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Abstract Bioinformatics is the application of computational,
mathematical and statistical techniques to solve problems in
biology and medicine. Bioinformatics programs developed
for computational simulation and large-scale data analysis
are widely used in almost all areas of biophysics. The appro-
priate choice of algorithms and correct implementation of the-
se algorithms are critical for obtaining reliable computational
results. Nonetheless, it is often very difficult to systematically
test these programs as it is often hard to verify the correctness
of the output, and to effectively generate failure-revealing test
cases. Software testing is an important process of verification
and validation of scientific software, but very few studies have
directly dealt with the issues of bioinformatics software test-
ing. In this work, we review important concepts and state-of-
the-art methods in the field of software testing. We also dis-
cuss recent reports on adapting and implementing software
testing methodologies in the bioinformatics field, with specific
examples drawn from systems biology and genomic
medicine.

Keywords Software testing . Bioinformatics . Quality
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Introduction

Nowadays, the use of computer programs is pervasive in
many areas of biomedical sciences, especially in biophysics,
genomics, proteomics, biotechnology and medicine. Rapid
accumulation of high-throughput datasets and an increasing
focus on systems-level biological modelling increase the size
and complexity of bioinformatics programs. This poses a great
challenge in developing a good testing strategy to ensure the
reliability of the design and implementation of these programs
(Chen et al. 2009).

Nonetheless, the mechanism of scrutinising the software
implementation of these programs is often far less comprehen-
sive than the rigorous peer review process of the research
articles that describe the programs’ applications (Check
Hayden 2015). The potentially widespread problem of errors
or misuses of scientific computing in biology and medicine is
highlighted by recent news and commentary articles in top-tier
journals such asNature and Science (Joppa et al. 2013; Merali
2010), and the problem could be attributed to a lack of proper
software verification and validation (Alden and Read 2013;
Check Hayden 2013). Incorrect computed results may lead to
wrong biological conclusions and may misguide downstream
experiments. In some cases, it may lead to retraction of scien-
tific papers (Check Hayden 2015).

This problem is especially critical if these programs are to
be used in a translational clinical setting, such as the analysis
of whole genome sequencing data for identifying genetic var-
iants in a patient’s DNA sample. In a genetic variant calling
pipeline, one must have high confidence that the resulting
variant calls have high sensitivity and specificity. A recent
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comparison of five commonly used variant-calling pipelines
demonstrates that the overall concordance of the variant calls
was low (only 57.4 % for single nucleotide variants and
26.8 % for indels were concordant across the tested pipelines)
(O’Rawe et al. 2013). The study found that a large portion of
pipeline-specific variant calls could be validated by indepen-
dent means, suggesting that each pipelinemay bemissing a lot
of genuine genetic variants. This is particularly troubling,
since although false positive variant calls can be distinguished
from true positives through external validation, it is almost
impossible to systematically distinguish false negatives from
the vast amount of true negatives.

Besides variant calling, the use of different variant annota-
tion programs and transcript annotation files can also make a
substantial difference in annotation results that are not
commonly appreciated. McCarthy et al. (2014) recently ex-
amined the effect of using different transcript annotations and
different variant annotation programs. They found that a non-
trivial proportion of variants were annotated differently due to
the use of different transcript annotations, or different pro-
grams. These troubling reports highlight the need to ensure
that bioinformatics pipelines are subjected to better verifica-
tion and validation.

Software testing is an important step towards developing
high quality software. It has been challenging for software
developers, especially for developers of scientific software.
In a recent survey of nearly 2000 scientists, it was found that
in the past five years 45% of scientists spent more time devel-
oping software. Nonetheless, less than half of them had a good
understanding of software testing (Hannay et al. 2009; Merali
2010). Performing proper software testing can be a time-
consuming task, accounting for up to 50 % of the total soft-
ware development time (Myers et al. 2011). Therefore, it is
especially important to make sure we use effective and sys-
tematic software testing strategies.

Many efficient software testing concepts and techniques
have been developed over the years (Myers et al. 2011).
Recently, some groups, including ours, are beginning to adopt
state-of-the-art software testing techniques to test scientific
software (Baxter et al. 2006; Murphy et al. 2009a), including
bioinformatics software (Chen et al. 2009). This review begins
by outlining several key concepts in software testing, followed
by discussing state-of-the-art testing techniques. Furthermore,
we review recent case studies that have applied various soft-
ware test strategies to verify or validate bioinformatics
software.

