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Abstract

The application of dependability concepts and approaches to the design of secure distributed systems is raising
a considerable amount of interest in both communities under the designatiotragion tolerance However,
practical intrusion-tolerant replicated systems based on the state machine approach can handle jaBywest-
tine components out of a total af= 3 f + 1, which is the maximum resilience in asynchronous systems.

This paper extends the normal asynchronous system with a special distributed oracle called TTCB. Using this
extended system we manage to implement an intrusion-tolerant service, based on the state machine approach
(SMA), with2f + 1 replicas only. Albeit a few other papers in the literature present intrusion-tolerant services
based on the SMA, this is the first time the number of replicas is reduceg@ frem to 2 f + 1. Another interesting
characteristic of the described service is a low time complexity.

1 Introduction

The application of dependability concepts and approaches to the design of secure distributed systems is raising
a considerable amount of interest in both communities under the designatidrusfon tolerancg29, 37]. The
idea is that security concepts like vulnerability, attack and intrusion are contained in the dependability notion of
fault, therefore it is possible to build secure systems based, to some extent, on dependability mechanisms. This
idea has been used to design several protocols and systems in recent years [3, 6, 9, 14, 17, 23, 26, 27, 30, 31, 38]

The state machine approacprovides a general solution for the implementation of distributed fault-tolerant
services [34]. The idea is to implement a service using a set of server replicas in such a way that the overall
service can continue to behave as specified even if a number of servers is faulty. If the service is designed to
tolerate arbitrary faults, which include attacks and intrusions, then the service can be sdiuttiodien-tolerant

*This work was partially supported by the FCT through project POSI/1999/CHS/33996 (DEFEATS), project POSI/CHS/39815/2001
(COPE) and the Large-Scale Informatic Systems Laboratory (LASIGE).



or Byzantine-resilient, since these faults are often called Byzantine in the literatute [21]

This paper presents a solution for the implementatiostate machine replication services (SMRpractical
distributed systems. The woptactical is used in this context to signify open distributed systems with networks
that provide weak quality of service guarantees, like the Internet, Ethernet LANs and other common network
technologies. This kind of systems is often modelled using@fiymchronous modelhich makes no assumptions
about processing times, communication delays or clock drift rates. The asynchronous model is extensively used
mainly because it is hard to identify realistic bounds for these delays in practical systems. Moreover, for intrusion-
tolerant systems, there is an additional motivation: protocols based on time assumptions frequently have subtle
vulnerabilities, which can be exploited in order to cause their failure [4, 2]. We are aware of four asynchronous
intrusion-tolerant SMR services in the literature: Rampart [31], BFT [4], SINTRA [3] and FS-NewTOP [27].

The resilienceof a protocol can be defined as the maximum number of faults in the presence of which the
protocol still behaves according to its specification. Notwithstanding the advantages of the asynchronous model
discussed above, the optimal resilience for an SMR service based on this mo#éet is since the problem
essentially boils down to atomic multicast [31, 4], which is equivalent to consensus [16]. A proof of the maximum
resilience for asynchronous Byzantine consensus can be found in [1]. This means that the serviae-n8¢ds
replicas to toleratg faults: four replicas to tolerate one fault, seven to tolerate two faults, etc. Each additional fault
the system has to tolerate has a significative cost since it requires three additional machines. Moreover, the whole
approach is based on the assumption that replicas fail independently, but this is true only if they do not have the
same vulnerabilities [4]. This involves using different replicas, i.e., different code running in different operating
systems. To summarize, each additional replica has two costs: (1) the cost of its hardware and software; and (2)
the cost of its design, since it has to be different from the other replicas. Notice that the number of faults that can
be tolerated can be improved either by detecting and removing faulty replicas [34], or by proactively recovering
the state of the replicas [5]. However, in a window of time between detection and removal or between recoveries,
the resilience remaian’%lj.

This paper presents a solution that reduces the cost of intrusion-tolerant SMR services by decreasing the numbet
of replicas required to tolerate a number of faults/intrusions. More precisely, the presented SMR service has a
resilience of["T*lJ, i.e., it requires only a majority of correct replicas £ 2f servers to tolerat¢ faults). This
means a reduction from 25% to 33% on the number of machines to tolerate the same number of faults: three
replicas to tolerate one fault, five to tolerate two faults, seven to tolerate three faults, etc. Detection and removal,
or proactive recovery of replicas, can also be used to improve the maximum number of faulty replicas.

How is it possible to improve the resilience frofm= L”T‘lj tof = L”T‘lj? The solution has something in
common with the approach several protocols in the literature use to circumvent the Fischer, Lynch and Paterson
(FLP) impossibility result [15]. FLP says that no deterministic protocol can solve the problem of consensus in
an asynchronous system if a single process can crash. One of the most common approaches to circumvent this

Throughout the paper we also use the expressialicious faultso emphasize that the cause of the fault is an intelligent attacker that
has the purpose of violating some property of the system.



result is to extend the asynchronous system with some kind of oracle, like an unreliable failure detector [7, 22, 18]
or an ordering oracle [28]. These oracles allow the protocols to circumvent FLP because they encompass some
degree of synchrony, e.g., enough synchrony to detect when a process crashed. The solution in this paper alsc
relies on an oracle, but this particular oracle provides two advantages, instead of a single one: circumventing FLP
and increasing the resilience.

In the past few years, we have been exploring a type of oracles eatledholeg35], to deal with the un-
certainty (or lack of coverage) of assumptions as time bounds [36], or intruder resistance [11, 9]. This paper
extends the asynchronous system with a wormhole oracle cailsted Timely Computing Base (TTCBIready
introduced elsewhere [11]. This oracle provides a novel ordering service that allow us to implement an atomic
multicast protocol with a resilience cpfl%lj. This service is the main building block of our SMR solution.

