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Abstract

Genotyping errors occur when the genotype determined after molecular analysis does not
correspond to the real genotype of the individual under consideration. Virtually every
genetic data set includes some erroneous genotypes, but genotyping errors remain a taboo
subject in population genetics, even though they might greatly bias the final conclusions,
especially for studies based on individual identification. Here, we consider four case
studies representing a large variety of population genetics investigations differing in their
sampling strategies (noninvasive or traditional), in the type of organism studied (plant or
animal) and the molecular markers used [microsatellites or amplified fragment length
polymorphisms (AFLPs)]. In these data sets, the estimated genotyping error rate ranges
from 0.8% for microsatellite loci from bear tissues to 2.6% for AFLP loci from dwarf birch
leaves. Main sources of errors were allelic dropouts for microsatellites and differences in
peak intensities for AFLPs, but in both cases human factors were non-negligible error
generators. Therefore, tracking genotyping errors and identifying their causes are necessary
to clean up the data sets and validate the final results according to the precision required.
In addition, we propose the outline of a protocol designed to limit and quantify genotyping
errors at each step of the genotyping process. In particular, we recommend (i) several effi-
cient precautions to prevent contaminations and technical artefacts; (ii) systematic use of
blind samples and automation; (iii) experience and rigor for laboratory work and scoring;
and (iv) systematic reporting of the error rate in population genetics studies.

Keywords: AFLP, automation, blind samples, genotyping errors, human factors, microsatellites,
scoring process 

Received 25 May 2004; revision received 21 August 2004; accepted 21 August 2004

Introduction

In the past decade, new challenges in population genetics
and technical improvements in DNA fingerprinting have
led to the production and analysis of larger molecular data
sets for a wide range of organisms (Waits et al. 2000; Akey
et al. 2002; Kauer et al. 2003; Segovia-Lerma et al. 2003).
Unfortunately, as a logical corollary of this major break-
through, the number of genotyping errors is expected to

increase with the size of data sets (Sobel et al. 2002) and
those errors often go undetected because they are generally
unobtrusive.

Genotyping errors occur when the genotype determined
after molecular analysis does not correspond to the real
genotype of the individual under consideration. However,
this real genotype is inaccessible directly and has to be
assessed with molecular analyses. In practice, genotyping
errors are thus defined as the differences observed
between two or more molecular genotypes obtained inde-
pendently from the same sample. Eradicating genotyping
errors cannot be achieved, mainly because molecular
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assays and manual sample handling are not 100% reliable.
Genotyping errors can be generated at every step of the
genotyping process (sampling, DNA extraction, molecular
analysis, scoring, data analysis) and by a variety of factors
(chance, human causes, technical artefacts).

Virtually every data set obtained by genotyping con-
tains some errors; consequently, they should not be
overlooked as they might greatly bias the final results. For
instance, in mapping studies, undetected error rates as low
as 1% can lead to incorrect map orders and inflation of map
lengths (Buetow 1991; Lincoln & Lander 1992; Hackett &
Broadfoot 2003). In population genetics surveys, genotyp-
ing errors affect both the allele frequency estimates and the
accurate discrimination of different genotypes. False
estimates of allele frequency can create an artificial excess
of homozygotes (Taberlet et al. 1996; Gagneux et al. 1997a),
a false departure from Hardy–Weinberg equilibrium (Xu
et al. 2002), an overestimation of inbreeding (Gomes et al.
1999; Taberlet et al. 1999) or unreliable inferences about
population substructures (Miller et al. 2002). Erroneous
genotypes can distort population size estimates (Creel et al.
2003; McKelvey & Schwartz 2003), individual identifica-
tion (Taberlet & Luikart 1999; Paetkau 2003) and parentage
analysis (Miller et al. 2002). For instance, when investigat-
ing the reproductive behaviour of chimpanzee in a Taï
Forest community, Gagneux et al. (1997b) concluded, on
the basis of molecular typings, that half the offspring had
an extra-group father, as they did not display any allele
inherited from an intragroup father. In contradiction with
several other studies (Constable et al. 2001; Vigilant et al.
2001), these results were actually due to allelic dropouts
(Constable et al. 2001), i.e. amplifications of only one of the
two alleles for heterozygous individuals, producing false
homozygotes (Taberlet et al. 1996).

Specific protocols for limiting the extent of such errors
and for estimating their rate of occurrence are standard
practice in only some genetics research areas, including
noninvasive sampling (see Paetkau 2003 for a review),
ancient DNA analysis (Hofreiter et al. 2001; Yoder &
Delefosse 2002) or the single nucleotide polymorphism
(SNP) technology (Wang et al. 1998; Kennedy et al. 2003). In
contrast, in most other areas of molecular ecology, geno-
typing errors are generally not given much importance
and they are sometimes completely ignored. To illustrate
this fact, we inspected all the studies published in Molecular
Ecology in 2003 that deal with microsatellite or amplified
fragment length polymorphisms (AFLP) data. Only
about 6% of the 125 papers using microsatellite markers
clearly mentioned an error rate value, or at least reported
the percentages of allelic dropouts or false allele amplifica-
tions. Concerning AFLP data, the error rate was estimated
in only two of the 14 studies. This does not necessarily
mean that researchers do not evaluate the reproducibility
of their genotypings, as many studies indicate precautions

to limit genotyping errors. However, without any
published indications about error rates, one might suspect
the reliability of some typings, especially in case of curious
genotypes or controversial results.