Software testing definitions and concepts

Software testing is the process of actively identifying potential
faults in a computer program. Software testing can be static or
dynamic. Static testing involves code review or inspection,

whereas dynamic testing involves execution of the Program
Under Test (PUT) using a given set of test cases. The rest of
the review focuses on techniques for dynamic software test-
ing. In dynamic software testing, the PUT can be thought
of as implementation of a (mathematical or computation-
al) function f(x) = y where x represents all valid input
from the input domain and y represents all possible out-
puts. The goal of verification is to show that for a given
implementation fPUT of PUT, fPUT(x) = f(x) for all possible
x from the input domain. An input, xfailure is a failure-
causing input if fPUT(xfailure) ≠ f(xfailure), and the PUT is
deemed to contain a failure. A failure reveals an underly-
ing fault in the implementation of the program, which in
turn is a manifestation of an error introduced by the pro-
grammer (Lanubile et al. 1998). Common terminologies
used in the software testing field are summarised in
Table 1.

A PUT may fail because of incorrect implementation
of the algorithm (i.e., the verification problem), or a mis-
match between the algorithm and the intended behaviour
(i.e., the validation problem). In other words, verification
asks, BAre we building the software right?^ whereas val-
idation seeks to answer, BAre we building the right
software?^ In addition to the limitations of the algorithm
and implementation, failure can also be caused by incor-
rect expectations of the intended use of a program (Joppa
et al. 2013), and runtime hardware or system failure. For
the rest of this review, we mainly focus on methods that
test the limitations of the implementation of the program,
i.e., verification, but some ideas can be extended to val-
idation as well.

Why is bioinformatics software testing difficult?

There are two main challenges in testing scientific software,
especially bioinformatics software: the oracle problem and the
test case selection problem.

The oracle problem

In dynamic software testing, an oracle is a mechanism that
decides if the output of the PUT is correct given any possible
input. This mechanism is most useful if it is computationally
simpler than the algorithm of the PUT. For example, for a
program that implements a sorting algorithm with complexity
ofO(nlogn) for sorting n numbers, a possible oracle is to use a
simpleO(n) algorithm that traverses through the output sorted
sequence to check the condition: the number in the (i+1)th

position is always greater or equal to the number in the ith

position. When such a test oracle exists, we can apply a large
number and variety of test cases to test the PUT since the
correctness of the output can be verified using the oracle.
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Without a tangible oracle, the choice of test cases is greatly
limited to those special test cases where the expected outputs
are known or there exists a way to easily verify the correctness
of the testing results. In particular, an oracle problem is said to
exist when: (1) Bthere does not exist an oracle^ or (2) Bit is
theoretically possible, but practically too difficult to determine
the correct output^ (Chen et al. 2003; Weyuker 1982). The
existence of a practical oracle is essential when performing
systematic program testing. Many bioinformatics programs
suffer from the oracle problem since they often deal with large
input and output data, and implement complex algorithms.

Consider the situation of the molecular dynamic simulator or
a short read sequence aligner. In both cases, the correctness of
the output is very hard to verify.

The test case selection problem

In dynamic software testing, the main approach is to execute a
set of test cases. If a failure is detected after executing a test
case, a fault is identified. However, not all test cases can trig-
ger a failure even if the PUT contains one or more faults.
Therefore, an effective software testing strategy often aims

Table 1 Definition of commonly used terms in software testing

Key term Definition

Validation BThe process of evaluating a system or component during or at the end of the development process to determine
whether it satisfies specified requirements.^ (IEEE 1990)

Verification BThe process of evaluating a system or component to determine whether the products of given development
phase satisfy the conditions imposed at the start of that phase.^ (IEEE 1990)

Quality control BA set of activities designed to evaluate the quality of developed or manufactured products.^ (IEEE 1990)

Quality assurance BA planned and systematic pattern of all actions necessary to provide adequate confidence that an item or
product conforms to established technical requirements.^ (IEEE 1990)

Test case BA set of test inputs, execution conditions, and expected results developed for a particular objective, such as to
exercise a particular program path or to verify compliance with a specific requirement.^ (IEEE 1990)

Test suite BA set of several test cases for a component or system under test, where the post condition of one test is often
used as the precondition for the next one.^ (ISTQB 2015)

Test reliability BA set of test data T for a program P is reliable if it reveals that P contains an error whenever P is incorrect. It is important to
note that it has been proven that there is no testing strategy that can check the reliability of all programs.^
(Howden 1976)

