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Recent advances in sequencing technologies provide unprecedented opportunities for
epigenetic biomarker development. Particularly the DNA methylation pattern—which is
modified at specific sites in the genome during cellular differentiation, aging, and
disease—holds high hopes for a wide variety of diagnostic applications. While many
epigenetic biomarkers have been described, only very few of them have so far been
successfully translated into clinical practice and almost exclusively in the field of oncology.
This discrepancy might be attributed to the different demands of either publishing a new
finding or establishing a standardized and approved diagnostic procedure. This is
exemplified for epigenetic leukocyte counts and epigenetic age-predictions. To ease
later clinical translation, the following hallmarks should already be taken into
consideration when designing epigenetic biomarkers: 1) Identification of best genomic
regions, 2) pre-analytical processing, 3) accuracy of DNA methylation measurements,
4) identification of confounding parameters, 5) accreditation as diagnostic procedure,
6) standardized data analysis, 7) turnaround time, and 8) costs and customer
requirements. While the initial selection of relevant genomic regions is usually
performed on genome wide DNA methylation profiles, it might be advantageous to
subsequently establish targeted assays that focus on specific genomic regions.
Development of an epigenetic biomarker for clinical application is a long and
cumbersome process that is only initiated with the identification of an epigenetic signature.
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INTRODUCTION

Epigenetics is a fascinating branch of research that will increasingly find its way into clinical
diagnostics. There are different types of epigenetic modifications, including DNA methylation
(DNAm), histone modifications, and higher order chromatin conformation (Zhu et al., 2013). For
epigenetic diagnostics DNAm appears to be best suited, as it can be precisely determined at specific
cytosine residues of CG dinucleotides (CpG sites) (Smith and Meissner, 2013). The enzymes that
catalyze de novomethylation and maintenance of DNAm levels have long been known (Okano et al.,
1999; Reik et al., 2001). In contrast, despite the impressive scientific descriptions of the epigenetic
landscape in the last years, it remains unclear how these enzymes are directed to specific sites in the
genome and how the complex epigenetic network is orchestrated. In the future, a better
understanding of the underlying regulatory mechanisms that direct DNAm can help to derive
even more focused and functionally relevant biomarkers. Nonetheless, the currently rather
descriptive analysis of DNAm alterations can already provide accurate insights into cellular and
developmental processes and thus provide valuable diagnostic tools.
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FIELDS OF APPLICATION FOR DNA
METHYLATION BIOMARKERS

An epigenetic biomarker can be defined as any epigenetic mark,
which is stable and reproducible during sample processing and
can be measured in body fluids or primary tissue. They provide
tools for diagnosis, prognosis, monitoring of disease evolution,
and can support clinical decision-making (Garcia-Gimenez et al.,
2017). The scope of DNAm biomarkers can be classified in four
categories:

1) Cellular composition. Since DNAm is fundamentally linked
to cellular development, it is very well suited to provide insights
into cellular composition of a given tissue. Each of our cell types
has a characteristic DNAm pattern (Moss et al., 2018). Tissue
composition can then be reliably estimated using deconvolution
algorithms, as each cell only has two copies of chromosomal DNA
(Houseman et al., 2012; Schmidt et al., 2020). With such assays it
is for instance possible to investigate the origin of cell-free DNA
in blood plasma as a liquid biopsy of potentially affected tissues
(Moss et al., 2018; Neuberger et al., 2022).

2) Environmental influences and lifestyle. For example,
cigarette smoking affects the DNAm levels at multiple genomic
loci (Tsaprouni et al., 2014) and this effect can be reliably tracked in
blood and brain specimen (Gadd et al., 2021). There are also
DNAm biomarkers for alcohol consumption (Liu et al., 2018) and
other parameters, such as physical activity, exercise and body
weight, which can impact on the epigenome.