In this context, this work has three main objectives. First,
we aim to demonstrate that erroneous genotypes are a
reality that needs to be faced. For this purpose, we use four
data sets from our laboratory to identify genotyping errors
sources and quantify the error rate: two sets of brown bear
(Ursus arctos) microsatellite data obtained either by non-
invasive methods or tissue sampling, and AFLP data for
common frog (Rana temporaria) and dwarf birch (Betula
nana). It is important to note that three of the four data sets
involve standard tissue-derived samples, not samples
suspected to be problematic. Second, we would like to
widen the debate on typing errors to population genetics,
and point out the benefits of considering this issue when
making use of molecular markers for the purpose of
genotyping. Third, we outline a general protocol designed
especially to deal with these typing errors before the geno-
typing procedure, by taking precautions to limit them, and
subsequently, by estimating the error rate and validating
the results.

Materials and methods

General strategy and definition of the error rate

To illustrate how to track and assess genotyping errors,
we chose four case studies representing a wide range of
population genetics investigations (parentage analysis,
population size estimation, detection of loci under selection
and phylogeographical studies). These case studies are
complementary as they differ in their sampling strategies
(noninvasive or tissue sampling), in the type of organism
studied (plant or animal) and the molecular markers used
(microsatellites or AFLPs).

Unless specified, the error rate was calculated at the
allelic level. For microsatellites, it was estimated as the
ratio between observed number of allelic differences and
total number of allelic comparisons. For AFLPs, as only
the phenotype (band presence or absence) is accessible, the
error rate was estimated as the ratio between observed
number of phenotypic differences and total number of
phenotypic comparisons.

Case study 1: microsatellites from brown bear (Ursus 
arctos) tissues

Context of the study and sampling. This study aimed to
investigate the mating system of the brown bear in south-
central Sweden by determining parentage of cubs using
genetic tools (Swenson et al. 1998; Bellemain et al. unpublished
data). Tissue samples obtained from live and hunter-killed
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bears were stored in 95% ethanol after collection until
DNA extraction.

DNA extractions and typing. DNA extractions from tissues
were carried out using the QIAamp Tissue Kit (Qiagen)
involving overnight digestion with proteinase K. Tubes
without tissue samples were treated in the same way in
order to check for contaminations. Microsatellites primers
described in Paetkau & Strobeck (1994), Paetkau et al. (1995)
and Taberlet et al. (1997) were used to amplify DNA with a
polymerase chain reaction (PCR). Eighteen microsatellite
loci (G1A, G1D, G10B, G10C, G10L, G10P, G10X, G10H,
G10O, G10J, Mu05, Mu10, Mu15, Mu23, Mu50, Mu51,
Mu59, Mu61) were amplified to obtain a multilocus geno-
type for each sample following the protocol described in
Waits et al. (2000) and loaded on an ABI Prism 3100 DNA
sequencer (Perkin-Elmer). The gels were analysed using
genescan® Analysis 2 and genotyper® 1.1 software
packages (Applied Biosystems).

Error rate checking. The genetic database included 977
individual Scandinavian brown bears genotyped between
1996 and 2003 by two different investigators (Waits et al.
2000; Bellemain, unpublished data). Thirty-four samples
were chosen randomly from this database to be genotyped
again blindly following the above protocol. The genotypes
obtained were compared to the previous ones, and the
number of allelic mismatches was counted.

Case study 2: microsatellites from brown bear (Ursus 
arctos) faeces

Context of the study and sampling. This study aimed at estimat-
ing brown bear population size from noninvasive genetic
sampling in south-central Sweden. The 1904 collected
faecal samples were conserved in 95% ethanol until DNA
extraction (Bellemain et al. 2004).

DNA extractions and typing. DNA extractions were per-
formed using the Qiamp DNA Stool origin kit (Qiagen)
developed especially for this type of material and the
manufacturer’s extraction protocol was followed. All
extractions were carried out in a room dedicated to hair
and faeces processing. Tubes without faeces were included
in the process as negative controls in order to check for
contaminations. Six microsatellite loci (Mu10, Mu23, Mu50,
Mu51, Mu59, G10L) were amplified four times following
the multiplex preamplification method (Pigott et al. 2004)
and the protocol described in Bellemain & Taberlet (2004).
Samples were typed as heterozygous at one locus if both
alleles appeared at least twice among the four replicates,
and they were typed as homozygous if all the profiles
showed four identical homozygous profiles. If neither of
those cases occurred, the alleles were treated as missing

data. The samples were loaded on an ABI Prism 3100 DNA
sequencer and analysed using genemapper® 3.0 (Applied
Biosystems).

Genotyping error rate checking. The error rate was assessed
in two ways. First we numbered the allelic differences
between genotypes obtained from the same sample but
from different DNA extractions (processed 8 months apart).
Forty-eight already successfully genotyped samples were
chosen randomly to be re-extracted blindly, reamplified
another four times and analysed. Second, we counted the
allelic differences between the genotypes obtained for
each of the four replicates to the ‘consensus’ genotype for
96 samples (~5%) chosen randomly among the successfully
genotyped samples. Note that these four replicates were
obtained from the same DNA extraction. In both cases, the
inconstancies between the typings were classified as due to
‘allelic dropout’ or to ‘false allele or contamination’.