Regression testing BTesting of a previously tested program following modification to ensure that defects have not been introduced
or uncovered in unchanged areas of the software, as a result of the changes made. It is performed when the
software or its environment is changed.^ (ISTQB 2015)

Oracle BA mechanism, which can systematically verify the correctness of a test result for any given test case.^
(Liu et al. 2014)

Test oracle problem BThe oracle problem occurs when either an oracle does not exist, or exists but is too expensive to be used.^
(Liu et al. 2014)

Black-box testing BTesting that ignores the internal mechanism of a system or component and focuses solely on the outputs
generated in response to selected inputs and execution conditions.^ (IEEE 1990)

White-box testing BTesting that takes into account the internal mechanism of a system or component. Types include branch
testing, path testing, statement testing.^ (IEEE 1990)

Test coverage BThe degree to which a given test or set of tests addresses all specified requirements for a given system or
component.^ (IEEE 1990)

Fault BFault – concrete manifestation of an error within the software. One error may cause several faults, and various
errors may cause identical faults.^ (Lanubile et al. 1998)

Error BDefect in the human thought process made while trying to understand given information, solve problems, or to
use methods and tools. In the context of software requirements specifications, an error is a basic
misconception of the actual needs of a user or customer.^ (Lanubile et al. 1998)

Failure BDeparture of the operational software system behavior from user expected requirements. A particular failure
may be caused by several faults and some faults may never cause a failure.^ (Lanubile et al. 1998)

Successful test BA test that cannot reveal any error in the implemented software using given test case.^ (Chen et al. 1998)

Static testing BTesting of a component or system at specification or implementation level without execution of that software,
e.g. reviews or static analysis.^ (ISTQB 2015)

Dynamic testing BTesting that requires the execution of the test item.^ (IEEE 2013)

Majority of these terms are defined in IEEE Standard Glossary 610.12-1990 (IEEE 1990) and International Software Testing Qualification Board
Glossary (ISTQB 2015) and ISO/IEC/IEEE 29119 (IEEE 2013).
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to identify the smallest set of test cases that reveals as many
different faults as possible. A test case is simply an input
drawn from the input space of the software. Many bioinfor-
matics programs have a large input space, and it is often com-
putationally challenging to automatically survey this space
efficiently to identify the most failure-revealing test cases.
This is the test case selection problem. A good software test-
ing methodology often makes use of some knowledge of the
likely position of failure-causing input to select potentially
fault-revealing input as test cases.

Software testing methodologies

Many methods have been developed in the software testing
field. Many of them are designed to address the oracle and the
test case selection problems. In the following sections, we
review several testing methods that are commonly used in
the area of scientific computing, with a focus on their advan-
tages and limitations. This is not an extensive list of methods,
but rather a selection of methods that illustrate important con-
cepts and considerations when developing a software testing
strategy. These methods are illustrated in Fig. 1 and
summarised in Table 2.

Special test case testing

Special test case testing is perhaps the most widely used ap-
proach in software testing. In special test case testing, the
program’s functionality is tested over a predefined set of (in-
put, output) pairs known as the special test cases, which can be
used to verify the correctness of the program. For example, to
test the correctness of the program P that computes sin(x) for
any given x, some values like x = π/2 and x = π/6 can be
considered as special cases since the result of P for these
inputs is well known (1 and 0.5, respectively). Special test
case testing is a useful strategy for performing testing in the
absence of an oracle. The method has the advantages of being
intuitive and easy to implement. Using this approach, any
inconsistency between the program’s output and the expected
output is considered to be a failure, which directly suggests an
underlying fault. Nonetheless, the biggest limitation of the
approach is that the choice of test cases is often very limited,
which prohibits the application of more systematic testing
strategies. It does not solve the oracle problem or the test case
selection problem, but it serves as a good point of reference for
a comparison with other testing methodologies.