The paper provides the following main contributions:

e it presents an SMR service implemented mostly on a Byzantine asynchronous systems, but that uses the
services provided by a wormhole oracle with stronger properties;

e the SMR service has a resilience nglJ instead of the optimal resilience in asynchronous systems of
adt

e the SMR service circumvents the FLP impossibility result without any synchrony assumptions on the asyn-
chronous part of the system, all synchrony necessary to circumvent FLP is in the wormhole oracle;

e the service arguably exhibits good performance since it has a low time complexity.

The paper is organized as follows. Section 2 presents the system model and the TTCB wormhole. Section 3
defines the main TTCB service used in the paper, the Trusted Multicast Ordering Service. Section 4 defines the
state machine approach and describes the solution we propose. Section 5 discusses the performance of the servic
Section 6 reviews some related work and Section 7 concludes the paper. The appendix presents a correctness proc
of the algorithm.

2 System Model and the TTCB

The system is essentially composed by a set of hosts interconnected by a network, called payload network. This
environment is asynchronous, i.e., there are no assumptions about processing delays or message delivery delay:
The hosts have clocks but there are no assumptions, either about local clock drift rates, or about the reliability of
the readings they provide.

The asynchronous environment is extended with a TTCB wormhole, a distributed component with local parts
in some of the hosts (local TTCBs) and its own communication channel (TTCB control channel). The system is
depicted in Figure 1. Besides being distributed, the TTCB has three important features:

e itis assumed to be secure, i.e., resistant to any possible attacks; it can only fail by crashing;



SERVERS
Host 1 Host 2

\
TTCB Control Channel TTCB

Payload Network

CLIENTS

Figure 1. Architecture of the system.

e itis real-time, capable of executing certain operations with a bounded delay;

e it provides a limited set of services, which cannot be possibly affected by malicious faults, since the TTCB
is secure.

The TTCB provides a very simple and limited set of services, so that the security of its implementation can
be verified. This paper uses only two of these services. The first is the Local Authentication Service, which
establishes a trusted path between the server and its local TTCB, i.e., a channel that guarantees the integrity of
their communication [11]. The second is the Trusted Multicast Ordering service (TMO), which is the core of our
solution and will be described in Section 3.

In relation to the real-time property mentioned above, it is important to make clear that the single consequence
of this property for this paper is that the Trusted Multicast Ordering service is not bound by the FLP impossibility
result. Otherwise there is no need for the TTCB to be synchronous in the context of this paper. Moreover, the TMO
can be implemented in a non-real-time wormhole if another solution is used to circumvent FLP, e.g., randomization
or failure detectors.

The approach presented in the paper makes sense only if it is possible to implement the TTCB. There are several
possible solutions, which were presented in another paper [11]. Moreover, an implementation based on COTS



(Commercial Off-The-Shelf) components is currently available for free noncommerciél stus describe this
implementation briefly for the reader to have an idea on how it works.

The local TTCBs have to be secure and real-time. The current TTCB implementation relies on an real-time
engineering of Linux called RTAI [8] and is protected by hardening the kernel, since its code is executed inside
the kernel. Another solution to protect the local TTCB would be to execute it inside a hardware module inserted
in the computer, like a PC/104 board. In relation to the control channel, the current TTCB implementation relies
on a Fast-Ethernet network, which is completely independent of the payload network (each host has two network
adapters). The control-channel can be assumed to be secure for an inside premises system. Wide-area solution
could be based on virtual private networks over ISDN or Frame Relay. The real-time behavior is ensured by RTAI
and by an admission control mechanisms that forces the control channel traffic to be limited and the communication
delay bounded. This is a very brief idea and the reader is referred to [11] for a longer discussion on all these issues.

The SMR service is executed by a setsefversS = {si, s2,...s,}. The service can be invoked by a set of
clientsC = {c1, ¢, ...cn,}. The servers and clients are connected by a fully connected network, although their
communication can be delayed arbitrarily, e.g., in consequence of an attack. Every host with a server needs a
local TTCB, but not the hosts with clients (see Figure 1). We use the proksseso denote both servers and
clients. Each servey; is uniquely identified byid;, a number obtained by calling the TTCB Local Authentication
Service [11].

A process icorrectif it follows the protocol it is supposed to execute. We assume that any number of clients
can fail, but the number of servers that can fail is limited te L"T‘lj. The failures can be Byzantine or arbitrary,
meaning that the processes can simply stop, omit messages, send incorrect messages, send several messages W
the same identifier, etc. Faulty processes can pursue their goal of breaking the properties of the protocol alone
or in collusion with other corrupt processes. A process is also considered to be faulty if one of the secret keys
discussed below is disclosed, or if it is not able to communicate with the local TTCB in its host for some reason
(e.g., alocal denial of service attack).

The communication among clients and servers is done exclusively through the payload network. The communi-
cation among servers is also, to most extent, done through the payload network. We assume that each client-serve
pair{c;, s;} and each pair of servefs;, s;} is connected by eeliable channelvith two properties: if the sender
and the recipient of a message are both correct then (1) the message is eventually received and (2) the messag
is not modified in the channel. In practice, these properties have to be obtained with retransmissions and using
cryptography. Message Authentication Codes (MACSs) are cryptographic checksums that serve our purpose, and
only use symmetric cryptography [25]. The processes have to share symmetric keys in order to use MACs. In the
paper we assume these keys are distributed before the protocol is executed. In practice, this can be solved using
key distribution protocols available in the literature [25]. This issue is out of the scope of the present paper.

Wrapping up, the system is essentially “asynchronous Byzantine”: there are no bounds on the processing and
communication delays; and the processes can fail arbitrarily. This system is extended with the TTCB wormhole,

2The TTCB implementation is available for download at http://www.navigators.di.fc.ul.pt/software/ttch/



which is synchronous and secure, therefore it provides some “well-behaved” services that the processes can use tc
perform some steps of their protocols.

