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Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers
cascades, chemical reactions, and opinion formation. However, in many situations the formation of a
coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the
root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose
the use of contrarians to suppress undesired synchronization. We perform a comparative study of different
strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local
information. Our results also reveal that, even when the distribution of neighboring interactions is narrow,
significant improvement is observed when contrarians sit at the highly connected elements. The same
qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of
the Internet and a neuronal network.

n the year 2000, Londoners were presented with the Millennium Bridge, a futuristic footbridge that became the

center of attention on the inauguration day. The elbowing of the crowd, eager to be the first to cross it, forced

the synchronization of walkers causing a lateral swing of the structure'. Once on this wobbly structure, how
could one avoid such uncomfortable situation? Abnormal synchronization is also the origin of neurological
diseases such as epilepsy and Parkinson®. Brain pacemakers have been developed and implanted in the patient
to discharge an electrical signal into the brain tissue and restore the normal activity’~>. But imagine a, still to
develop, device able to interact with individual neurons. What would be the best strategy to break the synchron-
ization? A third source of inspiration can be found in the Internet, where several interconnected Routers receive
and redistribute the information packages in the network. When multiple Routers synchronize their delivering
events, the network collapses, a dysfunction known as TCP global synchronization. To avoid it, several algorithms
have been developed and implemented in some Routers®. What is the fraction of such proactive Routers required
to avoid global synchronization? In social context, avoiding synchronization might represent a political tool to
fight a charismatic leader. Consider a speech that inflames a crowd. Initially every individual claps at his/her own
rhythm but rapidly a coherent clap emerges”. If a set of political adversaries (contrarians) try to destroy the
harmony, what would be the best strategy, the proper amount of contrarians, and their spatial distribution in the
hall?

The Kuramoto model has extensively been used as the paradigm to study synchronization® . In a first attempt
to address the questions raised above, we generalize this well-established model to include contrarians which try
to suppress the emergence of global synchronization. We present a systematic study of how the synchronizability
depends on the fraction of contrarian oscillators for two different strategies and analyze the influence of the
topology in the mitigation process. To illustrate our results, contrarian oscillators have been studied in silico for
two real networks, namely, the Routers that compose the Internet'” and the network of neurons of the organism
C. elegans'>". Our results suggest that local contrarians can be used as a powerful way to control synchronization,
avoiding the necessity of monitoring the global state. Moreover, spreading contrarians as hubs is also much more
effective.

The described examples are characterized by a set of N oscillators (walkers, neurons, Routers, or spectators),
mutually interacting. Hereafter we take the example of the walkers but the model can be straightforwardly
extended to all other cases. The stepping of each walker i is characterized by the phase 0,(f) and its natural
frequency w;, corresponding to the stepping frequency when isolated. When the crowd moves, all walkers initially
step at their natural frequency but herding (under strong coupling) rapidly leads to coherent walking'. In the
Kuramoto model, the motion of each oscillator is described by a phasor ¢ where 0,(¢) is the phase, and the
coupling between walkers is such that the dynamics of each is governed by,
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where the sum is over all other walkers (i # j), 4 is the coupling
strength, ; is the walker’s natural frequency, and A is the connec-
tivity matrix such that A;; = 1 if walker i is influenced by walker j or
zero otherwise. The collective walking can be characterized by the
complex order parameter defined as,
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where the sum is over all walkers, the amplitude 0 = |r(f)| = 1
measures the global coherence, and ¥(#) is the average phase.

To account for contrarians we introduce a second population of N,
walkers also coupled with the others but following a different
dynamics. A contrarian k is also characterized by the phase 0(t)
and its natural frequency w;. We consider two types of coupling: a
mean-field (Model A) and a pairwise (Model B). In the mean-field
coupling the dynamics of contrarians is governed by,

O =p+ 1 sin(W — 0y —9), (3)

where P(¢) is the average phase and 6 is a phase shift. In the pairwise
coupling the dynamics of contrarians is governed by,
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where the sum is over all the Ny walkers (N = N + N.). Hereafter,
we take § = 7 in both cases. Such phase shift between two walkers
(k and j) would correspond to a walking such that when k steps with
the left foot j steps with the right. It is noteworthy that these two
models yield different types of frustration. While in Model A frus-
tration between regular and contrarian walkers is mediated by the
average phase, in Model B the frustration results from a pairwise
interaction between regular and contrarian walkers where the former
attempts to mutually synchronize while the latter tries to dephase.