N-version programming

In N-version programming (NVP), the correctness of a pro-
gram is checked by comparing the outputs generated by mul-
tiple independent implementations of the same algorithm (or

the same general requirement) against the same set of inputs
(Chen and Avizienis 1978). It is expected that the outputs
obtained from these implementations will be the same for all
test cases. At the end of a test round, a tester can conclude
whether the outputs are concordant or discordant. To increase
the effectiveness of this method, it is recommended that dif-
ferent developers implement these different versions (Chen
and Avizienis 1978; Knight and Leveson 1986). For example
NVP was used to discover the low concordance of variant
calling results produced by five commonly used variant call-
ing pipelines (O’Rawe et al. 2013). Compared to the use of
simple test cases, one major advantage of N-version program-
ming is that it enables any input to be used as a test case. In
other words, this method can perform software testing on the
entire input domain without the need of an oracle. This ap-
proach is readily implementable if multiple versions of the
same program already exist. The main disadvantage of this
approach is that it cannot decide which individual version/
program contains a fault if the outputs of multiple versions
do not agree. Also, this approach is expensive and may not
always be feasible in practice.

Metamorphic testing

Metamorphic testing (MT) alleviates the oracle problem by
using some problem domain-specific properties, namely
metamorphic relationships (MRs), to verify the testing out-
puts. The central idea is that although it is impossible to di-
rectly test the correctness of any given test case, it may be
possible to verify the expected relationships of the outputs
generated bymultiple executions of a program over the source
and follow-up test cases by comparing their corresponding
outputs against the MRs (Chen et al. 1998; Zhou et al.
2004). In other words, MT tests for properties that users ex-
pect of a correct program. If a MR is violated, for any pair of
source and follow-up test cases, the tester reports a failure in
the program. MT has been successfully applied to test many
different types of software, such as numerical programs (Zhou
et al. 2004), embedded software (Kuo et al. 2011), analysis of
feature models (Segura et al. 2010), machine learning
(Murphy et al. 2008; Xie et al. 2011), testing service oriented
applications (Chan et al. 2007), and big data analytics (Otero
and Peter 2015).

A simple and classical example of MT is to test the
correctness of an implementation of a program that com-
putes the sin(x) trigonometric function, using some well-
known mathematical properties of the function as MRs
(Table 3). These MRs express the expected relationships
between outputs from the source test cases (left side of the
equations), and outputs from the follow-up test cases
(right side of the equations). For example, we may design
a source test case of x1 = 1.345. Based on MR2, a possi-
ble follow-up test case is x2 = 1.345 + π. The output of
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the source and follow-up test cases are then compared to
check whether MR2 is satisfied, i.e., sin(x1) = −sin(x2). It
should be noted that this follow-up test case can then be
used as a source test case to generate additional follow-up
test cases, such as x3 = 1.345 + 2π.

As illustrated in the sin(x) example, an MR is used for two
purposes: (1) to generate additional follow-up test cases by
modifying the source input, and (2) to check the relationship

between the outputs produced by the execution of the source
and follow-up test cases. It should be noted that in general
many follow-up test cases can be derived from a single source
test case input based on one MR. It is important to note that
satisfying an MR does not necessarily imply the program is
correct. Nonetheless, violation of an MR does imply the pres-
ence of a fault.

Fig. 1 Comparison of different testing techniques

Table 2 Comparison of advantages and disadvantages of testing techniques

Methodology Test case selection Test case coverage Testing output Requires oracle? Alleviates the oracle.problem?

Special case testing Predefined Limited Faulty/not faulty No No

NVP Input space Input space Concordant/discordant No Yes

RT/ART Random Input space Faulty/not faulty Yes No

MT Based on relationships Nearly all input space Satisfied/not satisfied No Yes

NVP N-version programming; RT random testing; ART adaptive random testing; MT metamorphic testing
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Compared to NVP, MT can directly test an individual pro-
gram without the need to compare to other independently
developed programs. Also, test cases can possibly be drawn
from the entire input space, if there is no special restriction
placed on the MRs. Not all MRs have the same effectiveness
to reveal failures in a program. Recent empirical evidence
suggests that a small number of MRs may be sufficient to
create an effective test, given that the MRs are diverse (Liu
et al. 2014). The main challenge in applying MT for automat-
ed testing includes identification and selection of effective
MRs, and generation of diverse test cases based on the MRs.

Random testing

If an oracle exists or if the correctness of the output can be
evaluated by techniques such as NVP or MT, one can select
any input as a test case. In this case, the main challenge is to
develop a mechanism to select a set of inputs to be used as test
cases—the test case selection problem. The main idea of the
problem is to identify the smallest set of test cases that can
reveal the maximum number of faults in a program.