3 Trusted Multicast Ordering Service

The SMR service proposed in the paper uses a new TTCB service Galisi@d Multicast Ordering Service
(TMO). The TMO service is implemented inside the TTCB, therefore its execution cannot be affected by malicious
faults.

The TMO service was designed with the purpose of assisting the execution of an intrusion-tolerant atomic
multicast (or total-order multicast) protocol. The service doeismplement the atomic multicast protocol, but
simply assigns an order number to the messages. The messages, however, are sent through the payload networ
not through the TTCB. This is important since the TTCB has limited processing and communication capacities.
Let us introduce briefly how an atomic multicast based on the TMO service can be implemented (the full protocol
is introduced later in Section 4.2.1). When a progessnts to send a message to a set of recipients, it makes two
operations: (1) it gives the TMO a cryptographic hash of the message and (2) it multicasts the message through
the payload network reliable channels. Then, when another prgeceseives the message, it also gives the TMO
a hash of the message it received. When a certain number of processes gave the hash of the message, the TM
service assigns an order number to the message and gives that number to the processes. The processes deliver t
messages in that order. Figure 2 illustrates the procedure.

The cryptographic hash mentioned above has to be obtained ubaghagunction. defined by the following
properties [25]HF1 Compressionk maps an input: of arbitrary finite length, to an outpuét(z) of fixed length.

HF2 One way:for all pre-specified outputs, it is computationally infeasible to find an input that hashes to that
output. HF3 Weak collision resistancét is computationally infeasible to find any second input that has the same
output as a specified inputHF4 Strong collision resistancet is computationally infeasible to find two different
inputs that hash to the same output.

The interface of the TMO service contains three functions: TTIBBO_send, TTCBTMO_receive and TTCB
TMO _decide:

error, tag «— TTCB_TMO_send(eid, elist, threshold, msg, msghash)
error, tag «— TTCB_TMO_receive(eid, elist, threshold, msd, msghash, sendeeid)

error, ordermn, hash, propnask «— TTCB_TMO_decide(tag)

A process is said to staah execution of the TMO servicar simply to stara TMO, when it calls TTCBTMO._
send. The parameters of this function have the following meanings. Theefdsis the identifier of the sender

3A guessing attack is expected to break the property HFB"irhashing operations, where is the number of bits of the hash. A
birthday attack can be expected to break property HEAif? hashing operations. In a practical setting, a hashing function with 128 bits
like MD5, or 160 bits like SHA-1, can be considered secure enough for our protocol. Nevertheless, we consider HF2, HF3 and HF4 to be
assumptions.
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Figure 2. Atomic multicast using the TTCB TMO service.

before the TTCB (see Section 2glist is an array with the identifiers of all processes involved in the set of
atomic multicast executions to be orderdatesholdis the number of processesefist that must give the TTCB

the hash of the messagmgghash for an order number to be assigned to the message. This parameter will be
further discussed in Section 4.2rhsgid is a message number that has to be unique for the semdghashis

a cryptographic hash of the message. The function retutag, avhich identifies the TMO execution when the
process later calls TTCBEMO _decide, and an error code.

When a process receives a message it has to call TTKIB_receive. The parameters are the same as for
TTCB_TMO_send, except for the eid of the sendsendereid. How does the TTCB knows that a call to
TTCB_TMO _receive corresponds to a certain TMO, which was started by a call to TI@8 _send? It knows by
looking at a set of parameters that together uniquely identify a TMO service exec{diish;: threshold, mség,
sendereid). The reader should notice that this last sentence has an important implication: if an attacker attempts to
break the behavior of the TMO by calling TTCBMO_receive with any of these parameters modified, the TTCB
will simply consider it to be a call to a different TMO, so the attack would be ineffective.

TTCB_TMO _receive returns tagthat is used by TTCB'MO _decide to identify the TMO. When TTCBMO._
receive is called and the local TTCB has no data about the TMO, a TM®&NOWN error is returned. If there
is data about the TMO bumsghashis different from the hash provided by the sender, a WRON&SH error is
returned. If there is a TMQNKNOWN error, notag is returned; on the contrary, if there is a WRONHASH
error, thetagis returned.

To get the result of the TMO — the order number of the message — a process callsTMQORIlecide. If
thresholdprocesses did not propose the hash yet, a THRESHAUD_REACHED error is returned. If there is
no error, the function returns the order numbeter_n, the hash of the messabash and a mask with one bit per
process, indicating the processes that proposed the correctgnagimask For each TMO execution, the order
number returned to all processes must be the same, since the TTCB is assumed to be secure and reliable.

The purpose of the TMO service is to assign consecutive numbers (1, 2, 3, ...) to a set of TMO executions. At
this stage the reader might ask: does the TTCB oralé®MO executions with a single sequence of numbers? Or
can there be several sets of TMO executions being ordered simultaneously by the TTCB? The answer is related



to the purpose of the TMO service: to assist the execution of an atomic multicast protocol; there can be several
atomic multicast channels in the system, therefore the TTCB has also to order several sets of TMO executions
simultaneously. So, what TMO executions does the TTCB order? The TTCB orders independently each set of
TMO executions that belong to the same sequence, defined as follows:

Two TMO executions, identified respectively by (gltereshold, msgid;, sendereid;) and (elist, threshold,
msgid;, sendereid;), are said to belong to the sansequence of TMO executioif§ elist; = elist;.

TMO Service Implementation

A brief discussion of the implementation we envisage for the TMO service can give a sense of the semantics of
the service. The protocol that implements the service is executed by all local TTCBs, which communicate using
the TTCB control channel. The protocol can be simple because the TTCB is real-time, local TTCBs can only fail
by crashing (they are secure) and they have synchronized clocks. The protocol is implemented on the top of the
(crash-tolerant) reliable broadcast protocol presented in [10].