3) Aging. It is remarkable how well DNAm correlates at
specific CpGs with chronological age (Horvath, 2013; Weidner
and Wagner, 2014). Corresponding epigenetic signatures, so-
called “epigenetic clocks”, can support forensic investigation of

blood traces or of donors with allegedly unknown age. On the
other hand, there is increasing evidence that epigenetic age more
closely reflects biological age than chronological age (Bell et al.,
2019). In fact, accelerated epigenetic age is associated with higher
all-cause mortality in later life (Marioni et al., 2015). Whether
pure epigenetic clocks can be trained to better capture aspects of
biological age—independent from epigenetic changes by other
confounding parameters of life-style, cellular composition, and
diseases—still requires further validation. Either way, a
biomarker for biological age has great potential for
individualized medicine to evaluate therapeutic options. In
addition, such studies can help to uncover factors that
influence aging to adjust life-style for healthy aging.

4) Diseases. So far, epigenetic diagnostic biomarkers have
almost exclusively been established for applications in oncology
(Locke et al., 2019). Epigenetic aberrations can mimic genomic
mutations, e.g., by DNAm aberrations in the gene DNMT3A in
acute myeloid leukemia (Jost et al., 2014). In fact, next to driver
mutations it seems to be particularly epigenetic aberrations that
causemalignant transformation (Schoofs et al., 2014;Wagner et al.,
2015), and such epimutations may either arise in the absence of
DNA sequence changes (primary epimutations), or secondary to
genetic variants (secondary epimutation) (Cerrato et al., 2020). In
contrast, episignatures rather resemble complex aberrant DNAm
patterns that are not functionally restricted to specific sites in the
genome (Bozic et al., 2022). Epimutations as well as episignatures
can provide insight into the malignant clone and can be used for
initial diagnostics and disease stratification. Furthermore, DNAm
patterns can be used to predict response to a specific therapeutic
regimen and to track measurable residual disease after treatment
(Bozic et al., 2022). Although there are currently no approved
in vitro diagnostic (IVD) tests targeting methylation outside of
oncology, there is clear evidence that many other diseases,
including imprinting disorders, neurodegenerative and
psychiatric disorders, involve epigenetic aberrations that may be
addressed by epigenetic signatures (Beltran-Garcia et al., 2019;
Taryma-Lesniak et al., 2020).

In view of the rapid development in DNAm studies on the one
hand, and the increasing regulatory requirements on the other
hand, it is to be expected that the gap between potential applications
and actual implementations will continue to widen. Two examples
of potential applications are further highlighted below.

Epigenetic Leukocyte Counts
Leukocyte counts in blood is one of the most common diagnostic
tests, which is conventionally performed with automated cell
counting devices and particularly for stratification of
lymphocyte subsets with flow cytometry (Pitoiset et al., 2018).
Yet, deconvolution of leukocyte subsets based on DNAmmay have
several advantages as compared to the conventional regimen
(Sontag et al., 2022): 1) It is applicable to very small volumes of
blood that can be harvested by a finger-prick; 2) DNAm analysis is
possible with frozen blood; 3) it might be applied to coagulated
samples or specimen with ineffective antibody binding; and 4) the
precisemeasurement of DNAm levels might provide less variability
in inter-laboratory comparison. Deconvolution models were
initially developed based on cell-type specific hypo- or

FIGURE 1 | Aspects to be considered when designing diagnostic
epigenetic biomarkers.
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hypermethylation that was analyzed in purified leukocyte subsets
(Houseman et al., 2012). Derivation of such signatures for
granulocytes, lymphocytes, B cells, T cells (CD4 or CD8), NK
cells, and monocytes was particularly based on Infinium BeadChip
mircoarrays (Accomando et al., 2014; Salas et al., 2018).

It has been demonstrated that leukocyte counts can also be
determined by targeted assays at specific CpGs. These assays are
based on quantitative PCR (qPCR), pyrosequencing or digital
droplet PCR (ddPCR) (Baron et al., 2018; Frobel et al., 2018;
Malic et al., 2019) and appear to be applicable for clinical use. We
have recently further optimized and validated our targeted
pyrosequencing and ddPCR assays for leukocyte deconvolution
using 332 venous and 122 capillary blood samples from healthy
donors (Sontag et al., 2022). In addition, we tested 36 samples from
ring trials and venous blood from 266 patients diagnosed with
different hematological diseases. Overall, the targeted DNAm
analysis by pyrosequencing or ddPCR is a valid alternative to
quantify leukocyte subsets (Sontag et al., 2022). However, much
research remains necessary for further optimization, validation,
and approval as an in vitro diagnostic device (IVDD) before
epigenetic blood counts can ultimately find their way into
clinical application.