Arguably, the simplest method for selecting test cases is to
select them randomly from the input space. This is the basic
idea of random testing (RT). This approach starts by identify-
ing the input domain, then randomly samples test cases inde-
pendently from the input domain. These randomly chosen test
cases are then executed by the PUT, and the results are
checked by an oracle or other mechanisms (Hamlet 1994).
RT is perhaps the simplest and most intuitive approach of test
case selection, and it is often used as the ‘reference’ when
investigating the performance of test case selection methods.

The advantage of this approach is that it is much easier to
implement than carefully ‘hand picking’ special test cases. It is
generally quick to generate a large number of random test cases
that cover the input space widely in an automated fashion.
Hook and Kelly (2009) conducted an experiment to compare
the effectiveness of 105 hand-picked test cases and 1,050 ran-
dom test cases from the valid input space. Surprisingly, they
found that randomly picked test cases were more effective than
hand-picked test cases (Gray and Kelly 2010). Their results
suggest that random test case selection, especially when it is
combined with some ‘hand-picked’ test cases, could be an ef-
fective technique for revealing failures (Gray and Kelly 2010).

RT has some limitations. Most notably, this method does not
‘select’ test cases per se. It simply generates test cases randomly
from the input domain. This method does not use any informa-
tion about the program structure, execution path, structure of
the input domain, or knowledge of common faults. Therefore, it
is conceivable that many Bgood^ test cases (such as boundary
conditions) are ignored. One solution suggested to overcome
this issue is to use RT along with other testing methods such as
special case testing and keep track of executions in branches of
the program. Another limitation of this method relates to its
dependency on an oracle to verify the output of program for
random input. Therefore it cannot be used for testing programs
in which a practical oracle does not exist.

Adaptive random testing

Adaptive random testing (ART) is a simple approach that
takes advantage of the simplicity of RT, and incorporates ad-
ditional information about the failure-causing input regions to
minimise the number of test cases required to detect the same
number of failures. The main observation is that failure-
causing inputs are not randomly distributed in the input space,
but are usually clustered together to form distinct failure re-
gions (Chan et al. 1996). Chan et al. (2004) categorised
failure-causing inputs into three types of patterns: block pat-
tern, point pattern and strip pattern (Fig. 2). In block or strip
patterns, all the failure-causing inputs are clustered in one or a
few regions in the input space. In contrast, point pattern con-
sists of possibly many distinct failure-causing inputs that are
scattered across the whole input domain. They found that most
real-life failure-causing inputs in programs form block or strip
patterns, which means failure-causing inputs tend to cluster
together in the input space. The implication is that non-
failure regions are also contiguous; therefore, after the execu-
tion of a non-failure-causing input xi, one should select a ran-
dom test case that is the furthest away from xi in the input
space. This is the basis of ART (Chen et al. 2005, 2010).

The simplest implementation of ART, the fixed size candi-
date set (FSCS) approach, involves first generating a random
set of candidate test cases in the input domain. At first, one test
case is randomly selected for execution. If execution of this
test case does not cause any failure, the candidate test case
which is most different from the executed test cases is selected
for the next execution, and so on. This process continues until
a pre-defined number of failures are discovered or until all the
input test cases have been successfully executed. ART pro-
vides a simple and rational approach to automatically generate
diverse test cases.

Theoretical and empirical studies have shown that ARTcan
be up to 50% more effective than traditional RT in terms of
failure detection ability (Chen and Merkel 2008). The im-
proved effectiveness stems from utilising the knowledge of
the most likely failure-causing patterns of a program. The

Table 3 Metamorphic
relationships for sin(x) MR MT relationship

MR1 sin (x) = sin (x + 2π)

MR2 sin (x) = -sin (x + π)

MR3 sin (x) = −sin (−x)
MR4 sin (x) = sin (π − x)

MR5 sin (x) = sin (x + 4π)
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additional computation involved in selecting the next test
cases can be reduced by various methods, so ART remains a
practical method for performing testing in real life (Chen et al.
2010). One challenge of ART is that it requires a meaningful
distance metric to be defined in the input space, which may be
non-trivial for programs that take non-numerical inputs.

In vivo testing: continuous software testing
in an operational environment

In vivo testing has been introduced to perform software testing
not only at the testing stage of the software development cy-
cle, but also in the software deployment stage when the pro-
gram is being executed in its operational environment (Chu
et al. 2008; Murphy et al. 2009b). Since not all faults can be
revealed using test cases in the software development stage,
concurrent software testing on user input data while the soft-
ware instance is running on the users’machines is an effective
solution to detect more hidden faults. Similarly, in bioinfor-
matics software, testers might not be familiar with some spe-
cific uses of the bioinformatics programs and their test cases
may not identify all test faults in the software correctly.