The protocol is based on a fixed coordinator. When a process calls TMEB_send or TTCBTMO _receive
in a local TTCB, the information about the call is broadcasted to all local TTCBs. When the coordinator gets
information abouthresholdcalls for a TMO execution, it assigns the next order number to the TMO, defines the
maskprop_maskwith the processes that proposed the correct hash, and broadcasts this information to all local
TTCBs. Then, when a process calls TTABIO_decide the order number is returned. If the coordinator crashes,
another local TTCB takes over in a consistent manner, since it is aware of the (reliable) broadcasts made by the
coordinator.

4 State Machine Replication

A state machings characterized by a set efate variableswhich define the state of the machine, and a set
of commandghat modify the state variables [34]. Commands have to be atomic in the sense that they cannot
interfere with other commands. Tlséate machine approaatonsists of replicating a state machinenirservers
s; € S. The set of server§ implements theservice We assume that no more thgin= | %1 | servers fail. All
servers follow the same history of states if four properties are satisfied:

e SM1 Initial state All servers start in the same state.
e SM2 Agreementll server execute the same commands.
e SM3 Total orderAll servers execute the commands in the same order.

e SM4 DeterminismThe same command executed in the same initial state generates the same final state.

The first property states that each state variable has the same initial value in all servers, something that is usually
simple to guarantee. The second and third properties demand that the servers agree in the commands to execut



and in their order. This can be guaranteed sending the commands to the servers using an atomic multicast protocol
The fourth property is about the semantics of the commands at the application level, so in this paper we simply
make the assumption that the commands are deterministic.

The system works essentially the following way:

1. aclient sends a command to one of the servers;
2. the server sends the command to all servers using an atomic multicast protocol,
3. each server executes the command and sends a reply to the client;

4. the client waits forf + 1 identical replies from different servers; the result in these replies is the result of
the issued command.

This is a simplified description of the process, so let us first delve into the details of the clients, and later we
describe the protocol executed by the servers.

4.1 Clients

A client ¢; issues a commarzindto the service by sending a REQUEST message to one of the serverhg
message is sent through the payload network, since the only communication that is performed inside the TTCB is
the one related to the execution of the TMO service. The format of the message is:

(REQUEST, addr, num, cmd, vec

where REQUEST is the type of the messaapqr is the address of the client (e.g., the IP address and the port),
numis the request numbeecmdis the command to be executed (including its parametersyvand vector of
MACSs (see discussion below). The request number has to be unique, since the SMR service discards requests
from the same client with the same number. A solution to generate these numbers is to use a counter incrementec
for each sent message.

If the client and the server are correct, the REQUEST message is eventually recesyedusyto the properties
of the reliable channels (Section 2). Then, if the server is correct it atomically multicasts the message to all servers
in S. Finally, all correct servers i execute the command and send a reply to the client. The format of the reply
message is:

(REPLY, addr, num, res

where REPLY is the type of the messagddr is the address of the servauymis the request number, anelsis
the result of the executed command.

This scheme, albeit simple, is vulnerable to some attacks. A serean be malicious and forward the message
only to a subset of, or discard it altogether. To solve this problemgifdoes not receivg + 1 replies from



different servers aftef,....,q Units of time read in its local clock, it assumes thatlid not forward the request,
so it multicasts the message to anotfieservers. If this happens, it sends the message to a tofakof servers,
therefore at least one must be correct, and the request will eventually be atomically multicasted.

Ideally, T}..sena Should be greater than the maximum round trip delay between any client and a server. However,
the payload system is assumed to be asynchronous, i.e., there are no bounds on communication delays, so it i
not possible to define such an “ideal” value fBf.,.,.q. Therefore, the value df,.s..q involves a tradeoff: if
too high, the client can take long to have the command executed; if too low, the client can resend the command
without necessity. The value should be selected taking this tradeoff into account. If the command is resent without
need, the duplicates are discarded using a mechanism discussed in the next section.

A malicious server might attempt a second attack: to modify the message before multicasting it to the other
servers. To tolerate this attack, the request message takes a vector ofd@dshis vector takes a MAC per
server, each obtained with the key shared between the client and that server. Therefore, each server can test th
integrity of the message by checking if its MAC is valid, and discard the message otHerwise

In general, there will be restrictions on the commands that each client can execute. For instance, if the com-
mands are queries on a database, probably not all the clients are allowed to query all registers in the same way.
This involves implementing some kind of access control. There are several schemes available in the literature and
this issue is orthogonal to the problem we are addressing in the paper, so we do not propose any particular scheme

4.2 Servers

The protocol executed by the servers is a thin layer on the top of an atomic multicast protocol. A server calls
atomicmcast(Mkgg) to atomically multicast a request M to all servers, and the atomic multicast protocol
layer callsatomicdlv(MgEgq) to deliver Mggg to a server. The basic protocol executed by each server is in
Algorithm 1.

Algorithm 1 SMR protocol (for serves;).

1: When a request Mz = (REQUEST, addr, num, cmd, veis received from a client: if there is no message
MgrEQ', With MgEeg'.addr = M gpeg.addrandMgeg’.num = Mggg.num for whichatomicdiv(MgEeg’) has
been previously called, then callomicmcast(M:rq); otherwise discard the request.

2: Whenatomicdlv(MgEg) is called: if there is no messad@rrq’, with Mrgg'.addr = Mggg.addr and
Mgrrg'.num = Mggg.num for whichatomicdlv(Mzzg’) has been previously called, then exeatrted and
send a messag®EPLY, addr, num, reswith the result of the command to the client.

The objective of checking in both stepsitbmicdlv(MgEeg’) , with Mrgg’.addr = M ggg.addrandMpggg’.num
= MRrEgg.num has been previously called, is to guarantee that a request from a client is executed only once. Re-
call that a client, even if correct, can resend a request (Section 4.1). This condition is implemented using a set

4A malicious client might build a vector of MACs with a combination of valid and invalid MACs. This attack would be ineffective: if
enough correct servers received the message with the correct MAC the command would be executed, otherwise it would be discarded.



that stores the request number and the client addMgs{’.num andMgrgg’.addr) for all requests for which
atomicdlv(Mgrgg’) has already been called. If the server already received the request, the request is simply dis-
carded (step 1). If several requests with the same command are delivered by the atomic multicast protocol, only
the first one causes the execution of the command (step 2). When the command is executed, a reply is sent to the
client.