Two models accounting for frustration in the mean-field
Kuramoto model have recently been discussed in the context of a
mixture of positive and negative couplings. Zannette' considered a
pairwise coupling where the strength and sign of the interaction
between two oscillators is symmetric. This model, in the limit
o, = 0, is equivalent to a magnetic XY model with a distribution
of couplings. Hong and Strogatz proposed a different scheme, where
regular walkers are also solely coupled with the average phase ¥'(f)
and the spatial distribution of regular walkers is not considered'®".
This model is similar to the mean-field limit of Model A discussed
here. In contrast to the model discussed here, synchronization can-
not be suppressed in any of these previous models.

Results

In the absence of contrarians, the classical Kuramoto model is char-
acterized by the emergence of synchronization at a critical coupling
/. which depends on the distribution of natural frequencies (®) and
on the degree. While under weak coupling (4 < 4,) the motion is
incoherent (r = 0), above the critical coupling a coherent motion
emerges (r > 0). In the limit of very strong coupling (4 > 1.) all
oscillators participate in the coherent motion.

The presence of contrarians can affect the coherent motion. In
Figure 1, different fractions p = N,/N of contrarian oscillators are
considered in the mean-field (A) and pairwise (B) models. While
mean-field contrarians are not able to reduce the value of , a fraction
as small as 5% of pairwise contrarians is enough to significantly
reduce the synchronizability. Further investigation shows that,
although contrarians enable the system to desynchronize, meanfield

Figure 1 | Comparison between mean-field and pairwise coupling.
Dependence of the order parameter r on the coupling strength 4, for the
mean-field (A) and the pairwise (B) couplings. Different curves stand for
different fractions of contrarians p randomly distributed in a random
graph with average degree equal to four.

contrarians drive the system to a polarized state, where oscillators are
concentrated around two phases: —n and 7. It is possible to under-
stand this splitting through the analysis of the stable point (given by
0 =0) for contrarians in the mean-field model, yielding

A Sin((D—()k—TE)= — k. (5)

Assuming that oy is symmetrically distributed around zero, this
equation shows that the difference between the phase of contrarians
and the average phase must be equal to . Thus, contrarians have a
tendency towards the extremes of the possible phases, dragging their
conformist neighbors in the process. Hence, mean-field contrarians
introduce differences in the dynamic behavior of oscillators by polar-
izing them in two distinct phases (see Supplementary Fig. S1).

For the pairwise (B) contrarians, the emergence of a coherent state
is suppressed above a certain fraction of contrarians (Figure 2). We
notice that synchronization is suppressed for values of p > 0.15, as
shown by the peak in the standard-deviation of r in the inset of
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Figure 2 | Impact of pairwise contrarians on the synchronization.
Order parameter r dependence on the fraction of contrarians p showing
suppression of synchronization. Different curves stand for different
network sizes. The inset contains a plot of the standard deviation of

r among samples showing a transition around p = 0.15. A coupling
strength of 4 = 2.0 has been used.
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Figure 3 | Time dependence of the phase. Upper part: Snapshot of a network of 200 oscillators at 4 different time steps (vertical dashed lines in the lower
part). A total of 20 pairwise contrarians are displayed in the central layer. Each concentric layer i, from inside to outside, contains the ith neighbors of the
contrarians. The color of each node represents its phase. Lower part: Time dependence of the average phase of contrarians (red squares), conformists
(blue triangles), and the whole set of oscillators (black circles) showing a periodic oscillation over time.