Case study 3: AFLPs from common frog (Rana 
temporaria) tissues

Context of the study and sampling. The purpose of this study
was to detect loci under selection reflecting local adaptive
divergence between lowland and mountain populations
of common frog (Bonin et al. unpublished data). FST values
between these two groups are expected to be ‘outlier’ for
loci under diversifying selection, i.e. lower or higher than
expected based on neutral evolution (Beaumont & Nichols
1996). Therefore, AFLP markers were chosen because these
provide a large coverage of the genome. In total, 192
samples consisting of adult frog fingers and live tadpoles
were collected in six plain or mountain populations of the
North French Alps. Frog fingers were stored in silica gel
and tadpoles were kept alive until DNA extraction.

DNA extractions and typing. Total DNA was extracted using
the DNeasy Tissue Kit (Qiagen) following the manufac-
turer’s instructions. The AFLP procedure was modified
slightly from Ajmone-Marsan et al. (1997). Genomic DNA
(400 ng) was digested first with 5 U of TaqI at 65 °C for 2 h,
and second with 5 U of EcoRI at 37 °C for 2 h. Double-
stranded TaqI and EcoRI adapters were then ligated to
restriction fragments for 3 h at 37 °C. Five different primer
pairs (Table 1) were used for the selective amplification
following the PCR program given in Gaudeul et al. (2000).
Selective products were analysed on an ABI Prism 3100
DNA sequencer and AFLP patterns were visualized
with genescan® Analysis 3.7 (Applied Biosystems)
and genographer 1.6.0 (Benham et al. 1999; http://
hordeum.oscs.montana.edu/genographer/). AFLP profiles
were scored according to the absence/presence of peaks,
i.e. as dominant markers. A drop in intensity is generally
clearly distinguishable between high intensity peaks
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(corresponding to selective amplification) and low intensity
peaks (corresponding to nonselective amplification, i.e.
background noise). This discontinuity was scrutinized to
set up the scoring threshold, and it was usually situated
around 10% of the highest peak’s intensity for the marker
under consideration.

Before error checking, several precautions were taken
to ensure the reliability of the genotypes. First, negative
controls were run at each step of the genotyping process
to check for exogenous contaminations. Second, samples
with poor DNA quality, i.e. with fragmented genomic
DNA on agarose gel, were not genotyped. Third, repro-
ducibility was monitored using intra- and interrun repli-
cates. Fourth, samples with odd profiles, i.e. where most of
the peaks are not observed in other profiles, were run a
second time. If the genotyping was still doubtful, these
samples were discarded.

Genotyping error rate checking. First, in order to estimate
the genotyping error rate, 24 blind DNA samples were
chosen randomly in the pool of already extracted samples,
run and analysed as ordinary samples by the same person.
It was not possible to proceed from independent extrac-
tions, because the whole tissue samples had been used for
the first extraction. Matrices obtained for the blind and the
original samples were then compared to calculate the error
rate and the main error sources were identified. Second,
the raw profiles for primer pairs 1, 2 and 3 (Table 1) were
scored by two different people, with no scoring method
decided a priori in order to evaluate the amount of
subjectivity entering into the scoring process. Levels of
genetic differentiation and outlier loci determined with
the two resulting data sets were then compared. For this
purpose, assuming Hardy–Weinberg equilibrium, FST
values between mountain and plain populations were
calculated independently for each marker in each data set
and the correlation between the two resulting FST values
was tested.

Case study 4: AFLPs from dwarf birch (Betula nana)

Context of the study and sampling. This study aimed to
analyse the postglacial phylogeography of Betula nana
(Bronken Eidesen et al. unpublished data). Leaves of B. nana
were sampled from 240 plants in 25 populations throughout
the distribution range, with emphasis on the North Atlantic
region. Samples were stored immediately in silica gel and
for 19 populations, one plant was sampled randomly twice,
to be used as a blind replicate throughout the analyses.

DNA extractions and typing. Total DNA was extracted using
DNeasy Plant Mini Kit or DNeasy 96 Plant Kit (Qiagen)
according to the manufacturer’s instructions. The AFLP
protocol was carried out following Gaudeul et al. (2000)
using three selective primer combinations (Table 1). The
scoring procedure and the precautions taken to ensure
reliability of the genotypes were the same ones as described
above for R. temporaria.

Genotyping error rate checking. First, we estimated the
technical difference rate before scoring, i.e. the rate of
artefactual differences created during laboratory work.
Differences in peak intensities due to irregular PCR
efficiencies, slight shifts between two homologous peaks
occurring during the migration, restriction anomalies
or parasite peaks caused by contamination are common
examples of these technical differences. Their immediate
consequence is that two profiles obtained independently
for the same individual are not always exactly identical.
To estimate the technical difference rate, the duplicated
AFLP profiles were compared for differences between all
fragments using genescan® Analysis in the range from 50
to 500 base pairs (bp). The technical difference rate was
calculated as the number of differences per profile divided
by the total number of fragments per profile.

