N2
,

λs4 =
23040

π2N2
, λA4 =−

1728

π2N2
, λϕ4 =

32

π2N2
, λC4 =−

320

3π2N2
, λφ4 =

9216

5π2N2
,

λt4 =
512

15π2N2
,

λs6 =
248832

35π2N2
, λA6 =−

2880

7π2N2
, λϕ6 =

288

49π2N2
, λC6 =−

288

49π2N2
, λφ6 =

4608

35π2N2
,

λs8 =
20480

63π2N2
, λA8 =−

6400

441π2N2
, λϕ8 =

8

49π2N2
,

c00=−
1600

7π2N2
, c01=−

15800

7π2N2
, c02=

67400

7π2N2
, c03=

67400

7π2N2
,

c04=−
15800

7π2N2
, c05=−

1600

7π2N2
, c11=

176000

7π2N2
, c12=

941400

7π2N2
,

c13=
184000

7π2N2
, c14=−

14800

7π2N2
, c22=

968400

7π2N2
, c00=

76400

7π2N2
. (D.10)
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