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Montpellier 2, Montpellier Cedex 05, France,
4Biodiversity and Climate Research Centre

(BiK-F), Frankfurt am Main, Germany,
5Biodiversity, Macroecology and Conservation

Biogeography Group, University of Göttingen,

Göttingen, Germany, 6Helmholtz Centre for

Environmental Research – UFZ, Department

of Ecological Modelling, Leipzig, Germany,
7University of Auckland, School of

Environment, Auckland, New Zealand,
8Department of Ecology and Evolutionary

Biology, University of Toronto, Toronto,

Canada, 9Ecoinformatics & Biodiversity

Group, Department of Bioscience, Aarhus

University, Aarhus C, Denmark, 10Institute of

Systematic Botany, Zürich, Switzerland,
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ABSTRACT

Range dynamics causes mismatches between a species’ geographical distribution

and the set of suitable environments in which population growth is positive (the

Hutchinsonian niche). This is because source–sink population dynamics cause

species to occupy unsuitable environments, and because environmental change

creates non-equilibrium situations in which species may be absent from suitable

environments (due to migration limitation) or present in unsuitable environ-

ments that were previously suitable (due to time-delayed extinction). Because

correlative species distribution models do not account for these processes, they

are likely to produce biased niche estimates and biased forecasts of future range

dynamics. Recently developed dynamic range models (DRMs) overcome this

problem: they statistically estimate both range dynamics and the underlying

environmental response of demographic rates from species distribution data. This

process-based statistical approach qualitatively advances biogeographical analyses.

Yet, the application of DRMs to a broad range of species and study systems

requires substantial research efforts in statistical modelling, empirical data col-

lection and ecological theory. Here we review current and potential contributions

of these fields to a demographic understanding of niches and range dynamics.

Our review serves to formulate a demographic research agenda that entails: (1)

advances in incorporating process-based models of demographic responses and

range dynamics into a statistical framework, (2) systematic collection of data on

temporal changes in distribution and abundance and on the response of

demographic rates to environmental variation, and (3) improved theoretical

understanding of the scaling of demographic rates and the dynamics of spatially

coupled populations. This demographic research agenda is challenging but

necessary for improved comprehension and quantification of niches and range

dynamics. It also forms the basis for understanding how niches and range

dynamics are shaped by evolutionary dynamics and biotic interactions.

Ultimately, the demographic research agenda should lead to deeper integration of

biogeography with empirical and theoretical ecology.
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THE DEMOGRAPHIC BASIS OF NICHES AND

RANGE DYNAMICS

The niche concept is central to ecology (Hutchinson, 1957;

Holt, 2009). It is widely used to characterize requirements and

impacts of species (Chase & Leibold, 2003), to study commu-

nity dynamics, and to predict ecological and evolutionary

responses of species to environmental change (Wiens &

Graham, 2005; Lavergne et al., 2010). In particular, the niche

concept is invoked in a plethora of recent studies that attempt

to forecast future range dynamics of species under environ-

mental change (Elith & Leathwick, 2009). Such range forecasts

are widely used to assess the impacts of environmental change

on biodiversity (Pereira et al., 2010; Dawson et al., 2011) and

increasingly serve as the basis for systematic conservation

planning (Pressey et al., 2007).

While the ecological literature abounds with various defini-

tions of the niche (Chase & Leibold, 2003), the most influential

quantitative definition is arguably that of G. Evelyn Hutchinson

(Hutchinson, 1957, 1978). The Hutchinsonian niche is defined

as the set of environmental conditions under which a species

can ‘exist indefinitely’ (Hutchinson, 1957). In the absence of

dispersal and environmental variability, the persistence of a

species in a given location depends on its population growth

rate. As this is the difference between per-capita birth and death

rates, the Hutchinsonian niche can be expressed in demo-

graphic terms (Maguire, 1973; Hutchinson, 1978). Fundamen-

tally, a species’ niche consists of those environments for which

the intrinsic population growth rate r (the population growth

rate at low population density) is positive (Maguire, 1973;

Hutchinson, 1978). In the case of complex population dynam-

ics, this simple demographic niche definition has to be refined

somewhat (Holt, 2009). Importantly, however, all of these

refinements of the Hutchinsonian niche can be derived from

‘demographic response functions’ (Pulliam, 2000) that describe

how birth and death rates vary with environmental conditions

(Maguire, 1973; Hutchinson, 1978; Holt, 2009).

Furthermore, demographic responses link Hutchinsonian

niches to range dynamics (Pulliam, 2000; Fig. 1). This is because

demographic response functions translate spatio-temporal

variation in environmental variables into variation of the three

fundamental demographic rates of birth, death and dispersal

(with the former two determining local population growth and

the niche). Range dynamics then arise from the dynamics of

many local populations that are founded and connected by

dispersal, with range size changes depending on how many sites
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Figure 1 The demographic basis of Hutchinsonian niches, range dynamics and biogeographical data. Demographic response functions

translate spatio-temporal variation of the environment into variation of the fundamental demographic rates of birth, death and dispersal. In

particular, the demographic response of birth and death determines variation in local population dynamics and defines the Hutchinsonian

niche as the set of environments for which population growth is positive. Range dynamics then result from the dynamics of local populations

that are coupled by dispersal. Data useful for the estimation of niches and range dynamics are collected by observing spatio-temporal

variation in distribution, local abundance, demographic rates and environmental conditions. However, these observations are subject to

observation errors and they typically represent only a subsample of the entire variation present.
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are newly colonized and how many are vacated by population

extinction (Fig. 1; Pulliam, 2000; Holt & Keitt, 2005).