Second, we estimated the error rate after scoring by
comparing the 1/0 matrices obtained for the duplicated

 

Primer pair Sequence primer EcoRI Sequence primer TaqI

Rana temporaria
1 5′-GACTGCGTACCAATTCACG-3′ 5′-GATGAGTCCTGAGCGAAAC-3′
2 5′-GACTGCGTACCAATTCACG-3′ 5′-GATGAGTCCTGAGCGAACA-3′
3 5′-GACTGCGTACCAATTCACT-3′ 5′-GATGAGTCCTGAGCGAAAC-3′
4 5′-GACTGCGTACCAATTCACT-3′ 5′-GATGAGTCCTGAGCGAACT-3′
5 5′-GACTGCGTACCAATTCACT-3′ 5′-GATGAGTCCTGAGCGACAA-3′

Primer pair Sequence primer EcoRI Sequence primer MseI

Betula nana
6 5′-GACTGCGTACCAATTCAGT-3′ 5′-GATGAGTCCTGAGTAACTC-3′
7 5′-GACTGCGTACCAATTCATG-3′ 5′-GATGAGTCCTGAGTAACAC-3′
8 5′-GACTGCGTACCAATTCATG-3′ 5′-GATGAGTCCTGAGTAACAA-3′

Table 1 Primer pairs used for the AFLP
procedure. Selective bases are shown in
bold type
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samples. Differences detected here could be due either to
the technical work, and/or to the subjectivity introduced
during the scoring process, for instance when evaluating
whether a fragment with low intensity should be scored as
present or not.

Third, the raw profiles were scored independently
by two different people (hereafter referred to as double
scoring). To compare the biological contents of the two
resulting data sets, two independent principal coordinate
(PCO) analyses were run for each scoring, and the correla-
tion between the values obtained for the first axis in both
analyses was tested.

Results

Case study 1: microsatellites from brown bear tissues

In total, 1209 alleles were compared, i.e. 34 samples typed
for 36 alleles, except for 15 alleles that could be typed for
only one extract but not the other. Ten genotyping errors
were identified, including six allelic dropouts and four
false alleles or contaminations. This gave an error rate of
0.8%. Six (17.6%) multilocus genotypes contained at least
one error among the 34 genotypes checked.

Case study 2: microsatellites from brown bear faeces

Genotyping error rate between consensus genotypes, i.e. geno-
types obtained from two independent extractions from the same
faecal sample. We obtained genotypes for 47 of the 48 re-
extracted samples. One microsatellite (Mu10) failed to
amplify for 24 DNA extracts from the second extraction.
We also disregarded six nonamplifying alleles that could
be typed for one extract but not the other. In total, 10 allelic
differences were identified of the 510 comparisons, giving
a genotyping error rate of 2.0%. Actually, the erroneous
alleles all belonged to the same multilocus genotype among
the 47 genotypes checked (2.1% of erroneous genotypes).

Genotyping error rate between replicates from the same DNA
extract. We compared the genotypes of each of the four
replicates to the consensus genotype for each of the
96 samples for six microsatellite loci. Thirty-four non-
amplifying alleles were disregarded from the comparison.
Overall, 28 allelic differences were found of 2270 alleles
examined, and we obtained a genotyping error rate of 1.2%.
Allelic dropout accounted for 89% of the inconsistencies,
and false alleles or contaminations for 11%.

Case study 3: AFLP from frog tissues

A total of 222 polymorphic bands were chosen as markers
among the five primer combinations and 192 individuals
were screened for these markers. One blind sample was a
negative control (no DNA) and showed no amplification.
The remaining 23 blind samples were all assigned correctly
to the corresponding individual after amplification and
blind scoring. However, 174 differences were observed
of 5106 phenotypic comparisons, giving an error rate of
3.4%. It appeared that differences were concentrated on
seven markers and one blind sample, whose profile was
particularly weak. After excluding these seven markers
and this individual from the calculation, the error rate
between blind samples and corresponding individuals
was 2.0% (96 differences of 4730 phenotypic comparisons)
and 20 of 23 multilocus genotypes contained at least one
error (86.6%). Differences between two profiles were due
mainly to disparities in peak fluorescence intensities (63%,
Fig. 1a) and a slight shift between two peaks (21%, Fig. 1b).
Peak appearance or disappearance accounted only for 9%
of the differences, and were observed especially for the
weakest profiles, so they could be explained by stochastic
anomalies in the amplification.

Results of the double scoring by two different ex-
perimenters are summarized in Table 2. The two peopole
tended not to choose the same markers on a given profile:
only 44% of the chosen markers were found in both data

Table 2 Double scoring of raw profiles for Rana temporaria and Betula nana. The percentages indicated were calculated in relation to the total
number of markers for each primer pair
 

Organism
Primer 
pair

Total no. 
of markers

% scored 
by person 1

% scored 
by person 2

% scored by 
both people

% markers 
scored by 
person 1 only

% markers 
scored by 
person 2 only

Rana temporaria 1 61 77.05 73.77 50.82 26.23 22.95
2 73 86.30 60.27 46.57 39.72 13.70
3 71 76.06 60.56 36.62 39.44 23.94
Mean 68.33 79.80 64.87 44.67 35.13 20.20