Epigenetic Clocks
As already mentioned above, a multitude of epigenetic signatures
have been described to estimate either chronological age or
biological age. Ten years ago, our group was one of the first to
describe such epigenetic clocks (Bocklandt et al., 2011; Koch and
Wagner, 2011). Since then, these signatures significantly
improved by the rapidly growing number of available Infinium
BeadChip datasets and more elegant bioinformatic
considerations (Horvath, 2013). Integration of Infinium
BeadChip measurements facilitated human biomarker
development, that was unparalleled in other species (Wagner,
2017). Only recently, the Infinium Mouse Methylation BeadChip
became available, as well as the mammalian methylation array
that covers highly conserved CpGs (Arenson et al., 2022).

In the future, epigenetic aging signatures might move from
measuring DNAm levels at individual CpGs to a probabilistic
analysis of the binary sequel of methylated and non-methylated
CpGs on individual reads. This method was first described for
barcoded amplicon sequencing and may reflect heterogeneity of
epigenetic aging within a sample (Han et al., 2020a; Han et al.,
2020b). It was further developed within the scAge framework that
is applicable with few bisulfite sequencing reads (Trapp et al.,
2021). Probabilistic epigenetic age-predictions could be
performed with tagmentation-based indexing for methylation
sequencing (TIME-Seq) that is applicable for Methyl-ATAC-
seq with low-cost shallow sequencing (Griffin et al., 2021). It
might eventually even be used for single-cell methyl-ATAC-seq
data to ultimately elucidate heterogeneity of epigenetic aging
within a given sample. Other sequencing technologies with longer
reads, such as nanopore sequencing or PacBio sequencing, will
further strengthen such probabilistic pattern-based approaches.
While the shallow-sequencing may significantly reduce the
sequencing costs, the bioinformatic demands are relatively
high and further validation is still elusive. So far, these

methods can hardly be standardized to be accredited as
diagnostic procedure (e.g., according to ISO13485).

For a clinical or forensic application of epigenetic clocks, it
might be advantageous to rather focus on a few individual age-
associated CpGs with targeted methods (Weidner et al., 2014). In
fact, some individual CpGs reveal very high correlation with
chronological age and they also seem to capture aspects of
biological aging (Lin et al., 2016). Targeted epigenetic clocks
for pyrosequencing, MassArray, ddPCR, or barcoded amplicon
sequencing can reach almost similar precision as described for
Infinium BeadChip clocks (Han et al., 2020a). They provide a
tradeoff between the less CpGs to be integrated into a robust
network for epigenetic age-predictions, and the more accurate
DNAm measurements at individual CpGs. Lastly, it is worth
mentioning that aging is per se not a disease and therefore,
depending on the application, an accreditation for clinical use
may not be necessary.

HALLMARKS FOR DNA METHYLATION
BIOMARKERS

To successfully establish an IVDD it is important to benchmark
accuracy and robustness in comparison to conventional markers.
The sensitivity (ability of the test to correctly identify patients
with a disease) and specificity (ability to correctly identify a
subject without the disease) are dependent on a multitude of
variables in the analytical process (Taryma-Lesniak et al., 2020).
Many methods for DNAm analysis have evolved and can be
classified in genome-wide approaches or targeted measurements
at specific genomic regions (Locke et al., 2019) (Table 1). Each of
these methods has advantages and disadvantages that can only be
briefly touched in the context of this mini-review. It is not
possible to give general applicable guidelines for development
of epigenetic biomarkers due to the very different fields of
application, molecular biological features, and clinical
requirements. However, the following parameters should be
considered when designing such studies (Figure 1).