The central importance of demographic responses (and the

Hutchinsonian niches that they lead to) has led ecologists to

develop various methods for quantifying and predicting them

(see Holt, 2009). The most direct way of quantifying demo-

graphic response functions and species’ niches is to measure

rates of birth, death and dispersal in experimentally manipu-

lated environments. This approach has been taken in laboratory

experiments with animals (Birch, 1953; Hooper et al., 2008) and

in field transplant experiments with plants (e.g. Latimer et al.,

2009; Moore, 2009). So far, however, such direct demographic

measurements are scarce, mostly restricted to small and short-

lived organisms, often do not cover all three fundamental

demographic rates, and typically do not span the full range of

environmental variation relevant at biogeographical scales

(Gaston, 2009; Holt, 2009). A promising alternative to such

direct measurements are mechanistic niche models that describe

how physiology, phenology, environmental conditions and

functional traits determine the birth and death of individuals

and how this demographic performance translates into popu-

lation dynamics (Buckley, 2008; Chuine, 2010; Bykova et al.,

2012; Kearney, 2012). Yet, these mechanistic models require

substantial knowledge about the biology of the study organism

and their parameterization for specific environments is typically

labour-intensive (Holt, 2009). The large efforts required for the

direct measurement of demographic responses and the devel-

opment of mechanistic niche models thus currently preclude the

application of these methods to large numbers of species.

The predominant method for quantifying niches and range

dynamics are hence statistical analyses that link the geograph-

ical distribution of species to large-scale environmental vari-

ation. Typically, environmental information available at large

spatial scales does not directly quantify the resources for which

species compete, but describes non-interactive (‘scenopoetic’)

variables (Soberón & Nakamura, 2009). Consequently, large-

scale niche analyses cannot explicitly resolve biotic interactions

between species (Kissling et al., 2012) or impacts of species on

their environment (Linder et al., 2012). At best, such large-

scale analyses can thus characterize Hutchinson’s realized niche

(the set of environments in which a species can persist in the

presence of interacting species, Hutchinson, 1957).

THE GORDIAN KNOT OF BIOGEOGRAPHY:

ESTIMATING NICHES AND RANGE DYNAMICS

Currently, the statistical estimation of species’ niches and the

prediction of range dynamics under environmental change rest

almost entirely on correlative species distribution models

(SDMs, also termed habitat models, environmental niche

models or bioclimate envelope models). SDMs link geograph-

ical patterns of observed presences and absences with environ-

mental data to estimate a correlation between distribution and

environment (Guisan & Thuiller, 2005). While these distribu-

tion–environment correlations are often assumed to reflect

species’ niches, they can in fact deviate strongly from a species’

Hutchinsonian niche (Pulliam, 2000). These deviations arise

because range dynamics cause mismatches between a species’

Hutchinsonian niche and its geographical distribution (Holt,

2009; Fig. 2). Source–sink dynamics can lead to the export of

individuals from high-quality habitats to adjacent low-quality

habitats (Fig. 2a). This leads to the presence of species in

environments in which their intrinsic population growth rate is

negative (Pulliam, 2000) and causes correlative SDMs to

overestimate the niche extent (Holt, 2009). Such source–sink

dynamics will bias correlative niche estimates even if a species is

in dynamic equilibrium with its environment (Pagel & Schurr,

2012). Two further sources of bias occur in non-equilibrium

situations that may arise when species are exposed to environ-

mental change. First, limited dispersal and migration can cause

a species to be absent from geographical regions and from parts

of the niche space in which it could in principle show positive

population growth (Fig. 2b). As correlative SDMs do not

explicitly describe this effect, they tend to underestimate the

niche extent of migration-limited species (e.g. Guisan &

Thuiller, 2005; Pagel & Schurr, 2012). Second, environmental

change can also cause correlative SDMs to overestimate niche

extents: a species may be present in unsuitable environments

because environmental deterioration occurred recently and

local populations have not yet gone extinct from areas that

recently turned unsuitable (e.g. Thuiller et al., 2008; Fig. 2c).

Correlative analyses of species distribution data thus cannot

provide unbiased estimates of niches and range dynamics. This

is problematic for fundamental research in biogeography,

ecology and evolutionary biology, which increasingly uses

correlative niche estimates (e.g. Wiens & Graham, 2005; Elith

& Leathwick, 2009). Moreover, biased niche estimates will

cause biased forecasts of range dynamics under environmental

change. This is a problem not only for the direct extrapolation

of correlative SDMs to future conditions (e.g. Thomas et al.,

2004) but also for more recently developed hybrid models that

combine niche estimates of correlative SDMs with process-

based models of spatial population dynamics (e.g. Keith et al.,

2008; Midgley et al., 2010; Meier et al., 2012): such hybrid

models may under- or overestimate future range sizes

depending on whether the underlying correlative niche model

under- or overestimates the niche.

Biogeography, macroecology and evolutionary biology are

thus faced with a dilemma: to obtain unbiased niche estimates

one has to quantify range dynamics, but this requires

knowledge of how demographic rates respond to environmen-

tal variation – and thus knowledge of the niche. We argue that

this apparent Gordian knot can be undone by pursuing a

demographic research agenda. The central point of this agenda

is to replace correlative models with process-based dynamic

range models (DRMs) that: (1) describe both demographic

response functions and range dynamics, and (2) can be

statistically estimated from data on species distributions and

variation in demographic rates. In the following, we summa-

rize first steps of this demographic agenda that have been taken

recently. Subsequently, we point out key aspects in the fields of

statistical modelling, data collection, and ecological theory that

F. M. Schurr et al.
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need to be addressed to implement the agenda for a wide range

of species and study systems. We end by briefly outlining why

this demographic agenda also has considerable potential for

understanding how interspecific interactions and microevolu-

tion shape niches and range dynamics.

PROCESS-BASED STATISTICAL ESTIMATION OF

NICHES AND RANGE DYNAMICS

How can one jointly estimate Hutchinsonian niches and range

dynamics from distribution data? The first step is to formulate

a DRM that describes the link between environmental

variation and biogeographical data (Fig. 1) in three submodels:

(1) a demographic response model describes how spatio-

temporal variation in the environment translates into

spatio-temporal variation in birth, death and dispersal (with

the former two determining the niche), (2) a range dynamics

model describes how spatio-temporal variation in population

growth and dispersal determine the spatio-temporal distribu-

tion of local population size, and (3) an observation model

describes how the variation in population size and demo-

graphic rates is sampled to obtain the available data (e.g.

presence/absence maps or time series of local abundance).

These three submodels form a hierarchy in the sense that the

predictions of the demographic response model are input for

the range dynamics model, whose output is in turn input for

the observation model.