Betula nana 6 34 82.35 67.65 50.00 32.35 17.65
7 47 82.98 55.32 38.30 44.68 17.02
8 33 66.67 57.57 24.24 42.42 33.33
Mean 38.00 77.33 62.22 37.51 39.82 22.67
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sets (91 markers of 205 in total). The genotypes based on
these 91 markers were compared for 171 individuals.
Four markers were scored totally differently, and were
excluded from the calculation. The difference between the
two independent scorings was 2.1%, i.e. 308 differences of
14 877 comparisons. The FST values between plain and
mountain populations were determined in each data set
and compared in Fig. 2. After normalization of the FST
values for the 91 markers in common, the Pearson correla-
tion coefficient was 0.94 (P = 10−4). When considering 71
markers chosen by one scorer only and scored afterwards
by the second one, the Pearson correlation coefficient was
0.92 (P = 10−4).

Case study 4: AFLPs from dwarf birch

The DNA extraction turned out to be a problematic step in
this study, and several samples were discarded due to too

Fig. 1 Main error sources in AFLP geno-
typing. The two overlapping profiles were
obtained independently from the same
individual (species: Rana temporaria). The
black arrow indicates the peaks under con-
sideration. (a) Differences in peak intensities.
(b) Slight shift between two peaks.

Fig. 2 Comparative FST values for the two different scorings of the
total Rana temporaria data set. Each point represents one marker
present in both data sets (closed circles) or chosen by one scorer
first and then rescored by the second scorer (open circles).
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low DNA concentration. In total, 83 polymorphic markers
were scored for the three primer combinations, and 174
plants were genotyped. Eleven duplicated samples worked
successfully for all primer combinations and were used to
calculate the technical difference and the error rate. When
comparing the profiles of duplicated samples, the average
number of differences per profile was 3.1, and the average
number of fragments per profile was 241.1 (combined for
all three primer combinations). Thus, the technical differ-
ence rate was 1.3%.

After scoring, the genotyping error rate between the
blind samples and the corresponding individuals was 2.6%,
i.e. 25 differences of 968 phenotypic comparisons. The
differences were not distributed evenly among the com-
parisons: the comparisons with an enhanced number of
technical differences also had more genotyping errors.
These errors were due mainly to intensity differences
between profiles.

Results of the double scoring of the same profiles are
summarized in Table 2. As for R. temporaria, the two
scorings were not based exactly on the same polymorphic
markers, as only about 38% of the chosen markers were in
common, i.e. 43 markers of 114. The genotypes based on
these 43 markers were compared for all 174 plants, giving
a rate of difference of 1.5% between the two scorings,
i.e. 112 differences of 7482 comparisons. Although they
did not include exactly the same sets of markers, the two
scorings displayed the same main patterns in the PCO
analyses. The values obtained for the first PCO axis in each
data set are showed in Fig. 3. The Pearson correlation
coefficient was 0.93 (P = 10−4).

Discussion

Causes of genotyping errors

Genotyping errors can be generated during all steps of the
genotyping process by causes that may be multiple, cryptic
and unpredictable. In the literature only technical causes
are well documented, because they are easier to identify.
They include, for example, amplification artefacts (Koonjul
et al. 1999; Rodriguez et al. 2001), biochemical anomalies
(Polisky et al. 1975; Smith et al. 1995), electrophoresis dis-
crepancies (Fernando et al. 2001), laboratory temperature
variation (Davison & Chiba 2003), material and protocol
used (Delmotte et al. 2001; Papa et al. 2004) or template
DNA quality or quantity (Goossens et al. 1998; Matthes
et al. 1998; Bradley & Vigilant 2002). Errors due to technical
causes are in general related inversely to the quality of
reagents and equipment, and to the organization of the
laboratory in different rooms to avoid contaminations. On
the other hand human factors, such as lack of care or skill,
thoughtlessness and subjectivity are largely ignored in the
literature as potential causes of errors, with a few excep-
tions (Ewen et al. 2000; Paetkau 2003). However, our results
showed that human factors should not be underestimated
as they accounted for many of the typing errors in our
data sets, especially when combined with technical causes.
Sample swaps, pipetting errors or confusion in the data
entry after scoring are common errors due to human
factors when dealing with many individuals. Due to the
infinite potential sources of genotyping errors, it is
impossible to identify and eradicate them all. In order to
minimize the occurrence of errors, one should instead try
to focus on the most probable causes.

Genotyping errors in our data sets

Table 3 gives an overview of all our results. In our two
microsatellite data sets, the genotyping error rate varied
depending on the type of sample and assessed error. For
the tissue samples, we calculated a genotyping error rate of
0.8%. For the faecal samples, the error rate among replicates
from the same DNA extract approximated 1.2% and the
error rate between consensus genotypes from independent
extractions was 2.0%. The latter errors were probably
caused by a sample mix-up because all inconsistent alleles
occurred in one genotype and corresponded to the alleles
of another sample.

Allelic dropouts were found to be non-negligible both
in tissue and faecal DNA samples. This error category is
linked intimately to the quality/quantity of the DNA con-
tained in the sample and is considered mainly in noninva-
sive studies, because of usually low quantity and degraded
DNA in samples such as faeces, hairs or feathers (Taberlet
et al. 1996; Goossens et al. 1998; Taberlet & Luikart 1999).