This basic protocol makes at least one atomic multicast for each client request. This cost may be excessive
depending on the rate of requests being issued. This cost can be greatly reducedasthiqng mechanisnie.,
aggregating several requests in a single atomic multicast. The decision about batching requests is left for each
server to take; if it assesses that the rate of requests is greater than a given bound, it starts collecting a number o
requests before atomic multicasting them together in a single message. This mechanism introduces some delay ir
the system, so the clientB.....q has to take this delay into account.

4.2.1 Atomic Multicast Protocol

The core of the algorithm executed by the servers is the atomic multicast protocol. This protocol guarantees
basically two properties: all correct servers deliver the same messages in the same order; if the sender is correct all
servers deliver the sent message. More formally, a server is said to (atomically) multicast a message M if it calls
atomicmcast(M) and it is said to (atomically) deliver a message Mtibmicdlv(M) is called in the server. The
protocol is defined in terms of four properties:

e AM1 Validity. If a correct server multicasts a message M with a vector with all MACs valid, then some
correct server eventually delivers M.

e AM2 Agreementf a correct server delivers a message M, then all correct servers eventually deliver M.

e AM3 Integrity. For any identifierl D, every correct server delivers at most one message M with identifier
ID, and ifsender(M)s correct then M was previously multicast sgnder(MY.

e AM4 Total order.If two correct servers deliver two messagds and M then both servers deliver the two
messages in the same order.

This definition is similar to other definitions found in the literature, e.g., in [16]. However, property AM1 does
not guarantee that the message is delivered in case the message does not have a vector filled with valid MACs
(i.e., MACs properly obtained using the key shared between the client and each of the servers). Recall that the
objective of this vector of MACs if to prevent a malicious server from atomically multicasting a corrupted request
(Section 4.1). Albeit the objective is to deal with malicious servers, if the client itself is malicious and sends a
message with some invalid MACs, the message may not be delivered by the atomic multicast protocol.

The predicatsender(M)gives the sender field of the header of M.



The protocol is shown in Algorithm 2. It has four parts: initialization (lines 1-8), processing of a call to
atomicmcast(M)(lines 9-13), processing of the reception of an ACAST message (line 14), and a task that pro-
cesses the messages stores in a number of buffers (lines 15-34).

The atomic multicast protocol uses a single type of messages:

(ACAST, addr, mreq, msgd, sendereid, elist, threshold

where ACASTis the message typeddr the address of the sender servereqthe request messagmieq =
MrEg), msgid a message number unique for the senslendereid the eid of the server that atomically multi-
casted the messaggljst is the list ofeid’s of the processes involved in the protocol, ahdesholdis the value
FH1=["]+1

Lines 1-7 initialize several local variables, including three sets used to store messages in different stages of
processingWait tmo, Wait threshandWait deliv. Line 8 starts task T1.

Whenatomicmcast(Mkg() is called, the server caligrify_macto test if in the vector of MACs, the MAC that
corresponds to itsel&() is valid (line 9). If it is not, the server simply dismisses the message. If the MAC is valid,
the request Mg is enveloped in an ACAST message and multicasted to all servers except the sender (line 10).
Then, the server starts the execution of one instance of the TTCB TMO service by calling TWIOBsend (line
11). Each call tmtomicmcastcauses exactly one execution of the TMO service. After starting the TMO service,
the server puts the ACAST message in the/gait thresh waiting for the TMO threshold to be achieved (line 13).
When an ACAST message is received by a server, it is simply stoM&ittmo (line 14).

Task T1lis permanently checking if the messages in the three sets can be processed. The medésgesin
are handled in lines 16-22. For each messag#ait tmao, task T1 makes a call to TTCBMO_receive (lines 16-

18). If the MAC corresponding te; is valid, the hash of message is given to TTTBIO receive (lines 17-18).
Otherwise, a value out of the range of valid hashes is giveflines 17-18). If the local TTCB is still now aware
of that TMO executiof, then TTCBTMO _receive returns the error TMONKNOWN. If the TTCB is aware of
the TMO but the hash of the request is wrong, then an error WRO®IGH is returned. If the TTCB is aware
of the TMO and either the hash is correct, or the hash {she MAC is invalid), the message is removed from
Waittmoand inserted itWait thresh(lines 19-22). If the TTCB is aware of the TMO but the hash is wrong (but
not 1), the message is discarded since it has been corrupted at some stage (lines 19-22).

The setWait threshcontains messages waiting for the number of calls to their TMO to reach the threshold.
These messages are handled in lines 23-30. The purpose thiréisboldis to guarantee that the servers only
decide to deliver a message if they eventually become able to deliver it. In other words, they can only decide to
deliver a message if at least one correct server has the message. This is guaranteed jf at lesestvers prove
that they know the hash of the message, therefore the threshold isfset 1o(line 3). Notice that a server that
received a message with an invalid MAC does not contribute to the threshold, since it givesTMGBeceive

5The TMO is started in the local TTCB of the server that atomically multicasts the ACAST message, so the information about the TMO
takes a certain time to be broadcasted and received by the other local TTCBs. Therefore, it is not possible to guarantee that the TMO
information will be available in a local TTCB when the corresponding ACAST message is received.



Algorithm 2 Atomic multicast protocol (server;).