An example of a DRM is a statistical model developed by

Hooten & Wikle (2008) to analyse spatio-temporal abundance

data documenting the invasion of the Eurasian collared-dove

(Streptopelia decaocto) in North America. In this model, the

environment (human population density) affects dispersal but

not population growth rate. While this model thus predicts

range dynamics, it cannot be used to estimate Hutchinsonian

niches (and the same is true for several other recent statistical

models for the spatio-temporal dynamics of species; Cook

et al., 2007; Purves et al., 2007; Hooten & Wikle, 2010). In

Box 1 and Fig. 3, we therefore illustrate the functioning of a

DRM with a statistical model that jointly estimates Hutchin-

sonian niches and range dynamics (Pagel & Schurr, 2012). We

emphasize that the DRM framework is flexible and can

integrate a wide range of alternative submodels for range

dynamics and environmental effects on demographic rates (see

‘The statistical modelling agenda’ below). Moreover, by

adjusting the observation model one can link DRMs to

different types of data (see ‘The empirical agenda’ below).

The parameters of the three hierarchical DRM submodels can

be estimated from data using hierarchical Bayesian methods

(Clark, 2005; Hooten & Wikle, 2008; Marion et al., 2012; Pagel

& Schurr, 2012). In Bayesian terminology, parameter estima-

tion amounts to determining the posterior probability distri-

bution of the model parameters given the data. In the case of a

DRM, the posterior probability of a set of parameter values is

calculated from the product of three conditional probabilities

(defined by the three submodels) and of the prior probability of

the parameter values (see Box 1). The prior probability

distribution of a parameter can represent existing knowledge

on which parameter values are likely (e.g. from detailed

mechanistic models or from studies on how population growth

rate varies across environments), or it can be ‘non-informative’

(reflecting ignorance about the parameter, Hartig et al., 2012).

The posterior probability distribution of DRM parameters

typically cannot be calculated analytically, but numerical

methods enable one to sample parameter values from this

distribution (Box 1; Marion et al., 2012; Pagel & Schurr, 2012).

This sample from the posterior can then be used to calculate

niche estimates (Fig. 3b), to forecast range dynamics (Fig. 3a),

and to quantify the uncertainty in these forecasts (Fig. 3c).

Because they integrate the quantification of range dynamics

and demographic response functions in a single statistical

framework, DRMs have several advantages over alternative

methods for estimating niches and forecasting range shifts: (1)

they can statistically synthesize different types of biogeograph-

ical and demographic data, (2) they can infer spatio-temporal

range dynamics in equilibrium and non-equilibrium

conditions, (3) they provide estimates of a species’ realized

Hutchinsonian niche that are founded in ecological theory,

and (4) they yield fully probabilistic forecasts of future range

dynamics under environmental change that transparently

quantify the involved uncertainty. Currently, however, such
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Figure 2 Three mechanisms by which demographic processes

and the resulting range dynamics can cause mismatches between

the geographical distribution of a species (circles) and the

Hutchinsonian niche (the set of environments in which intrinsic

population growth rate is positive, black box). (a) Source–sink

dynamics act irrespective of whether geographical distributions are

in equilibrium with the environment or not. In contrast, (b)

migration limitation and (c) time-delayed extinction are relevant

in non-equilibrium situations.
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process-based statistical analyses are only applicable to species

with simple life cycles for which sufficient data exist. The

application of this approach to a broader range of study species

and study systems requires substantial efforts in demographical

research. In the following, we outline this demographic

research agenda, which includes advances in the fields of

statistical modelling, data collection and ecological theory.

THE STATISTICAL MODELLING AGENDA

When selecting submodels of demographic responses and range

dynamics for a DRM analysis, one can choose from a large

number of existing models. In the following, we review these

models to identify the ones most promising for the statistical

estimation of niches and range dynamics in a DRM framework.

Ecological theory has produced a bewildering number of

population dynamics models that could be integrated into a

submodel for range dynamics (e.g. Bellows, 1981). Four

criteria can help to choose a population model suitable for

DRM analysis. First, models of local population dynamics have

to include immigration and emigration terms that describe

dispersal between populations (Fig. 1). Second, population

models should include stochastic elements that account for the

effect of processes that are not modelled explicitly (Clark &

Gelfand, 2006; see Box 1). Third, the quantification and

forecasting of range dynamics requires an adequate description

of the dynamics of populations that were recently founded

and/or are threatened by local extinction. Because these

populations typically have low densities, models describing

their dynamics should account for the fact that organisms

come in discrete entities (individuals or ramets) that cannot be

infinitely subdivided. Fourth, data on spatio-temporal varia-

tion of environmental conditions are typically available on

spatially discrete grids and for temporally discrete time steps.

Hence, temporally and spatially discrete population models

may be more relevant for use in DRMs than their continuous

counterparts (although continuous models can be linked to

discrete data through interpolation in space or time).

Within these general constraints, the choice of a specific

population model will depend on the life history of the target

species and the ecological processes considered important for its

range dynamics. In the following, we indicate ways in which

Figure 3 An example analysis demonstrating how dynamic range models (DRMs) can be used to estimate Hutchinsonian niches and to

forecast range dynamics (modified from Pagel & Schurr, 2012). (a) ‘True’ (simulated) versus predicted range dynamics of a hypothetical study

species during 75 years of climate change. The top row shows the spatio-temporal dynamics of occurrence probabilities for replicate simu-

lations of the true model. The lower two rows show the corresponding predictions of the DRM and a correlative species distribution model

(SDM, in this case a logistic regression) that were estimated from data collected in the first 10 years. (b) Estimates of the species’ Hutchinsonian

niche. Colours indicate the expected intrinsic population growth rate r as a function of a climate and a landscape variable, with the limit

between green and blue denoting the niche boundary where r = 0. The hatched and dotted lines indicate the niche boundaries estimated by the

DRM and the correlative SDM, respectively. (c) Dynamics of future range size for replicate simulations of the true model versus the

corresponding forecasts of the DRM and SDM. Shaded areas indicated the central 95% of future range size values that reflect variation between

replicate simulations of the true model and uncertainty in DRM forecasts, respectively. For further details see Pagel & Schurr (2012).
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BOX 1: BUILDING A DYNAMIC RANGE MODEL (DRM)

We illustrate the functioning of DRMs with a statistical model that estimates niches and range dynamics of annual species with

non-overlapping generations from presence/absence maps and time series of local abundance (Pagel & Schurr, 2012). In the

following, we briefly describe the three submodels of this DRM. Note that the general DRM framework is not restricted to this

illustrative example: alternative formulations of the demographic response and range dynamics model can describe organisms

with different properties (see ‘The statistical modelling agenda’), alternative observation models can integrate different data

types (see ‘The empirical agenda’), and alternative error distributions in each submodel can represent different effects of

processes that are not modelled explicitly.