Fig. 3 Comparative values obtained for the first axis in the
independent principal coordinate analyses executed on the two
different scorings of the total Betula nana data set (174 individuals).
Person 1 scored 83 markers, person 2 scored 69 markers. Each
point represents one individual. The equation of the regression
line is not significantly different from y = x (Student’s test,
d.f. = 172, α = 0.05, t = 0.96 for the slope and t = 0.10 for the
constant).
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However, our results show that accurately amplifying DNA
from tissue samples can be challenging as well, even if
such technical difficulties are probably under-represented
in the literature ( Jeffery et al. 2001).

In the study using microsatellites from brown bear
faeces we used the multitube approach, based on the rep-
lication of the DNA amplifications up to eight times to
determine a consensus genotype (Taberlet et al. 1999). This
approach is used widely in noninvasive studies to deal
with the allelic dropout problem but has been criticized
for its financial cost. Several alternative strategies have
been developed in order to avoid too many amplifications
(Miller et al. 2002; McKelvey & Schwartz 2003; Paetkau
2003). Each of them has proved its efficiency in detecting
allelic dropouts in some particular cases. However, they
are sometimes difficult to put into practice as they limit
automation and may consequently increase the risks of
errors due to human handling. Moreover, these altern-
ative methods depend on strong assumptions such as low
error rates (Mowat & Paetkau 2002), absence of other
error types (Miller et al. 2002) or sufficient number of
amplified loci (McKelvey & Schwartz 2003). As a result,
they cannot be generalized systematically. Therefore, when
starting a noninvasive study, one should first determine
the best approach in order to achieve accuracy of the
genotyping.

In our two AFLP data sets, the genotyping error rates
(2.0% for R. temporaria and 2.6% for B. nana) were consistent
with the results of previous reproducibility tests reporting
AFLP error rates below 5% in plants ( Jones et al. 1997;
Hansen et al. 1999) as well as in animals (Ajmone-Marsan
et al. 1997; Ajmone-Marsan et al. 2001; Bagley et al. 2001).
Compared to other multilocus genotyping methods, such
as RAPD, the AFLP procedure is highly reproducible
mainly because of stringent hybridization conditions (Vos

et al. 1995), but some classical genotyping error sources are
well documented in the literature. The protocol is known
to be sensitive to contamination, especially from bacterial
or fungi exogenous DNA (Savelkoul et al. 1999; Dyer &
Leonard 2000), because amplification is not taxon-specific.
PCR inhibition or restriction artefacts have also been
reported previously (Polisky et al. 1975; Koonjul et al. 1999),
as well as comigration of nonhomologous fragments
(O’Hanlon & Peakall 2000; Vekemans et al. 2002). Vos et al.
(1995) reported that reproducibility could be affected if the
selective primers have more than two selective bases
compared to the preselective primers, because of possible
nonspecific annealing during the amplification. Our experi-
ence also shows that dealing with many samples or popu-
lations tends to increase the error rate (Bronken Eidesen
et al. unpublished data). Here, we first emphasized what
we called the ‘technical differences’, i.e. differences due the
fact that laboratories conditions can be changeable. Our
results show that they are rare (1.3% of differences between
profiles for B. nana) and can be assessed simply by compar-
ing profiles from replicate samples. Some of these technical
differences are due to the appearance of low-intensity
peaks that would not be chosen as markers anyway, or vari-
ations in the peak intensities. As a consequence, only some
of the technical differences result in genotyping errors.
However, we noticed that typing errors often come from a
technical difference combined with a misreading during
the scoring process. In particular, 63% of the genotyping
errors in R. temporaria were actually disparities in the peak
fluorescence intensity misinterpreted as real differences. In
order to limit the extent of typing errors in AFLP, technical
differences should thus be avoided as much as possible,
especially disparities in peak intensities. This can be
achieved by careful standardization of the amount of DNA
used in the global procedure. According to our experience,

Table 3 Overview of the results
 

Molecular markers used Microsatellites AFLPs

Species Ursus arctos Rana temporaria Betula nana

Sampling Tissue Faeces Tissue Tissue

Genotyping error 0.8% 2% (between consensus 
genotypes)

2.0% 2.6%

rate between alleles 1.2% (between replicates)

Frequency of erroneous 25.1% (theoretically) 21.5% (theoretically)
2.1% (in practice)

98.8% (theoretically)
multilocus genotypes 17.6% (in practice) 86.6% (in practice)

Main error sources Allelic dropouts (+ human error) Differences in intensity between profiles 
Human error (scoring subjectivity)

Technical difference rate 1.3%

Difference rate between 2.1% 1.5%
independent scorings (44% markers in common) (38% markers in common)
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limiting the technical differences is also greatly facilitated
by normalization of the profiles from different runs with
software packages such as genographer.