Identification of the Best Genomic Regions
There are approximately 28 million CpG sites in the human
genome and selection of the best suited regions is the first
challenge for biomarker development. Whole Genome Bisulfite
Sequencing (WGBS) provides insight into the entire methylome
based on unbiased genome wide DNAm analysis, but this
necessitates high coverage of deep-sequencing reads, which is
relatively costly. Reduced Representation Bisulfite Sequencing
(RRBS) can significantly reduce the sequencing effort, but
coverage at specific locations of the genome sometimes
deviates significantly, reducing transferability. Within the last
decade human biomarker development has been revolutionized
by Infinium BeadChip technology. These microarray platforms
covered initially approximately 27,000 CpGs (27k), later 450,000
CpGs (450k), and currently, with the human EPIC BeadChip,
approximately 850,000 CpGs (Pidsley et al., 2016). A major
advantage of this method is that many DNA methylation
profiles of public databases can be directly compared and
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TABLE 1 | Comparison of selected methods for DNAm analysis.

Method Mechanism
for DNAm
detection

Genome
wide

analysis

Targeted
DNAm
analysis

Accuracy
of DNAm

at
individual
CpGs

Integrative
analysis
with
other

datasets

Scalability
for many
samples

CE accredited
instrumentation

a

Bioinformatic
requirement

Usual
turn

arround
time

Costs
b

Whole Genome Bisulfite Sequencing
(WGBS)

High-throughput sequencing of bisulfite
or enzym. converted DNA

++ — + ++ - + ↑↑ ↑↑ ↑↑

Reduced Representation Bisulfite
Sequencing (RRBS)

High-throughput sequencing of bisulfite
or enzym. converted DNA

+ — + + + — ↑↑ ↑↑ ↑

Infinium BeadChip Technology (EPIC
array)

Microarray analysis of bisulfite-
converted DNA

+ — ++ ++ + — ↑ ↑ ↑

Nanopore sequencing Detection of current changes during
sequencing of non-converted DNA

++ — - + + + ↑↑ ↑ ↑

Methylated DNA immunoprecipitation
(MeDIP)

Affinity capture of unconverted DNA with
antibody and deep sequencing

++ NA - + - — ↑↑ ↑↑ ↑

Methyl Binding Domain (MBD)
Sequencing

Affinity capture of unconverted DNA with
MBD and deep sequencing

++ NA - + - — ↑↑ ↑↑ ↑

Probabilistic frameworks for genome
wide DNAm pattern analysis

Shallow sequencing data (e.g. RRBS for
scAge or methyl-ATAC-seq for TIME-seq)

- - + ++ — ↑↑ ↑↑ ↔

Methylation sensitive restriction
enzyme (MSRE) PCR

Unconverted DNA is digested with MRSE
and amplified by PCR

NA + - - + — - ↔ ↓

Methylation specific PCR PCR amplicons of bisulfite-converted or
enzymatic converted DNA

NA + - - + — - ↔ ↓

Quantitative PCR (qPCR) Allele specific qPCR after bisulfite-
conversion

NA + + - + — - ↔ ↓

Targeted amplicon sequencing Deep-sequencing of PCR amplicons of
bisulfite converted DNA

NA + ++ - ++ + ↑ ↑ ↔

Pyrosequencing Sequencing of PCR amplicons of
bisulfite-converted DNA

NA + ++ - + — - ↔ ↔

Digital droplet PCR (ddPCR) PCR of bisulfite-converted DNA in
droplets

NA + ++ - + + - ↔ ↔

EpiTYPER Mass-spectrometry of bisulfite-
converted DNA

NA + ++ - + — - ↔ ↔

This table shall only exemplify how hallmarks of DNAmbiomarkers may be influenced by different methods. It does not claim to represent all available approaches for DNAmanalysis. The suggested classifications will vary between applications
and laboratories.
aAccreditation may also include enzymes and viable components. The regulatory requirements and accreditation may change with time and according to local regulations.
bThe expenses can only be estimated relatively. They include consumables, instrumentation and personnel costs and depend largely on the number of samples that can be processed in parallel (and on the number of CpGs for the targeted
assays). NA, not applicable.
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integrated into the analysis to identify and validate suitable
signatures. For any epigenetic biomarker development, it is
crucial to have a high number of measurements for a training
set and for an independent validation cohort.