Figure 2. The peak increases with the network size. For small values
of p synchronization is maintained, r > 0, as conformists synchron-
ize their phases with each other and the small fraction of contrarians
dephase from their neighbors without destroying global synchron-
ization. In this situation, the average phase of contrarians and con-
formists create a periodic alternating wave over time, an interesting
mechanism that resembles, for instance, the oscillation of popula-
tions of predators and preys which characterizes the classical Lotka-
Volterra model'®. Figure 3 shows an example where contrarians (the
central layer of the networks in the upper part) are in opposition to
their first neighbors conformists, which in turn try to synchronize
with them. The sequence of networks in the figure are snapshots of
the oscillators and their phase over time. Before all conformists could
match their phases with contrarians, the latter already have an
opposite phase. The periodic wave that conformists and contrarians
create is clear in the lower part of Figure 3 which shows the average
phase of different types of oscillators.

As the fraction of contrarians overcomes a certain threshold, the
effect of contrarians spreads over the entire network completely
suppressing global synchronization. This suppression is a con-
sequence of an increasing fraction of contrarian/contrarian interac-
tions, which naturally tend to be dephased, reinforcing their impact.
For p > 0.15, neither synchronization (r = 0) nor a periodic wave is
observed (see Supplementary Fig. S2).
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The phenomenon of synchronization is known to result from the
interplay between the network topology and the dynamics of oscil-
lators'**°. We discuss now the improvement in the desynchroniza-
tion efficiency by distributing the contrarians among the oscillators
(nodes) with higher degree and compare this strategy with the ran-
dom distribution case discussed above.

We start considering the case of a random graph (Erdds-Rényi
(ER) network), characterized by a Poisson distribution of degree. As
shown in the Supplementary Fig. S3, in spite of the narrow degree
distribution, the fraction of contrarians necessary to reduce syn-
chronization is reduced to one third (p = 0.05) when contrarians
sit at the nodes with higher degree. In this case, the disturbing effect
of contrarians occurs even for smaller fractions p and synchroniza-
tion is efficiently suppressed. In scale-free networks, where degree
distribution is scale free, and highly connected nodes are more fre-
quent, the assignment of hubs as contrarians favors desynchroniza-
tion (see Supplementary Fig. S4).

In real networks, the presence of communities and other features,
such as assortativity and clustering, also play a role in synchroniza-
tion®"**. Here we consider two real networks and show that the same
behavior holds (see Figure 4). The first one is the network of Routers
in the Internet. This network is believed to have grown through the
mechanism of preferential attachment, being characterized by a
scale-free degree distribution of exponent y = 3.00%. Moreover, it

Figure 4 | Pairwise contrarians on real networks. Fraction of contrarian oscillators randomly assigned and based on the degree for different networks:
(a) the Routers of the Internet, (b) neurons on C. elegans. The insets are snapshots of the referred networks where each concentric layer i, from inside to
outside, contains the ith neighbors of the contrarians. The color of each node represents its type: contrarians (green) and conformists (yellow). A coupling

strength of 2 = 4.0 has been used.
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has been shown to have a hub dominant structure, where many hubs
share low degree neighbors®. In this case, similarly to scale-free net-
works, hubs play a major role in the synchronization, and only 10%
of them are necessary to suppress synchronization. Highly connected
contrarians have a disordering effect on a great number of confor-
mists and a few hubs control the phase of the entire set of oscillators.
The second one is the neuronal network of the organism C. elegans, a
Small-World network and the largest network of neurons that has
been totally mapped®. There, random or degree-based distribution
of contrarians suppress synchronization, although the network
seems to be more resilient to such control than ER networks. The
presence of functional communities of neurons that are highly con-
nected within themselves might be the cause of this resistance®. It is
interesting to note that this biological system, evolved under evolu-
tionary pressure, has converged to a resilient structure regarding
synchronization.

Discussion

The use of agents to control the dynamics of a network has recently
been a subject of research interest*”**. In this work, we have shown
that global synchronization can be suppressed with local agents (con-
trarians) which systematically dephase from their nearest neighbors.
We show that solely local information is required to efficiently avoid
a coherent oscillatory state. If instead, global information is consid-
ered, the set of oscillators splits into two oscillatory states with dif-
ferent phases and a global coherent state is still possible. Analyzing
the impact of the network topology in desynchronization we con-
cluded that, when contrarians sit at the nodes of higher degree, the
process is more efficient than in the random case. Even with random
graphs, characterized by a narrow degree distribution, the degree
strategy reduces to one third the amount of required contrarians to
suppress synchronization. We also show that the synchronization of
real networks that present underlying features such as communities
and dominant hubs is also suppressed with the use of contrarians.