Demographic response model

The intrinsic population growth rate r is assumed to change linearly with two spatially heterogeneous ‘landscape’ variables (X

and Z) and to show linear and quadratic responses to a spatio-temporally variable climate measure C (so that r can have a

climatic optimum). The probability of r across sites i and years t is thus given by a multiple linear regression

pðrjb;rrÞ ¼ Normal r l;r2
r

��� �
with li;t ¼ b0 þ b1Xi þ b2Zi þ b3Ci;t þ b4Ci;t

2;

where the normally distributed errors (with variance rr
2) describe processes not explicitly resolved in the demographic

response model, such as effects of further environmental variables or interspecific interactions (Kissling et al., 2012) on r. The

carrying capacity K is assumed to be proportional to r (K = r/h, where h describes a constant intensity of intraspecific

competition in all environments). Moreover, dispersal is assumed to be independent of the environment (which is why the

demographic response model was termed the niche model in Pagel & Schurr, 2012).

Range dynamics model

Local population dynamics are described by a stochastic Ricker model with Poisson error Nt � Poisson(Nt)1 Æexp(r ) h Nt)1)).

The probability of dispersal from cell j to cell i is given by a spatially discrete kernel Pjfii(fLDD,a) that describes the fraction fLDD of

individuals dispersed beyond cell j as well as a negative exponential distribution of dispersal distance for these individuals. Given

parameters of the population model (r, h), dispersal parameters (fLDD, a) and initial population sizes N0, the probability of

population sizes N across sites and years is then

p N N0; r; h; fLDD; a;rP

��� �
¼
Y

t

Y
i

Poisson Ni;t
~Ni;t�1 exp ri;t�1 � h ~Ni;t�1 þ ei;t�1

� ���� �

with post-dispersal abundances ~Ni;t ¼
P

j

Pj!i fLDD; að Þ � Nj;t . Again, normal errors e with variance rP
2 account for processes

that are not explicitly represented in the range dynamics model.

Observation model

We assume that individuals are observed independent of each other and that the per-individual observation probability is pA for

an abundance census and pP during presence/absence mapping. Hence, the likelihood of recording A individuals in an

abundance census is given by a binomial distribution and the likelihood of a presence record is the probability to observe at least

one out of N individuals (which is w = 1 ) (1 ) pP)N and defines the success probability of a Bernoulli distribution). If Q and

X denote the subset of sites and years for which we have abundance data A and presence/absence records P, respectively, the

likelihood of these data given the population sizes N is

p A;P N; pA; pPjð Þ ¼
Y
H

Binomial Ai;t Ni;t ; pA

��� �
�
Y
X

Bernoulli Pi;t wi;t

��� �
:
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simple population models (like the Ricker model used in Box 1)

can be modified to represent further aspects of population

dynamics and more complex life histories (Table 1).

The population model can be modified to represent the way in

which individuals compete for resources as well as their small-

scale spatial clustering (e.g. Brännström & Sumpter, 2005).

While the Ricker model describes scramble competition (in

which the limiting resource is divided equally among competing

individuals, Nicholson, 1954), equally simple alternatives like

the Beverton–Holt model describe contest competition (in

which resources are divided unequally, Nicholson, 1954),

whereas slightly more complex models (e.g. Maynard-Smith &

Slatkin, 1973) can describe gradual variation between pure

contest and pure scramble competition. Such differences in

resource competition are relevant for DRM analyses as they can

affect large-scale abundance dynamics (Münkemüller & Johst,

2007; Cabral & Schurr, 2010). Yet, even more important than

these differences between different types of negative density-

dependence could be positive density-dependence of population

growth at low densities (so-called Allee effects). Allee effects can

be caused by various ways in which conspecifics facilitate each

other at low population densities: for instance, conspecifics may

ensure successful reproduction in sexual species, act as cooper-

ation partners in social animals, or provide protection against

predators (Courchamp et al., 2008). Because Allee effects

strongly alter the dynamics of small populations, they can have

profound consequences for range dynamics and range limits

(Keitt et al., 2001; Holt, 2009; Cabral & Schurr, 2010). More-

over, Holt (2009) recently showed that in the presence of Allee

effects, one has to distinguish two variants of the Hutchinsonian

niche: the population establishment niche (in which a species

can establish a population when starting from low densities) and

the population persistence niche (in which populations above

some threshold density can persist). Both niche variants could be

estimated by incorporating population models with Allee effects

(Courchamp et al., 2008) into DRM analyses.

To apply the DRM framework to a wider range of study species,

it seems particularly important to expand it to iteroparous species

with overlapping generations. If rates of reproduction and

mortality are equal for all individuals, this can be done easily by

adding a simple survival term to the abovementioned population

models for non-overlapping generations [as done in the analysis

of Hooten & Wikle (2008) for the iteroparous Eurasian collared-

dove]. However, in many iteroparous species these rates vary

systematically with the age, size or some other state of individuals.

The dynamics of such structured populations can be described

with matrix models that distinguish discrete classes of individuals

(Caswell, 2001) or with integral projection models that represent

continuous variation between individuals (e.g. Rees & Ellner,

2009). Of these two modelling frameworks, integral projection

models tend to have fewer parameters and can more easily be

estimated from demographic data (Rees & Ellner, 2009).