We also examined the differences encountered between
scorings from different experimenters. To our knowledge,
estimates of this kind of differences have never been
reported in the literature for AFLPs. Our results show that
independent scoring of each profile by two people can lead
to differences in both the set of markers chosen and the
genotypes for the markers chosen by both scorers. Consider-
ing the choice of markers, we found that less than half
the peaks that one scorer categorized as markers were
also chosen by a second scorer. This major discrepancy in
marker choice indicates that even if clear rules and written
procedures are established, this step relies mainly on sub-
jectivity and experience. Considering only the markers
chosen by both scorers, the difference rates were compar-
able for B. nana (1.5%) and R. temporaria (2.0%). None the
less, the effect of the scoring differences on the final conclu-
sion depends on whether the biological conclusions are
derived by averaging over the whole data set or by com-
paring one subset of data with another. For B. nana, the
whole data set was used to investigate the phylogeography
of the species. Even if the two data sets originating from
the two scorings were not perfectly consistent and did not
include the same sets of markers, the extracted biological
inferences were similar (Fig. 3). This suggests that in at
least some cases, genotyping errors do not bias the results
but just add some noise to the biological signal and that all
the markers express the same information. On the other
hand, for R. temporaria, the analysis considered each marker
independently from the others. FST values were statistic-
ally comparable for the markers present in both data sets
(Fig. 2) but a distortion can none the less be observed for
markers chosen by only one scorer, especially for high
FST values indicative of markers likely to be outliers. In
marker-specific approaches such as outlier loci detection,
double scoring of AFLP profiles can be used to limit the
bias linked to scoring subjectivity.

In short, we showed that the scoring process is the most
error-prone step in the AFLP procedure, generating most
of the errors, because it relies on subjective decisions. None
the less, following several straightforward recommenda-
tions can minimize the amount of subjectivity introduced
in the scoring. Before setting the scoring threshold, we
suggest looking for a drop in intensity among the peaks
corresponding to the marker under consideration. A clear
discontinuity indicates the frontier between nonselective
(i.e. background) and selective amplifications and using
different software packages is helpful to scrutinize this
drop in intensity, as the AFLP profiles are presented in
different but complementary ways. Moreover, software
packages such as genographer allow a convenient semi-
automated scoring, which improves the overall data reli-

ability (Papa et al. 2004), even if manual checking must still
be performed.

It is important to note that even a low percentage of geno-
typing errors can lead to a high percentage of incorrect
multilocus genotypes (having at least one error). Assum-
ing a stochastic and independent distribution of errors, the
probability P of encountering at least one error in a multi-
locus genotype (n loci with an error rate of ri for locus i ) can
be estimated with the following formula:

where x = 2n for codominant markers (microsatellites) and
x = n for dominant markers (AFLPs).

In our microsatellite tissue database, considering 18 loci
in a genotype, a 0.8% genotyping error rate implies a 25.1%
theoretical probability of encountering at least one error
per genotype. For the faecal microsatellite database, con-
sidering six loci per genotype and an error rate of 2%, this
probability is equal to 21.5%. In our AFLP data sets, this
theoretical probability rises up to 98.8% for R. temporaria
(222 markers). Actually, the frequency of erroneous geno-
types found in our data sets was lower than this theoretical
probability, because of a nonindependent distribution of
errors (several errors in the same genotype). Increasing the
number of markers tends to amplify the background noise
due to genotyping errors (Waits & Leberg 2000; McKelvey
& Schwartz 2003), so a compromise should be found
between the number of markers necessary to obtain reli-
able results and the tolerated error rate.

Recommendations for limiting and identifying 
genotyping errors

When examining population genetics papers, we mainly
found (i) no quantitative estimation of errors and/or (ii)
protocols to reduce genotyping errors that are sporadic
and designed primarily to address only the specific type of
error that is expected. There is a clear lack of guidelines
to account for the reality of genotyping errors. Therefore,
in Table 4, we propose a comprehensive list of actions to
ensure a minimal error rate and a good estimate of that
rate. We would like to emphasize here several crucial
points on this list. First, performing blind samples is
strongly recommended, because it is the most rigorous
way to estimate the error rate. Blind samples go through
the entire genotyping process and therefore accumulate
the effects of all potential error sources. We are aware
that performing blind samples is expensive and time-
consuming; however, as errors often are rare throughout
data sets, an accurate estimation of their rate requires a
sufficient number of blind replicates (5–10% of the samples).
Second, automation of laboratory work has proved to be a
reliable way to limit genotyping errors as genetic data sets

P ri
x

i

n

    (   )= − −
=

∏1 1
1

MOI
x=1 for dominant markers and x = 2 for codominant makers

MOI
erratum: see below
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tend to become larger and larger, increasing the error risks
linked to the handling of a huge number of samples, such
as intercontaminations, sample swaps or confusion in the
data entry. Finally, as discussed previously, human factors
turn out to have a major impact on the extent of genotyping
errors. Consequently, experience and rigor in the laboratory
work is necessary before any extensive genotyping is
undertaken.

In some particular cases, the genetic data can be
confronted with additional information, allowing a better
detection of genotyping errors. It is, for instance, possible
to check the accuracy of the genotyping results in the field
(Bellemain et al. 2004). Genetic data can also be compared
with pedigree data to confirm Mendelian transmission of
alleles between parents and offspring. This approach has
experienced considerable success in mapping studies,
where statistical tools have been developed to track such

Mendelian inconsistencies (Ewen et al. 2000; Sobel et al.
2002). However, it has been demonstrated that more than
25% of typing errors can be Mendelian-compatible (Douglas
et al. 2002), which makes them harder to detect.