In this method, the code for executing the test cases is
embedded inside the main source code of the program.
Therefore, testing is executed in parallel to the execution of
the real input from the users in an independent duplicated
environment (Murphy et al. 2009b). This feature allows soft-
ware testers to test their program using real inputs as test cases
under realistic parameters and hardware environments. In vivo
testing has three main advantages. Firstly, it can detect faults

that may otherwise be hard to detect in a ‘clean state’ in a
testing environment. Secondly, in vivo testing can guarantee
that the testing process will be continued even after the soft-
ware is released. Finally, inputs collected from the real world
scenarios have a better chance of revealing faults than ran-
domly chosen inputs (Dai et al. 2010).

Cloud-based software testing

The cloud platform is the latest revolution in information tech-
nology which provides on-demand access to a large and scal-
able amount of computing and storage resources without lim-
iting developers to specific hardware restrictions (Parveen and
Tilley 2010). This feature can be beneficial to reduce execu-
tion time of testing, especially in terms of automated software
testing (Riungu-Kalliosaari et al. 2012).

Cloud testing is one of the applications of cloud computing,
and is poised to take software testing to the Bnext level^
(Candea et al. 2010). Testing as a Service (TaaS) is one of
the outcomes of cloud testing that is considered to provide
on-demand software testing activities for given computer pro-
grams based on the cloud infrastructure (Gao et al. 2011).
TaaS can be used for different purposes, such as testing of
Service as a Service (SaaS) applications; testing of the cloud
which provides testing to assure functionality of the cloud
from an external and end-user perspective; testing inside a
cloud, which provides testing cloud infrastructures and the
integrations of different components of cloud along with man-
agement and security testing; and finally testing applications
over a cloud, which provides a service for software developers

Fig. 2 Illustration of different
types of failure-causing input
patterns, with corresponding ex-
ample source codes
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to test specific software applications using the highly scalable
and distributed environment offered by the cloud (Gao et al.
2011).

Cloud-based testing provides several benefits com-
pared to traditional software testing. Firstly, it enables
large-scale and on-demand testing with a large number
and variety of input data using many compute instances
in a short period of time. This facility alleviates the need
to invest in large high-performance computing infrastruc-
ture for testing, and also allows us to request different
hardware or operating system environments for testing,
which enables testing in a realistic situations. Moreover
software testing may need a considerably large amount of
disk space and storage, and an isolated environment to
perform the testing (Parveen and Tilley 2010). For in-
stance, in vivo testing may require independent disks or
virtual machines to execute the program against test cases
with different configurations in parallel without affecting
each other’s program state.

The cloud platform also provides several advantages in
comparison with conventional platforms and systems.
Firstly, it provides an on-demand and online access for users,
which is cost-effective and users will not be charged when
they are not using the resource (Buyya et al. 2009).
Secondly, the cloud can be accessible from anywhere and
enables collaboration between developers and users from dif-
ferent locations. Finally, the cloud is adaptive and scalable;
this means it can provide scalable hardware resources for dif-
ferent tasks that can be helpful to reduce the cost of informa-
tion technology (Leavitt 2009). We anticipate that the next
generation of software testing using TaaS will become more
popular as it provides easier and more comprehensive soft-
ware testing for software developers.

Besides all of the benefits of the cloud, the scalability fea-
ture itself in the cloud can pose a great challenge and an
underestimate of the scale ratio could lead to heavy costs.
This issue could become worse if the scalability ratio for scal-
ing up or reducing hardware resources is incorrectly estimated
with an automated algorithm. Latency of network data transfer
is another issue that reduces the transfer and access speed
during tests. This is due to the nature of remote existence of
cloud. Latency becomes more important when the testing en-
vironment or task depends on another system from a different
region or outside of cloud (Leavitt 2009).