In addition to describing local population dynamics, the

submodel for range dynamics has to describe dispersal between

Statistical estimation

By combining the conditional probabilities defined by the three submodels with priors for the parameters, we obtain the joint

posterior distribution of all parameters given the data

p b;rr; h; fLDD; a;rp;N; pA; pP A;Pj
� �

/ p A;P N; pA; pPjð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{Observer model

� p N N0; r; h; fLDD; a;rp

��� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Range dynamics model

� p r b;rrjð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Demographic response model

� p b;rrð Þp h;rp

� �
p fLDD; að Þp N0

� �
p pA; pPð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Priors for parameters

We can estimate the DRM from data by generating samples from this posterior with Markov chain Monte Carlo techniques

(see Appendix S1 of Pagel & Schurr, 2012). From this sample one can then derive marginal distributions of parameters of

interest (e.g. niche estimates, Fig. 3b). Probabilistic forecasts of range dynamics (Fig. 3a,c) can be produced by running

simulations of the demographic response and range dynamics submodels for sets of parameters and population sizes N that are

jointly sampled from the DRM posterior. These forecasts thus include uncertainty about the processes determining

demographic responses, range dynamics and data observation, uncertainty about the value of model parameters, and

uncertainty about the true abundances at the time of last data collection.

But how good are these DRM estimates and forecasts? To evaluate this, Pagel & Schurr (2012) simulated the range dynamics

of a virtual species and let a ‘virtual ecologist’ (Zurell et al., 2010) record: (1) abundance time series of 30 populations over

10 years, and (2) two presence/absence maps at the beginning and the end of this 10-year period. A DRM fitted to these data

produced estimates and forecasts that match the known ‘truth’ well and performs much better than a correlative SDM fitted to

the same data (Fig. 3). This is because the DRM describes demographic processes that cause mismatches between the niche

and distribution of species (Fig. 2). Hence, DRMs can reliably quantify niches and range dynamics.

F. M. Schurr et al.
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populations. Simple alternatives to the exponential distribution

of dispersal distance used in Box 1 are distributions with fatter

or thinner tails that predict higher or lower rates of long-

distance dispersal, respectively (Nathan & Muller-Landau,

2000). More complex dispersal functions arise from mechanis-

tic dispersal models (Nathan et al., 2008) or from statistical

models that quantify effects of spatial heterogeneity on

dispersal (Schurr et al., 2008). Moreover, when considering

structured population models, one should be aware that

population structure may not only affect reproduction and

mortality, but can also affect dispersal (Bowler & Benton,

2005). This is particularly relevant for many vertebrates in

which the breeding dispersal of adults differs from the natal

dispersal of juveniles in both frequency and spatial scale. DRM

analyses could represent this by including a structured dispersal

model that distinguishes between juveniles and adults.

The choice of a suitable niche model (describing the

environmental response of population growth or its compo-

nent birth and death rates) is as important for DRM analysis as

the choice of an appropriate model for range dynamics.

Formulation of the niche model has to answer the following

three questions. (1) Which parameters of the population

dynamic model respond to environmental variation? (2) To

which environmental factors do they respond? (3) What is the

functional form of this response? For a simple population

model (Box 1), the answer to the first question could

essentially be intrinsic growth rate r, carrying capacity K

and/or competition intensity h (note that any of these three

parameters can be calculated from the other two so that no

more than two parameters can show independent environ-

mental responses). While niche theory has largely focused on

the environmental response of intrinsic growth rate (Maguire,

1973; Chase & Leibold, 2003), the other two parameters may

also respond to certain environmental variables (e.g. carrying

capacity may vary with the proportion of available habitat or

competition intensity may depend on the amount of

resources). When addressing the second and third question,

one should bear in mind that the niche model can integrate

more than just the current value of an environmental variable.

For example, demographic performance could show a unimo-

dal response to the difference between the current value and

the long-term average at each site. If performance is optimal

when this difference is zero, the niche model describes

intraspecific niche differentiation resulting from local adapta-

tion in stable ranges (Holt, 2009). While long-term adaptive

niche differentiation across species ranges can thus be

integrated rather easily, the description of rapid niche

evolution under environmental change requires further exten-

sions of the DRM framework (see below ‘Towards a demo-

graphic understanding of how evolution and interspecific

interactions shape niches and ranges’).

The relevant environmental variables and the functional

form of their effect can be inferred from demographic and

distribution data by describing demographic responses with

flexible models such as multiple regression (see Box 1).

However, DRMs could also integrate a more mechanistic

understanding of organismic responses to the environment. A

prominent example is the metabolic theory of ecology, which

predicts the functional form in which intrinsic growth rate

should increase and carrying capacity should decrease with

temperature (Brown et al., 2004). Beyond the very simple and

general niche models predicted by the metabolic theory, more

refined mechanistic niche models have been developed based

on information about the metabolism, energetics and behav-

iour of specific animal species (e.g. Buckley, 2008; Kearney

et al., 2008, 2009; Kearney, 2012) or the physiology and

phenology of plant species (Chuine & Beaubien, 2001; Bykova

et al., 2012; Higgins et al., 2012). For plants, we also have

increasing mechanistic understanding of how long-distance

seed and pollen dispersal responds to environmental variability

and global change (Nathan et al., 2008, 2011; Schurr et al.,

2008, 2009; Kuparinen et al., 2009). These mechanistic models

can thus be used to formulate submodels for the environmen-

tal response of dispersal. Yet, mechanistic models of demo-

graphic quantities are often computationally demanding,

which means that they might have to be simplified in order

to be suitable for statistical estimation in a DRM framework

(for an example see Higgins et al., 2012).

The above overview of potential submodels for DRM

analyses should not convey the impression that DRMs can

easily be estimated for arbitrary species and situations. While

DRMs can be statistically estimated in relatively simple cases

(Pagel & Schurr, 2012), the efficient estimation of DRMs in a

wider range of situations still poses challenges for statistical

research. One of these challenges arises if the study region does

not cover the entire geographical range of a species. In this

case, dynamics within the study region may be affected by

dispersal across the region’s boundaries. Research is needed to

quantify the importance of such edge effects and to find

efficient ways of statistically accounting for them.

A second, more general challenge arises in the statistical

estimation of complex population dynamics. While the DRM

framework can, in principle, incorporate models of arbitrary

complexity, extensions like the inclusion of Allee effects or

population structure introduce new process parameters which

may respond to the environment, thereby adding additional

hierarchical levels to the model. Additionally, stage-structured

submodels can substantially extend the state space because local

populations are characterized by a frequency distribution of

different stages rather than a single abundance value (integral

projection models are one solution to this problem as they can

reduce the state space to a manageable size). For population

models that cannot be formulated as state-transition probabil-

ities and thus cannot be estimated with hierarchical Bayesian

methods, simulation-based methods such as approximate

Bayesian computation (ABC) may potentially provide solutions

(e.g. Hartig et al., 2011). Further issues that deserve consider-

ation include parameter identifiability: complex models may

include parameters whose effects are difficult to disentangle.