What to do with the genotyping error rate?

As a first step, the error rate can be used to detect
odd genotypes or unreliable markers (markers that are
unstable or difficult to score) and to clean up the data. It
helps to determine a second and final error rate which,
ideally, is lower. In the R. temporaria data set, the first error
rate calculated with blind samples (3.4%) allowed us to
discard seven untrustworthy markers of 222 markers in
total, and to obtain a smaller error rate (2.0%). In a second
step, the final error rate should be regarded as a means to
evaluate the data quality. Mentioning the error rate should

Table 4 List of recommendations to track and assess genotyping errors (before and after the genotyping process, respectively)
 

Step Recommendations

Whole process
Before and after Perform blind samples

Sampling
Before Use a standard protocol for labelling and conserving samples

Use an updated database
Carry out the sampling in good field conditions (e.g. weather, temperatures, etc.)

DNA extraction
Before Perform negative control to monitor contaminations

Follow a rigorous protocol (automation)
Extract DNA in a different room if problematic samples (low quality/quantity DNA)

DNA treatment/amplification
Before Perform negative control to monitor contaminations

Perform a pilot study (check Mendelian transmission and reproducibility)
Acquire a good knowledge of the marker and its technical limitations
Follow a rigorous protocol (automation)
Discard samples with amplification/repeatability problems
Include a previously typed sample in each amplification as a reference

After Replicate amplifications (for both noninvasive and ordinary samples)
Perform independent repeatability tests
Confirm the amplifications in a different laboratory in case of doubtful results

Scoring
Before Favour automated scoring and check data by hand

Obtain a good experience with the marker scoring prior to any genotyping session
Discard low quality DNA samples
Use reference samples to control scoring

After Cross-read the data sets

Analysis
Before Eliminate suspicious markers (clean the data)

After Compare genetic data with all other available data (field data, geographical data or literature data)
Quantify the overall genotyping error rate and decide if it is low enough for the intended purpose
Include the genotyping error rate in the analysis programs, if possible
Discard markers whose frequency is in the range of the error rate
Consider genotyping errors as a possible cause of Hardy–Weinberg or linkage disequilibrium
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not discredit the final conclusion drawn from the data.
On the contrary, it should be considered as a proof of data
quality and thus could definitively promote the use of
those data in other studies. Results presented without
any indication of statistical significance are generally not
considered acceptable and in the same way, stating the
genotyping error rate in population genetics studies should
become a convention such as the P-value in statistical tests.
In case of an unusually high error rate, this value can also
give a useful clue about technical difficulties encountered
and this would benefit the scientific community greatly.

Once the error rate has been estimated, a decision has
to be made whether the results can be considered trust-
worthy. For this purpose, the error rate value must be first
placed into its context. It is logical that the smaller the
study level, the lower should be the error rate. Studies
requiring individual identification (estimation of popula-
tion sizes, parentage analyses) are particularly affected by
high genotyping error rates (Paetkau 2003). On the other
hand, when working at a population level (e.g. genetic
diversity assessments, population structure investigations),
trying to reach 0.1% error rate instead of 2% may require a
great deal of time and cost to finally provide little benefit
in terms of increased precision and reduced bias.

Statistical aspects of genotyping errors

In this work, statistical aspects of genotyping errors will
not be discussed in detail, as they would require much
more consideration than we can give here (see Gordon
et al. 2002; Sobel et al. 2002 for a review). None the less, we
would like to insist on some important challenges con-
cerning the statistical treatment of genotyping errors. One
of them is the modelling of how genotyping errors occur
(Akey et al. 2001; Mitchell et al. 2003). Genotyping errors
can indeed arise stochastically, or be concentrated on
specific alleles or loci. For example, some microsatellite loci
are particularly prone to allelic dropouts (Constable et al.
2001; Jeffery et al. 2001; Creel et al. 2003). The mistyped
allele can also have an equal probability of being mistaken
for any other allele, or a higher probability of being mistaken
for a specific allele. This occurs, for example, when errors
are due to a systematic contamination by the same allele.

Another important challenge regarding statistical aspects
of genotyping errors is the development of methods
integrating error models and rates to evaluate the impact
of such errors on the final inferences. This has been invest-
igated mainly with programs dealing with noninvasive
data (Valière 2002; Valière et al. 2002) and pedigree data
(Cercueil et al. 2002; Duchesne et al. 2002; Sobel et al. 2002;
Wang 2004), on which genotyping errors can have particu-
larly tremendous effects. Nevertheless, it must be real-
ized that for parentage analyses exclusion-based methods
are still used, although they assume error-free data sets

which are largely unrealistic. On the other hand, there is a
critical need for population genetics software packages
incorporating error models and rates as entry parameters
and reporting a confidence interval for the results. Simula-
tion programs generating data sets with a particular geno-
typing error model would also help to evaluate the bias
they can introduce in the results. Unfortunately, such pro-
grams are rare, except for linkage studies (Akey et al. 2001;
Hackett & Broadfoot 2003; Mitchell et al. 2003). Statistical
analyses of the effects of typing errors, although a neglected
research area, deserve more attention and we hope this
study will promote an interest in this kind of research.
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