Pre-Analytical Processing
Sample harvesting, transportation, DNA extraction, treatments
such as bisulfite conversion or enzymatic conversion, storage and
preservation can have enormous impact on the final results. Since
biomarker development requires large training and validation
cohorts, biobanks play a crucial role for the initial development
of personalized medicine (Peiró-Chova et al., 2016). However,
sample processing may be very different in biobanks as
compared to a later clinical setting. The samples may even be
formalin-fixed paraffin-embedded (FFPE) tissue specimens, which
severely affects fragmentation and down-stream analysis of the
DNA. It is important to consider the best clinical procedure for
sample collection when designing an epigenetic biomarker. For
example, blood samples might be taken from venous blood or
capillary blood by finger pricks, shipped as dried blood spot or at
liquid state, frozen or at room temperature (Sontag et al., 2022). For
liquid biopsies, it may also be relevant if DNA is extracted from
serumor plasma (Constancio et al., 2020), or if the donor performed
physical activity before sample collection (Neuberger et al., 2022).
Similar considerations are also required for specimen from urine,
stool, airway, or other tissues (Locke et al., 2019). There are many
alternative protocols for DNA extraction and conversion that may
need to be accredited for the IVDD, too. Depending on the number
of samples, barcoding and automation need to be considered.

Accuracy of DNAMethylationMeasurement
In contrast to other epigenetic modifications, such as the histone
code, theDNAm level can be determined precisely for each CpG, as
absolute value ranging from 0 to 100%. For many biomarkers the
difference of DNAm levels is relatively low and therefore the
accuracy of DNAm measurement is an important parameter.
This applies particularly for epigenetic biomarkers that do not
simply classify between two DNAm states (yes or no), but rather
resemble a continuous variable (as for example in epigenetic
leukocyte counts and epigenetic clocks). In this case small
deviations in the accuracy of DNAm measurements can have
big impact on predictions, even though the biological relevance
and the phenotype effect of small changes in DNAm is still under
debate. For the deep-sequencing based approaches accuracy
depends largely on the sequencing depth. In contrast, Infinium
BeadChip microarrays achieve overall relatively high precision,
while there is batch-to-batch and inter-laboratory variation, which
can be partially compensated for by background correction and
normalization procedures (Pidsley et al., 2016). Even higher
accuracy and precision of DNAm levels at specific CpGs can be
achieved by targeted measurement techniques (Blueprint-
consortium, 2016). For instance, by pyrosequencing, mass-
spectrometry based EpiTYPER, or bisulfite amplicon sequencing
(BA-seq) DNAm differences below 5% are detectable. However,
these targeted methods can have an inherent PCR bias if either
methylated or non-methylated sequences are preferentially
amplified. A possible exception is digital droplet PCR (ddPCR):

The bisulfite-converted DNA is dispersed into small droplets with
individual PCR reactions, which are either detected as positive or
negative for methylated and non-methylated sequences. The exact
DNAmvalues can then be calculated using Poisson distribution for
the different droplets. In fact, there is some evidence that DNAm
measurement with ddPCR has even higher accuracy than
pyrosequencing, but this may largely depend on the assay
design (Han et al., 2020a; Sontag et al., 2022). Either way, inter-
laboratory comparison and round robin tests should be considered.

Identification of Confounding Parameters
For clinical applications it is necessary to have a good
understanding of confounding factors. Environmental and life-
style parameters, aging, cellular composition, and diseases can
affect the signatures (Gadd et al., 2021). Furthermore, there are
DNAm differences between woman and men, particularly at sex
chromosomes. For example, epigenetic age predictions of women
are overall under-estimated as compared to men, which might be
attributed to their longer life expectancy (Horvath, 2013;Weidner
et al., 2014). In addition, epigenetic characteristics can differ
between ethnic groups (Becker et al., 2021). Such confounding
parameters can be identified by epigenome-wide association
studies (EWAS), that have enormous power when utilizing
large available datasets. It is important to envisage potential
confounding parameters already at study design but they can
ultimately only be identified through extensive studies with many
patient samples in the validation phase.