For instance, population size and per-capita detection proba-

bility cannot be independently estimated from a single abun-

dance observation. The resulting strong correlations in the

F. M. Schurr et al.
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posterior distributions of parameters can slow down Markov

chain Monte Carlo (MCMC) sampling algorithms and require

specialized sampling techniques (Haario et al., 2006). For an

extensive discussion of computational challenges in estimating

dynamic state-space models for species distributions see

Marion et al. (2012). Yet, it is important to note that more

complex DRMs do not only pose challenges. By describing

processes in greater detail, they can also be linked to a wider

range of empirical data (see next section), which should

generally facilitate model estimation (Clark, 2005). Moreover,

because complex Bayesian models quantify the full posterior

distribution of parameters and forecasts, they are not as

sensitive to parameter uncertainty as complex models in

classical statistics (Clark, 2005). Due to their process-based

and Bayesian nature, DRMs thus need not be subject to the

bias-variance trade-off known from classical statistics.

THE EMPIRICAL AGENDA

It is likely that the geographical distributions of many species

are in disequilibrium with their environment. Unbiased

estimation of niches and range dynamics in such non-

equilibrium situations requires more than presence/absence

data for a single point in time (the standard data type used in

correlative SDM analyses). DRMs may provide a way out of this

dilemma as they can integrate a much broader range of data

types than SDMs: they can be estimated from data on: (1) large-

scale distributions and dynamics of species (presence/absence

or abundance), (2) dynamics of local populations, (3) variation

in demographic rates, and (4) environmental variation at

spatial and temporal scales matching those of the other data

types. As stated above, the more processes DRMs represent, the

greater the variety of data types they can incorporate.

Minimum requirements for the estimation of DRMs in non-

equilibrium conditions seem to be either data on the spatio-

temporal dynamics of environmental variables and species (e.g.

presence/absence maps for several time points or abundance

time series for several populations, Pagel & Schurr, 2012), or

the combination of demography–environment relationships

with large-scale distribution and environmental data for at

least one time point. Below we discuss the availability of

different data types useful for DRM estimation and the effort

required to collect informative new data.

Large-scale presence/absence data for a single time period are

available for many organisms. These data are often presented as

having no temporal dimension. Yet, presence/absence data

frequently summarize records collected over a long period and

we may know when each record was taken. Hence, such ‘single

time-slice’ data can have a hidden temporal dimension that

could be useful for the estimation of DRMs. Incorporating this

temporal aspect may also render presence-only data useful for

DRM estimation. For species with a potentially wide distribu-

tion, the collection of new presence/absence data that are

informative for DRMs requires substantial efforts and will

typically only be manageable in a coordinated research project.

Citizen science projects seem highly valuable for taxa that are

relatively easy to find and identify (Devictor et al., 2010).

Presence/absence maps for multiple time periods are currently

available only for a relatively small set of organisms (prime

examples include several datasets on birds and invasive species as

well as data on British butterflies and plants). But where presence/

absence data have already been collected at some time in the past,

it may be relatively easy to motivate and manage the collection of

new data (because such projects can build on experience,

networks and results from previous campaigns). Nevertheless,

given the substantial effort required for an atlas survey the

question is, how long should the time lag be between two surveys

to avoid redundancy? This obviously depends on the life history

of the study organisms: the shorter their generation time and the

more mobile they are, the shorter the time lag between two

informative campaigns can be. In short-lived, mobile organisms,

such as butterflies, substantial range shifts have been observed at a

time-scale of decades (Parmesan et al., 1999).

When combined with presence/absence data for multiple

time periods, population genetic data can help improve DRM

fits because they can simplify the inverse problem of where the

founders of a population came from (e.g. Estoup & Guille-

maud, 2010; Lachmuth et al., 2010). Moreover, if DRMs can

be extended to represent large-scale genetic dynamics, they

could integrate molecular data on large-scale genetic structure

and dynamics (see Csillery et al., 2010 for related develop-

ments in phylogeography).

Comprehensive data on large-scale variation in local abun-

dance are rare. An example of such data is the Protea Atlas

Database (Rebelo, 2001), in which local abundance was

recorded (in broad categories) across the global geographical

range of c. 330 species of African Proteaceae. Even such rough

estimates of local abundance may contain substantial infor-

mation on spatio-temporal dynamics (Cabral & Schurr, 2010)

and can often be collected relatively easily. They should thus be

routinely included in future atlas projects whenever feasible.

Data on local population dynamics have been collected in

many studies (some of them are summarized in the Global

Population Dynamics Database; NERC, 2010). However, to

inform the estimation of DRMs, we need to replicate population

time series that are collected over a range of environmental

conditions using a standardized methodology. Such data are

currently available only for a limited set of species. A prime

example is the North American Breeding Bird Survey (parts of

which were used in the analysis of Hooten & Wikle, 2008).

Initiated in 1966, this massive monitoring programme records

abundance proxies for more than 420 bird species along 4100

survey routes located across North America. Such extensive

monitoring programmes obviously require large efforts, but

reasonable DRM estimates can be obtained from abundance

data of far more modest extent: simulations of Pagel & Schurr

(2012) showed for annual species that abundance time series

collected over 10 years in 30 populations can substantially

improve DRM estimates. This spatial and temporal extent of

sampling seems manageable for small-scale research projects

(even though the temporal extent clearly exceeds the horizon of

A demographic research agenda for biogeography
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most funding schemes). However, the necessary temporal extent

of abundance monitoring will increase with the generation time

of the study species. For organisms with long generations times

(such as trees), we cannot hope to collect informative

abundance time series within a decade.

When considering data on demographic responses, it seems

sensible to distinguish between birth and death on the one

hand and dispersal on the other. As outlined above, the

environmental response of birth and death rates determines

the Hutchinsonian niche, whereas dispersal plays a crucial role

for range dynamics and for the mismatch between the niche

and distribution of species (Pulliam, 2000; Fig. 2).