INITIALIZATION :

1:

© N o g ke

elist— {all eid’s in E in canonical ordér
msgid_next«— 1
threshold— |25 | + 1

1
2

ordernext—1
Wait_tmo « ()
Wait_thresh«— ()
Wait_deliv « ()
activate task(T1)

WHEN ATOMIC _MCAST (M ggq) IS CALLED DO

9:
10:
11:
12:
13:

if verify_mac(Mrgq.vec[s]) then

{for TMO servicg
{number of next ACAST to send
{threshold for TMO servicéf + 1)}
{number of next request to deliver
{set w/recvd ACASTs while TMO unknown
{set wW/ACASTSs while thresh. not reachHed
{set with requests waiting for deliveyy

{if the MAC for s; is valid, handle My g, otherwise discard jt

multicast Micasr = (ACAST, addf, Mg, msgid_next, myeid, elist, thresholdto servers S, {s;}
err, tag«— TTCB_TMO_send(eig, elist, threshold, msgd_next, Hash(M:z¢))

msgid_next«— msgid_next + 1
Wait_thresh— Wait_threshU {(M acas7,tag)}

WHEN M 4cas7 = (ACAST, ADDR, Mg, MSG_ID, SENDEREID, ELIST, THRESHOLD) IS RECEIVED DO

{messages waiting while TMO is unknoyn

{messages waiting while threshold not reached

{if not the sender

{messages waiting to be deliveted

14: Wait.tmo « WaittmoU {M scas7}

TASK T1:

15: loop

16: forall Macasr € Wait tmodo

17: if verify_mac(Mrgq.vec|s]) then hash— Hash( Mycasr.mreq) else hash— L

18: err, tag < TTCB_TMO_receive(eig, Macagr.€list, Macasr.threshold, Micasr.msgid, hash, Mycast.
sendereid)

19: if err TMO_UNKNOWN then

20: Wait tmo — Wait tmo\ {Macasr}

21: if (err# WRONG.HASH) or (hash =L) then

22: Wait thresh— Wait_threshU {(M ac as7,tag)}

23:  forall (MscasT,tagxWait threshdo

24: err, n, hash, propnask«< TTCB_TMO _decide(tag)

25: if err# THRESHOLDNOT_REACHEDthen

26: Wait thresh— Wait_thresh\ {(M 4casr,tag)

27: if Hash(Mycas7.mreq) = hastthen

28: Wait_deliv < Wait_delivU {(M scas7.mreq,n}

29: if M 4o as7.addr# addr, then

30: multicast Mycast t0 {Vs,c5 : 55 ¢propmask

31:  while 3(ar,50,n)eWait_detiv - N = Ordernextdo

32: Wait_deliv — Wait_deliv\ {(Mrgqg.n)}

33: ordernext«— ordernext + 1

34: ATOMIC _DLV (M grEQ)




the value L instead of the hash of the message (lines 17-18). When the threshold is reached, the message is
removed fromWait thresh(lines 25-26). If the message corresponds to the hash returned, the message is inserted
in Wait deliv (lines 27-28). Then, if the server is not the message sender, it resends the message to the servers tha
did not ‘contribute’ to the threshold, i.e., to the servers nqtrisp_mask(lines 29-30). The rationale for resending

the message is that a malicious sender can send the message only to a subset of the servers; therefore, these serv
may not have the message.

The setWait delivkeeps messages that already have an order number assigned by the TMO service, therefore
they can be delivered. These messages are handled in lines 31-34. The algorithm keeps a number with the nex
message to be deliverentder_next If the next message to be delivered is stored/ait deliv (line 31), then task
T1 delivers it (lines 32-34). Otherwise, the message has to wait for its turn.

Appendix A gives a proof that the protocol satisfies its specification in terms of properties AM1-AM4.

4.2.2 FLP Impossibility Result

The consensus problem has been proven to be impossible to resolve deterministically in asynchronous systems if
a process is allowed to fail, even if only by crashing [15]. This FLP impossibility result also applies to the atomic
multicast problem since it is essentially equivalent to consensus [16]. Therefore, it is important to discuss how the
atomic multicast protocol proposed in the paper circumvents this result.

A first observation is that our system does not have to be bound by FLP, since it is not strictly asynchronous: itis
mostly asynchronous, but includes the TTCB subsystem, which is synchronous. The problem of atomic multicast
is essentially equivalent to a consensus about the set of messages to deliver and their order. Our protocol leaves
this consensus to the TTCB TMO service, which is executed in a synchronous environment, therefore FLP does
not apply.

Another way of reasoning about the problem is given in a paper by Dolev et al. [13]. The TMO service
implements a sort of communication with two properties: (1) the communication can be considered to be ordered,
since the service service assigns order numbers to the messages and a simple buffering scheme allows the messag
to be delivered in that order; (2) the communication is, according to that paper nomenclature, by “broadcast”,
because all (correct) servers deliver the same messages in the same step. Therefore, the classification of consens
protocols in terms of communication primitives presented in the paper, allow us to conclude that the FLP result
does not apply to communication based on a mechanism like the TMO service.

5 Performance

The evaluation of the performance of distributed protocols is usually made in terms of time and message com-
plexities. In asynchronous systems, time complexitys usually measured in terms of the maximum number of
asynchronous roundsf message exchange. An asynchronous round involves a process sending a message and
receiving one or more messages in response. For the Byzantine fault model, only the number of rounds executed



by correct processes matter, since malicious processes can behave arbitrarily. We consider separately the numbe
of rounds of TMO execution.

The time complexity is two rounds of message exchange in the payload network, plus one round of TMO
executions. Let us justify this complexity by presenting the worst case. The client sends a request to & sender
(half round), buts; is crashed (or is malicious), 9 does not multicast the message to the other servers. This
situation forces the client to resend the request to angtiservers, which we count as another half round. Then,
all correct servers that received the request, multicast the request in an ACAST message to all other servers (half
round) and start one TMO (one round of TMO executions, since all TMOs are executed in parallel). When the first
of these TMOs terminates, the command is executed and all correct servers send a reply to the client (half round).
Therefore, there are two rounds of message exchange plus one round of TMO executions.