Accreditation as a Diagnostic Procedure
An approved diagnostic test needs to be applicable reliably and
standardized for many years. For clinical application diagnostic
tests are required to have a quality certificate, for example a CE
mark from the European Union as an in vitro diagnostic device
(IVDD) according to IVDR2017/746, which will be mandatory to
be accomplished by all diagnostic devices in May 2022, or
approval from the Food and Drug Administration (FDA)
(Locke et al., 2019). The process to get such approvals is based
on validation and benchmarking experiments — it takes years
and is very cost-intensive. Also, all instruments need to have
certificates for clinical use, which is not always the case. Complex
analytical procedures with many suppliers tend to be detrimental
to clinical implementation. For example, the changes in Infinium
BeadChip platforms (from 27k, to 450k, to EPIC) and their
continuous annotation updates are not a major obstacle for
basic research, but they are a challenge for an already
accredited process. With this in mind, it may be advantageous
to keep diagnostic procedures as simple as possible and to rather
rely on targeted assays for a higher and consistent throughput.

Standardization of Data Analysis
For an IVDD all processes must be fully standardized, including
data analysis. For epigenetic studies the bottleneck is often
bioinformatic evaluation. Not only it is becoming increasingly
difficult to recruit specially trained bioinformaticians, there are
countless integration possibilities of different datasets and the
rapidly growing arsenal of tools can hardly be overseen, even by
experts. Furthermore, standardized collection of DNAm data and
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clinical information is critical. Every program that is used needs
to be completely described and approved, even for simple linear
regression equations. The programs used for analysis of
sequencing data must also be accredited accordingly. Thus, it
is also important to simplify and standardize the data analysis
procedures.

Turnaround Time
The turnaround time can be crucial for clinical application. The
procedures usually comprise DNA isolation and bisulfite
conversion, which already require amost one day. Targeted
methods, such as pyrosequencing, ddPCR, or EpiTYPER
necessitate only a few additional PCR and/or sequencing steps
and the results may therefore be available after one or two days
(Blueprint-consortium, 2016). In contrast, genome-wide
methods and amplicon sequencing are often subject to longer
waiting times due to the high frequentation of sequencing
instruments. Quality control and bioinformatic evaluation of
deep-sequencing data may also require several additional days.
For the final decision on the method of the diagnostic procedure,
the time aspects should be taken into account— not least because
personnel costs represent a significant component of the
process costs.

Costs and Customer Requirements
It is advantageous to consider potential customers and marketing
already at the time of the initial study design. How would the
assay compare with conventional assays? Would it rather be
distributed as kit or service? For example, customers in forensics
may prefer in-house analysis—in this case a kit for commonly
available instrumentation might be advantageous. On the other
hand, DNA is relatively stable and can be shipped at room
temperature (in contrast to RNA, which is bound to rapid
degradation). The samples can be frozen for many years prior
to measurement, making retrospective studies possible.
Therefore, the samples might alternatively be easily shipped to
a service provider for a centralized analysis. Due to the personnel
costs the price per assay may largely depend on the number of
samples that can be processed in parallel. Automation and
parallelization of sample acceptance, DNA isolation, bisulfite
conversion (or enzymatic conversion), amplification and
measurement, up to the evaluation and the generation of a
final report is therefore to be aimed for.

CONCLUSION

There is a “valley of death” between identification of promising
epigenetic signatures and translation into clinical practice.
Despite the enormous diagnostic potential and rapidly
growing numbers of described epigenetic signatures only a
small number of epigenetic biomarkers are approved as IVDD
(Beltran-Garcia et al., 2019; Locke et al., 2019; Taryma-Lesniak
et al., 2020). To bridge this gap, it is necessary to already focus on
the clinical demands of a potential epigenetic biomarker at the
initial study design. While the genomic regions are usually
identified with genome-wide approaches, clinical application
may require further translation into a robust and highly
standardized targeted assay that rather uses a small number of
CpGs. The scientific community needs to acknowledge that
optimization, validation, and standardization of existing
epigenetic signatures is important research to establish
diagnostic DNAm biomarkers.
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