Data on birth and death rates (or components of these

fundamental demographic rates) are available for many

organisms. For some organisms, such data are collected over

large spatial extents according to a standardized protocol (e.g.

forest inventory data for trees, Kunstler et al., 2011). In other

species, data on large-scale variation have been assembled

from the literature (e.g. data on large-scale variation in the

breeding success of seabirds; Sandvik et al., 2008). For most

organisms, however, there are no data on large-scale variation

in demography. Moreover, existing data on large-scale

demographic variation are often restricted to a single

demographic quantity (Gaston, 2009). However, for many

species it may be feasible to collect informative demographic

data within a relatively short time frame. Particularly

promising for the estimation of DRMs are transplant

experiments beyond the current range boundaries of study

species. Such experiments are still rare (Geber, 2008; Stone,

2010) but should yield a more complete description of

Hutchinsonian niches (that is not restricted to the niche

space currently occupied by a species). Moreover, such

experiments may help to assess risks associated with assisted

migration (e.g. Stone, 2010).

Collecting demographic data on birth and death seems

particularly important for long-lived organisms for which the

collection of informative abundance time series takes too long

(see above). Such data can be obtained from plot-based studies

of sessile species or from mark–recapture studies of mobile

species (O’Hara et al., 2009). Clearly, in extremely long-lived

organisms, it is often difficult to measure birth and death rates

directly (Cody, 2000). However, if DRMs contain refined

models of population dynamics (e.g. matrix or integral projec-

tion models, Table 1), they can integrate data on measurable

components of birth and death rates (e.g. on transition rates

between sizes or stages). The decomposition of birth and death

rates into quantifiable and unquantifiable components should

also enable the estimation of DRMs for the large number of

species in which environmental responses are known only for

some demographic quantities (Gaston, 2009). Furthermore,

physiological and phenological research has led to a mechanistic

understanding of how some key components of birth and death

rates respond to environmental variation (Cleland et al., 2007;

Kearney & Porter, 2009; Bykova et al., 2012; Higgins et al.,

2012). Such knowledge can help to constrain the functional

form of demographic response functions in DRMs.

For many organisms we have limited quantitative data on

dispersal in general and long-distance dispersal in particular.

European bird species form an exception, as extensive capture–

mark–recapture and band recovery studies yielded large

datasets on distances of breeding and natal dispersal (Paradis

et al., 1998). However, even for such intensely studied

organisms we currently have limited information on how

long-distance dispersal varies with environmental conditions.

While data on long-distance dispersal are still relatively scarce,

they can be collected with a variety of methods (e.g. Nathan

et al., 2003). For instance, quantitative data on long-distance

dispersal can be gathered through population genetic or

capture–mark–recapture methods. Furthermore, novel tech-

nologies enable the direct tracking of dispersing animals over

large spatial extents: for example, micro radio telemetry and

harmonic radar were used to track insect movements at the

landscape scale (Ovaskainen et al., 2008; Hagen et al., 2011)

and satellites might in the future be used to track small

vertebrates and large insects at global scales (Pennisi, 2011).

Such direct tracking still seems impossible for most plant

propagules. However, mechanistic models can be used to

predict plant dispersal at scales relevant for range dynamics

from measurements of dispersal traits and dispersal environ-

ments (Schurr et al., 2007; Nathan et al., 2008).

Datasets on spatial and temporal variation in important

environmental variables can generally be obtained more easily

than reliable data on the distribution, dynamics and demog-

raphy of individual species. For many regions, environmental

data already exist at high spatial and temporal resolution and

they are further improved and extended through co-ordinated

measurement campaigns, remote sensing, and mechanistic

modelling. Climatic data of sufficient spatial and temporal

resolution can be obtained by interpolation of global long-

term datasets (e.g. Hijmans et al., 2005; Di Luzio et al., 2008)

or from statistical downscaling of coarse resolution temporal

climate time series of the recent past in combination with

high-resolution climate normals maps (e.g. Engler et al., 2011).

Land cover dynamics can be quantified by remote sensing (e.g.

Homer et al., 2007; Vierling et al., 2008) or from historical

information (e.g. Steyaert & Knox, 2008). Edaphic and

topographic information are additional useful sources that

increasingly become available at high spatial resolution (e.g.

Jarvis et al., 2008). It should, however, be noted that existing

environmental datasets mostly quantify non-interactive sceno-

poetic variables, whereas data on the spatio-temporal dynam-

ics of resources are largely lacking (see above).

In summary, the monitoring of species distributions and

abundances, observations of large-scale variation in key

demographic rates, transplant experiments beyond range

boundaries and various methods to estimate long-distance

dispersal can provide data that are particularly useful to

estimate species’ niches and range dynamics. These data should

thus receive particular attention in emerging biodiversity

observation schemes such as the Group on Earth Observations

Biodiversity Observation Network (GEO-BON, Scholes et al.,

2008).
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THE THEORETICAL AGENDA

The widespread application of DRMs is not just a matter of

formulating appropriate models and collecting informative

data – it also poses questions to ecological theory. Here, we

first discuss two of these issues: the identification of scaling

relationships for demographic rates and the theoretical analysis

of spatially coupled population dynamics. Subsequently, we

highlight the potential of the demographic research agenda for

testing and developing theory.

Grid-based DRMs cannot explicitly represent heterogeneous

distributions of individuals and environments within grid cells.

Yet, such within-cell heterogeneity will affect the way in

which small-scale demographic measurements are linked to

parameters describing grid-level population dynamics. As an

extreme example consider a grid cell that is large enough to

host an entire metapopulation. Abundance dynamics of the

whole metapopulation may be well described by a simple

population model with parameters for intrinsic growth rate

and carrying capacity (Hanski, 1999). However, the values of

these metapopulation-level parameters may have little to do

with values of the corresponding parameters measured in

single populations. This is because ‘intrinsic growth rates’ at

the metapopulation-level do not just depend on local popu-

lation growth but also on the species’ ability to colonize new

patches in an empty habitat network (Hanski, 1999). Similarly,

the metapopulation-level ‘carrying capacity’ need not be

closely related to local carrying capacity as it strongly depends

on the dynamic balance between patch colonization and

population extinction (Hanski, 1999). While in this example

the spatial scaling of demographic rates is well understood,

similar challenges arise if within-cell environmental heteroge-

neity has nonlinear effects on population dynamics or when

describing continuous population spread across spatially

discrete grids. In general, the scaling challenge becomes smaller

as one refines the grid resolution (Lischke et al., 2007).