The present work is the first attempt to understand the interplay
between the desynchronization dynamics and the topology when
considered to mimic real systems. The Kuramoto model provides a
standard framework to study synchronization, however it entails
several approximations when discussing real networks. For example,
social systems are composed of adaptive agents that might change
their strategy over time and avoid being trapped in a locked state.
Developments build up on top of this work should account for fur-
ther details on the coupling scheme and on the contrarian dynamics.
For instance, here we have focused on the distribution of contrarians,
but recent works have shown that rewiring interventions, such as
swapping, adding, or removing edges, have a crucial role in the
collective dynamics***. Nevertheless, general conclusions can be
drawn shedding light on the problems discussed in the introduction.
For instance, as referred, some Routers on the Internet have a special
algorithm implemented to avoid synchronization. We have shown
that placing contrarian Routers as hubs on the network could optim-
ize the fraction of proactive Routers necessary to prevent global
synchronization. Also, modifying the coupling mechanism between
two Routers and the contrarian strategy implemented, it becomes
possible to extend our work to define the best location of contrarians
on the Internet.

Regarding the development of brain pacemakers, our study sug-
gests that a set of small size devices spread throughout the brain, and
solely tracking the phase of neighboring neurons, would be more
effective to prevent a seizure than monitoring the global state.
After the mapping of a neural network™, and the characterization
of the coupling dynamics between neurons, our work also gives
helpful hints about the minimum amount and the optimal spatial
distribution of these active devices.

Interesting applications could also be found in social dynamics.
Whenever a “social synchronization” is achieved, such as clapping

after a speech, a small amount of influential agents can be trained to
prevent this synchronization. Political opponents could be spread in
the crowd to avoid a proper salutation simply by “dephasing” their
claps with their close neighbors. The same method might be used to
prevent a synchronized walk on a bridge where instructed actors
could walk dephased from others. Evidently crowd behavior control
is a very hard task™, but here we show that it could theoretically be
achieved.

Methods

Equations 1, 3, and 4 have been numerically solved using a fourth order Runge-Kutta
method with discrete time steps 6t = 0.001. The complex order parameter was
computed in the interval t € [90, 100] using the average value of Equation 2. For all
considered cases, natural frequencies of oscillators have been uniformly distributed
between —0.5 and 0.5 and initial phases have also been uniformly distributed between
—m and 7. A coupling strength of 2 = 2.0 has been used. For the Internet and the
C. elegans, natural frequencies and initial phases have been distributed uniformly

between —0.1 and 0.1, and between — T and E, respectively, and a coupling strength
of 2 = 4.0 has been used. 2 2

Networks of oscillators have been constructed as undirected ER networks of
average degree four, unless otherwise stated. The network of Internet Routers has
been analyzed through data retrieved from the Opte Project that represents all the
communication among 40028 Routers on January 15th of 2005". Each node of this
network is a Router with an associated IP address and the links (edges) are established
between two IP address which have communicated at least once. The network of
neurons was constructed through data obtained on the WormWeb website'* and is
mostly based on the work by Chen et al*. In this network, links have been established
whenever an interaction between neurons has been registered, regardless of their type
or direction. Other measures regarding these networks are available in
Supplementary Table S1.

All results have been averaged over several samples. The error bars were omitted in
all figures, being smaller than the symbols. For the Internet and the C. elegans only the
natural frequencies and initial phases change among samples. Plots in Figure 1 are
constructed using the average value over 100 networks of size N = 1000. Figure 2
shows averages of 5000 networks of size N = 1000, 1000 networks of size N = 5000,
and 600 networks of size N = 10000. In Figure 3, we represent a single network of N =
200 with p = 0.1 and 4 = 1.0. For Figure 4, plot (a) is an average over 200 initial
distributions of phases and frequencies, and plot (b) is an average over 10.
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