The message complexity measured in number of messages (unicasts) sent. We start by discussing this com-
plexity when the batching mechanism is disabled. The complexity of the SMR service can be divided essentially
in three cases:

1. One requestlFor each command, a client sends only one REQUEST message to a single server because the
client is correct, the server is correct, and the servers answer in les,than, units of time measured in
the client’s clock. A single TMO is executed.

2. f+1requestsFor each command, a client sends REQUEST messagfes fioservers because the servers
do not respond beforE.....q4, although both the client and the server for which it first sends the request are
correct. f + 1 TMOs are executed.

3. n requests.For each command, a malicious client sends REQUEST messagesitsaliers.n TMOs
are executed. A malicious client can issue any number of commands but the SMR protocol prevents it from
forcing the execution of more thanTMOs by command (see Algorithm 1).

Table 1 summarizes the message complexities for the three situations. The deduction of these values from the
protocol is straight forward.

Requests‘ Message complexit* TMOs ‘

1 O(n?) 1
f+1 O(n?) f+1
n O(n?) n

Table 1. Message complexity and number of TMOs executed (batching disabled).

The table presents the message complexities and the number of TMOs executed when the batching mechanisn
is disabled. However, the purpose of this mechanism is precisely to reduce these numbers. How much are they
reduced? If we consider that the average number of requests batched in each atomic mulicdlsersthe



message complexities and the number of TMOs presented in the table have to be divided bgrefore, the
higher the value oB, the higher is the reduction in the complexity and number of TMOs. Nevertheless, there is a
tradeoff involved. To increasB the algorithm has to delay requests until a certain number can be batched in an
atomic multicast, therefore increasing the average latency of the algorithm.

6 Related Work

The state machine approach was first introduced by Lamport for systems in which faults were assumed not to
occur [19]. Later, Schneider generalized the approach for systems with crash faults [33], and Lamport generalized
it for a class of Byzantine faults [20]. The Byzantine faults considered in this latter paper cannot be considered
to include malicious faults. The algorithm is essentially synchronous, in the sense that an interaction that exceeds
a maximum delay is assumed to be a fault, which the algorithm tolerates if its resilience is not exceeded. If
the system model assumes malicious faults, then an attacker might purposely delay the communication to force
correct processes to be considered failed.

More recently, two Byzantine-resilient or intrusion-tolerant state machine replication systems appeared: Ram-
part and BFT. Both services have the optimal resilience for asynchronous systerh%g?:.ga.,

Rampart is an intrusion-tolerant group communication system. It provides a set of communication primitives
and a membership service, which handles the joining and leaving of group members [31, 32]. The atomic multicast
protocol relies on a reliable multicast protocol that guarantees, essentially, that all correct processes deliver the
same messages. When a message is atomically multicast to the group, the reliable multicast protocol is used to
send the message. Then, a special process, the sequencer, defines an order for the messages and also relial
multicasts this order to the group. All these protocols use digital signatures to authenticate some messages [25].
Rampart is mostly asynchronous but assumes enough synchrony to detect process failures. The state machin
approach is implemented by a set of servers, which form a group [31]. Clients send their requests to a server of
their choice, similarly to our algorithm. The output of the service has to be voted so that the results provided by
correct servers prevail over those returned by malicious servers. Rampart implemented two solutions. In the first,
the client receives individual results from the servers and performs the voting, in the same way as in our approach.
In the second, the voting is executed by the servers using a (k,n)-threshold signature scheme [12]. This scheme
generates a public key amdshares of the corresponding private key. Each share can be used to obtain a partial
signature of a message and dngf those partial signatures form a full signature that can be verified using the
public key. Albeit elegant, this scheme has poor performance.

BFT is a Byzantine-resilient state machine replication service. The system is optimized for having good per-
formance, therefore, on the contrary to Rampart, it does not use public-key cryptography most of the time. BFT is
not a full-fledged group communication system since it does not have a membership service and does not provide
generic group communication primitives, similarly to our algorithm. In BFT, all clients send the requests to the
same server, the primary. Then, the primary atomically multicasts the request to the backups (the other servers);
all replicas execute the request and send the result to the client; the client wafits-foreplies with the same



result, which is the result of the operation. BFT assumes enough synchrony to detect the failure of the primary.
When it fails, a new primary is elected.

SINTRA (previously called Hydra) is a framework aimed to support the implementation of replicated intrusion-
tolerant services [3]. It provides a number of group communication primitives, like reliable, atomic and causal
multicast. These primitives are implemented on the top of a randomized Byzantine agreement protocol based on
cryptographic primitives like threshold cryptography and coin tossing, therefore they are strictly asynchronous.
The resilience is alsp™;! |.

Besides Rampart, there are two other intrusion-tolerant group communication systems: SecureRing [17] and
SecureGroup [26]. However, in the literature about those systems there is no discussion about their use for the
implementation of the state machine approach. Castro and Liskov argue that these systems are slower than BFT [4].
The resilience is the same.

FS-NewTORP is a recent intrusion-tolerant SMR system based on fail-signal (FS) processes, i.e., processes that
announce when they fail [27]. Each FS process is implemented by two hodes connected by a synchronous channel
Each node monitors its peer. When one node detects that its peer has misbehaved in some way, it signals the failure
to all processes and stops the FS process. The resilience is alldgedlg, which is sub-optimal. However, the
algorithm does not tolerate the failure of two nodes, if they form one FS process. The assumption that two nodes
of the same FS process do not fail simultaneously is hard to substantiate in environments prone to malicious faults.

Quorum systems are an alternative to the state machine replication approach to implement fault-tolerant sys-
tems. Malkhi and Reiter were, to the best of our knowledge, the first to present a study of their application to
tolerate Byzantine faults and to use them to build a dependable data repository that supports shared data abstrac
tions, Phalanx [23]. The applications for quorum systems are not the same as for SMR. Phalanx provides data
stores (read/write operations) and locks, not a generic service. Fleet builds on Phalanx but provides support for
generic objects instead of just read/write operations on variables [24].