Mutation analysis: evaluation of the effectiveness
of software testing methodologies

Mutation analysis was introduced to quantify the effectiveness
of testing methods (Hamlet 1977). The main idea of mutation
analysis is the generation of mutants by injecting artificial
faults into the program’s source code, which can be compiled

and executed. Mutants are generated using simple syntactic
rules, known as mutation operators. It is important to check
that the mutant can generate different outputs compared to the
original program when given the same inputs. If the mutant
and the original program produce the same outputs given the
same inputs, this mutant is considered as an equivalent mu-
tant. An equivalent mutant may arise due to having the seeded
fault in a section of the program that cannot be reached by the
execution path. The following discussion involves the analy-
sis of non-equivalent mutants. In general, a non-equivalent
mutant should satisfy three characteristics: reachability,
necessity and sufficiency (DeMilli and Offutt 1991).
Reachability means the mutated part of the program should
be accessible in the program flow. Necessity means the mu-
tated part of the program should produce a different internal
state compared to the original version. Finally, sufficiency
means that the error should be propagated to the program
output.

Once a set of non-equivalent mutants is generated, a set of
test cases, generated by a testing methodology, is applied to
test the mutants. We can then determine how many test cases
reveal a fault in the mutants. A mutant that is identified by a
test method to contain a fault is called a killedmutant, whereas
a mutant that is not detected to contain a fault is called an alive
mutant. The proportion of the killed mutants to all non-
equivalent mutations is called the mutation score. The process
of generating mutants can also be either manual or automated
(Jia and Harman 2011), and the process of testing mutants can
be automated.

Applications of software testing in bioinformatics

During our review of the bioinformatics literature, we only
found a few reports that attempt to adopt state-of-the-art soft-
ware testing methods to verify or validate bioinformatics soft-
ware, including reports from the authors of this review. Here
we summarise some of their results.

Biological network simulators

Bergmann and Sauro (2008) performed a comparison of
twelve biological network simulators that are compatible with
Systems BiologyModeling Language (SBML). In their study,
they simulated the same 150 curated SBML models from the
BioModels database using the twelve simulators and com-
pared their results. Their approach is akin to N-version pro-
gramming. They showed that only six packages could return a
result for all their models (all other packages failed to simulate
some of the models). They also observed that among all the
simulators, only two of them had complete agreement with
each other across all models. In a separate study, Evans et al.
(2008) developed a test suite for testing stochastic simulators.
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Their approach is essentially special test case testing—they
evaluated the simulation output from multiple executions,
and checked that the outputs from these distributions fell
within the expected range of values. They showed that this
test suite could be very helpful for simulator developers to test
the correctness of their implementations. Chen et al. (2009)
usedMT to test a gene network simulator, GNLab. They iden-
tified ten MRs for this program. In this study, they found
violation of one MR, which specified that adding a new edge
with zero weight should not affect the simulation results. It
turned out that this problem is due to a mis-specification of the
algorithm.

Sequence alignment programs

Short read sequence alignment programs are popular software
programs in bioinformatics, and are widely used to analyse
next-generation sequencing data. Popular alignment programs
such as BWA (Li and Durbin 2009), BOWTIE and BOWTIE2
(Langmead and Salzberg,2012) are widely used among
bioinformaticians. These programs have been tested and
evaluated using many reference test data by the developers.
In a recent study by Giannoulatou et al. (2014) these sequence
aligner programs were tested using MT. In their approach,
they identified nine MRs. As an example, one of the MRs
stated that random permutation of the input should not affect
the alignment results. Surprisingly, this is one of the MRs that
was violated by one of the aligners. This result is unexpected
since the order of the input data is not supposed to affect
alignment results. None of the tested aligners satisfied all nine
MRs. This result further supports the importance of testing
bioinformatics programs, especially these widely used pro-
grams that have a potential to be used in a translational clinical
setting in genomic medicine. The usefulness of metamorphic
testing for such a type of software was clearly demonstrated.

Concluding remarks

In this paper, we discussed the needs of proper software test-
ing in bioinformatics. The main problem is related to the
amount of data and complexity of algorithms in bioinformat-
ics software, which makes it hard to verify the output data and
to select many diverse test cases. We have also reviewed sev-
eral popular and state-of-the-art software testing techniques,
and discussed their applications. The key concepts illustrated
by these methods include multiple executions of the same
program or related programs, using diverse test cases in the
input space, testing after deployment, and enabling scalable
and parallelised testing using cloud technology. It is important
to mention that there are many other software testing tech-
niques (Beizer 1990; Myers et al. 2011), but our main focus
of this review was to discuss those techniques that have been

used or are suitable for testing bioinformatics programs.
Further research is required to quantify and compare the ef-
fectiveness of different methodologies, and make software
testing much more systematic and automatable. We believe
additional testing activities will improve the reliability of bio-
informatics software, and therefore the reliability of scientific
research results.
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