However, use of a finer resolution also increases the computer

time for DRM estimation and may not be feasible when

environmental and/or distribution data are only available on

coarse grids. In such cases, one can resort to existing analytical

or simulation-based techniques for scaling up ecological

dynamics (reviewed by Lischke et al., 2007). Nevertheless,

there is a need for further theoretical research that derives

general scaling relationships for demographic rates and

identifies cases in which the grid-based discretization of range

dynamics will fail.

A second challenge for ecological theory results from the

potentially complex behaviour of the spatially coupled popu-

lation models contained in DRMs. For example, a species’

range that is made up of coupled populations with temporally

variable growth rates might persist even though the average

growth rate of each population is negative (Roy et al., 2005).

Hence, a DRM for a species with stable range size might

predict that there is no site where the considered environ-

mental variables have values inside the estimated niche. This

apparent paradox can, however, be resolved when one

acknowledges that the temporal variability of population

growth in this DRM arises from the stochastic error term of

the niche model (Box 1). This stochastic term describes, inter

alia, the effects of additional environmental variables that are

not considered explicitly (Box 1). A more complex DRM that

explicitly includes such additional variables should thus

identify the environmental conditions under which any given

site supports positive population growth and is inside the

niche. Further complexity of spatially coupled population

dynamics may arise from over-compensatory density-depen-

dence (Hastings, 1993; Holt, 1993; Münkemüller & Johst,

2007), from different types of temporal variability in the

environment (Schwager et al., 2006), or from the exploitation

of species (e.g. Sinha & Parthasarathy, 1996; Cabral et al.,

2011). Better understanding of these complex dynamics will

help to interpret DRM estimates and the resulting range

dynamics forecasts.

While ecological theory thus contributes important elements

to the demographic research agenda, the wider application of

DRM analyses in turn provides opportunities for testing and

developing theory. In part, this is simply because DRMs yield

better niche estimates than state-of-the-art correlative SDMs

(Fig. 3). As an example, consider an introduced species that

spreads on a new continent where it has not yet filled its entire

niche space. In such non-equilibrium situations, DRMs

provide less biased niche estimates that should enable more

conclusive tests of whether a putative niche shift between the

native and the invaded range (e.g. Broennimann et al., 2007)

reflects true niche differentiation.

Beyond producing better niche estimates, the demographic

agenda can also paint a more nuanced picture of niches and

range dynamics. DRMs estimate otherwise inaccessible niche

characteristics, such as the maximum population growth rate

and the associated environmental conditions (Fig. 3b). This

provides novel opportunities for testing whether different niche

characteristics are determined by different functional traits,

whether their macroevolution proceeded at different rates, and

whether their covariance can be explained by life history theory.

For instance, it could be tested whether niches are shaped by a

generalist–specialist trade-off between niche width and maxi-

mum population growth rate (MacArthur, 1972). Moreover,

DRMs estimate dispersal rates and thus the spatial and

temporal scales at which a species experiences environmental

variation (cf. Holt, 2009). This will help to determine the

temporal and spatial resolution at which niche axes should be

assessed. This is not only relevant for developing niche theory

but also for the empirical and statistical modelling aspects of

the demographic agenda.

In general, because DRMs are rooted in demographic and

niche theory, they offer new tools for testing theoretical

findings against large-scale data. Statistical methods of model

selection can be used to compare alternative DRMs represent-

ing competing theories. Moreover, DRM estimation can

identify which parameter ranges of theoretical models are

realistic and hence which dynamical behaviours of these

models are relevant for real species. For instance, DRM
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analyses could test the real-world relevance of the theoretically

important distinction between the population establishment

and the population persistence niche (Holt, 2009; see above).

TOWARDS A DEMOGRAPHIC UNDERSTANDING

OF HOW EVOLUTION AND INTERSPECIFIC

INTERACTIONS SHAPE NICHES AND RANGES

The fundamental demographic rates of birth, death and

dispersal not only determine niches and range dynamics but

are also central to evolutionary and meta-community dynam-

ics (e.g. Leibold et al., 2004; Metcalf & Pavard, 2007; Holt,

2009). The quantification of large-scale variation in these

demographic rates thus forms the basis for understanding how

niches and range dynamics are shaped by evolution and

interspecific interactions in a meta-community. The DRMs

discussed so far do not explicitly describe these processes but

subsume them in error terms (see Box 1). However, extended

DRMs could build upon existing theoretical models for meta-

communities (Leibold et al., 2004) and eco-evolutionary range

dynamics (Kirkpatrick & Barton, 1997; Holt, 2009). For

instance, a multi-species DRM could describe interspecific

interactions in a meta-community through coefficients that

describe the interaction between each pair of species (as in

classic Lotka–Volterra models) or by explicitly modelling the

‘currencies’ that mediate interactions (Kissling et al., 2012).

Rather than making the binary distinction between funda-

mental and realized niches (Hutchinson, 1957), this would

promote a gradual view of how a species’ niche responds to the

abundance of interacting species (with the fundamental niche

arising in the extreme case where all interacting species are

absent). An eco-evolutionary DRM could describe how

selection, gene flow, drift and mutation interact to determine

demographic response functions and hence the dynamics of

niches and dispersal across species ranges (Kirkpatrick &

Barton, 1997; Travis & Dytham, 2002; Holt, 2009). This

requires introducing additional state variables that describe the

genetic composition of populations. Clearly, such possible

extensions will substantially increase the computational and

data demand of DRMs. Yet, they also highlight the potential of

the proposed demographic research agenda for biogeography.

CONCLUSIONS

A demographic research agenda for biogeography can mark-

edly advance the quantitative understanding of how geograph-

ical ranges of species arise from the fundamental demographic

processes of birth, death and dispersal. Such a bottom-up

demographic understanding will improve the quantification of

niches and the forecasting of range dynamics. However, the

relevance of the demographic agenda may extend much

further: understanding how niches and ranges arise from

demographic rates is a prerequisite for understanding how

they are shaped by evolutionary processes and interspecific

interactions in meta-communities.
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