Pedone et al. usedeak ordering oracleso solve crash-tolerant agreement problems in asynchronous sys-
tems [28]. The oracle basically gives a hint about the order of the messages, which may be right or wrong. The
hint is simply the order in which the messages are received from the network, which is often right in a local net-
work. Although our work is completely different from theirs, the ‘TTCB with TMO’ oracle might be considered
to be a perfect ordering oracle.

7 Conclusion

This paper proposes a novel state machine approach solution. The algorithm is executed in an asynchronous
and Byzantine environment, with the exception of a synchronous and secure distributed subsystem, the Trusted
Timely Computing Base wormhole. The algorithm is based on a novel TTCB service, the Trusted Multicast
Ordering Service, which defines an order for a set of messages represented by their hashes. Using this service
we managed to design an atomic multicast protocol with a resilience lower than the maximum theoretical bound
in asynchronous system@“.‘—glj againstL”T‘lJ. The paper also shows how the TTCB can be used to circumvent



FLP.
The performance of the system was assessed in terms of time and message complexities, and number of TMOs
executed. The system is currently being implemented using the COTS-based TTCB [11].
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A Correctness Proofs

This appendix presents a proof that the atomic multicast protocol in Algorithm 2 behaves according to its
specification in Section 4.2, i.e., that it satisfies properties AM1-AM4. We assume the system and TTCB models



in Section 2. We also assume that the TMO service behaves according to its specification in Section 3 and that at
mostf = | 21| servers might fail, out of a total of servers.

Theorem 1 If a correct server multicasts a message M with a vector with all MACs valid, then some correct
server eventually delivers M (AM1 Validity).

Proof (sketch):Let us consider Mgg = M. A servers; is said to multicast a messagerM, when it calls
atomicmulticast(Mzg). This call is handled by lines 9-13. The server follows the protocol since it is assumed
to be correct. Mg is enveloped in a Mc4sT message and multicasted to the other servers (line 10). Then, the
server calls TTCBIMO_send and starts a TMO for the messagg#dy (line 11).

Now let us consider another correct serggr This server eventually receives a correct copy of message
Macast attending to the properties of the reliable channels and thatyodind s;, are correct. Wheny, re-
ceives the message it saves iMifait tmo (line 14). This set is processed by task T1, specifically by lines 16-22.
TTCB_TMO_receive is called with the sansdist andthresholdas the ones passed by to TTCB.TMO_send.
Themsgid and the hash of the message are also the same since the mesgagge-Meceived is the same as the
one sent (all MACs are valid dmashis set to the hash of the message in line 17). Attending to the properties of the
TTCB and the TMO service, TTCBMO _receive eventually returns an error different from TMDIKNOWN.
The error WRONGHASH can not occur since the message received is the same as the one sent. This allow us
to conclude that the messagesMa s is eventually removed froriVait tmo and inserted inMait_thresh(lines
19-22).

This second setWait thresh is handled by task T1 in lines 23-30. TTCBVIO_decide returns an error
THRESHOLDNOT_REACHED until (1)s; has called TTCBTMO_send and (2Jhreshold — 1 = | %51 | other
servers irelist have called TTCBTMO _receive withhash# L. The first condition is a direct consequence of the
senders; being correct (assumed by the theorem). In relation to the second condition, all correct servers (except
s;) eventually receive Mc 457 with a valid MAC for the same reasonsgs There are at least— f = n— L’%lj
correct servers, so — L"T*lj — 1 eventually call TTCBTMO_receive withhash# L. So we need to have:

n— %] -1> 2] <= n>2(27 +1

This is always true, so the threshold is eventually reached and TM@B _decide eventually returns an error
different from THRESHOLDNOT_REACHED and the hash of the messagadsr. When this happensy
puts the message Mg in Waitdeliv (lines 25-28).

This third set is processed in lines 31-34. A message is delivered when its order nunmeturned by
TTCB_TMO_decide (line 24), is the next one to be delivered, i.e., equairder_next (line 31). TMO gives
these numbers in order, starting with 1. Only messages that reach the threshold are counted and all correct server:
receive these messages (as discussed above and attending to the fact that all correct servers, in line 30, multicas
the Macasr messages to all servers that they are not aware of having receive them). Therefore, all messages with
numbers lower than are eventually received and delivered, so also doggd/= M. O



Theorem 2 If a correct server delivers a message M, then all correct servers eventually deliver M (AM2 Agree-
ment).

Proof (sketch):For a correct server to deliver a messaggedy = M, thresholdservers have to give the hash

of MrEgq to the TMO service (lines 23-24). Before a correct server delivers a messagg, Nt multicasts a
message Mcas7 containing Mk to all servers that did not give the correct hash gf i} to the TMO, given

in the maskprop_mask(line 30). The theorem assumes one correct server delivers M, therefore all correct servers
receive the message either from the sender or from another correct server. If a correct server receives the messag
then it also delivers it (see the proof for Theorem 1). O

Theorem 3 For any identifier] D, every correct server delivers at most one message M with identifieand if
sender(M)s correct then M was previously multicast §gnder(MYAMS3 Integrity).

Proof (sketch)The identifier (ID) of a message (8CAST, msgd, sendereid, elist, threshold)The TMO service
uniguely identifies one TMO execution by the combination of paraméedisg, threshold, msgd, sendereid),
so only one TMO can be executed for a message with the identifier ID. Therefore, only one message with that ID
can be put inVaittmo (lines 18-20) Wait thresh(lines 21-22) Wait deliv (line 28), and finally delivered (lines
31-34).

The second part of the theorem is an immediate consequence of the properties of the reliable channels that
interconnect the servers. O

Theorem 4 If two correct servers deliver two messagds and M- then both servers deliver the two messages
in the same order (AM4 Total order).

Proof (sketch)The servers deliver the messages in the order indicated by the TMO service. This service gives the
same order to all servers. O



