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Abs t r ac t .  Implementing program optimizers is a task which swallows 
an enourmous amount of man-power. To reduce development time a sim- 
ple and practial specification method is highly desirable. Such a method 
should comprise both program analysis and transformation. However, al- 
though several frameworks for program analysis exist, none of them can 
be used for analysis and transformation uniformly. This paper presents 
such a method. For program analysis we use a simple variant of graph 
rewrite systems (edge addition rewrite systems). For program transfor- 
mation we apply more complex graph rewrite systems. Our specification 
method has been implemented prototypically in the optimizer generator 
OPTIMIX. OPTIMIX works with arbitrary intermediate languages and 
generates real-life program analyses and transformations. We demon- 
strate this by several examples and measurements. 

K e y w o r d s :  Program analysis, program transformation,  optimization,  specifica- 
tion, graph rewrite systems 

1 I n t r o d u c t i o n  

This paper  presents a uniform specification method for program analysis and 
transformation.  It  is based on graph rewrite systems (GRs), can be used for 
arbi trary intermediate languages (also abstract  syntax trees), and leads to effi- 
ciently executing optimizer parts.  The major  idea behind it is the insight tha t  
the intermediate representations in optimizers are graphs which are constructed 
and manipulated by graph transformations. Thus it is quite natural  to use graph 
rewrite systems to specify both problems of program analysis and t ransforma- 
tion. 

With our specification method the process of writing an optimizer is divided 
into four phases. First a data  model for the graphs - -  intermediate code as well 

* This work has been supported by Esprit project No. 5399 COMPARE. Most of this 
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as analysis i n fo rma t ion -  has to be developed. Secondly, program analysis has 
to be specified by graph rewrite systems. For this we supply a special variant 
of graph rewrite systems, edge addition rewrite systems (EARs). EARS are very 
simple graph rewrite systems because they only allow the addition of edges to 
graphs and do not remove any existing parts. Thirdly, program transformations 
can be specified by more general graph rewrite systems which allow deletion of 
edges, and insertion and deletion of nodes. Finally, after having described the op- 
timization abstractly, the representations of the graph classes can be changed in 
order to speed up the generated algorithms. The user also can feed the generator 
with assertions so that the generator can apply index structures (dictionaries). 
We will show that this is an essential part to achieve effiently executing optimizer 
parts. 

The structure of the paper is shaped along this process. We will present a 
running example, the elimination of partial redundancies (lazy code motion) 
[KRS94]. It comprises syntactic equivalence of intermediate expressions (sec- 
tion 4.1), global data flow analysis (section 4.2), and a transformation phase 
(section 5). Additionally we present some figures concerning the efficiency of the 
generated algorithms. We conclude the paper with a section about related work. 

To demonstrate the validity of the specification method the optimizer gen- 
erator OPTIMIX and several optimizer parts have been developed within the 
compiler framework CoSy [AAvS94]. All generated components work on the 
common COMPARE medium intermediate representation, the intermediate lan- 
guage CCMIR. The CCMIR serves as common platform for frontends in C, 
Fortran-90, Modula-2, Modula-P [VH92], and soon C+-t- (ht tp  ://www. ace. nl). 

2 T h e  m e t h o d  

The central idea of our specification method is to regard the optimization process 
as a sequence of applications of graph rewrite systems (Figure 1). We start with a 
graph given by the frontend which is the abstract syntax tree or the intermediate 
code sequence. First we have to perform program analysis. This is normally 
done by several EARS, executed one after the other. These may comprise one 
or several data-flow analyses. After that the transforming graph rewrite systems 
can be applied. 

The advantages of this scheme are the following. First we have a uniform 
view on the intermediate language and the analysis information: everything is 
represented as graphs, and all actions are done by graph rewriting. Second, in- 
stead of describing everything with one big graph rewrite system (which could be 
possible) we prefer to write a sequence of smaller ones. Larger graph rewrite sys- 
tems tend to loose confluence or termination. With a suitable separation one can 
isolate non-confluency or even resolve non-termination. Third, for smaller graph 
rewrite systems we know how to generate good code because smaller rewrite 
systems in general have a lower order than bigger ones: often linear or quadratic 
algorithms can be achieved [Ai~95b]. Forth, this division breaks the optimization 
task down into component problems which can be solved independently. If we 
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Fig. 1. Left: Optimization as a sequence of graph rewrite system applications. Thick 
boxes are generated phases. Right: our examples as an instance of the method 

do not find a system for a certain task, or some developed system turns out to 
be too slow, or we can always substitute it by a hand-written algorithm. This 
is anyway the case for the frontend and the backend; they are implemented as 
u s u a l .  

In order to make this scheme work, all phases of the compiler have to use 
a uniform object handling package including uniform graph and set classes. In 
COMPARE this is solved by the data  description language fSDL. It provides 
graph and set functors (template classes). From this a uniform access interface 
is generated [WKD94]. All hand-written and generated phases use this interface 
so that  a uniform data access is given. 

3 Designing the data model  

Before developing graph rewrite systems for program analysis and transforma- 
tions, we have to say how the intermediate graphs look like. This amounts to 
specifying a data model or graph schema [Sch90]. We have to layout the follow- 
ing: 

1. model the graph node types: among these are intermediate code instructions 
such as expressions, statements, loops, procedures. Also already analyzed 
information can be encoded in nodes of graphs, e.g. definitions, or expression 
equivalence classes. 
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2. model the graph edge types (relations): First we have to model the infor- 
mation the frontend produces, e.g. expression tree pointering, or statement 
lists. Second we have to model all predicates we want to infer about the pro- 
gram, i.e. the relations among the objects of the program and the analysis. 
Examples are relations such as the classical flow dependencies, equvialence 
relations, calling relations, control flow relations. 

.~SdICtS 

pu~t 

Fig. 2. Data model as higraph. 

Our running example relies on the data model in figure 2. The diagram is 
a higraph, i.e. an extended ER-model [Har88]. Boxes denote entity types, box 
inclusion denotes inheritance, n:m-relations are depicted by diamond boxes, n:l- 
relations by simple arrows. Because we deal with directed graphs, we have to 
indicate source and target domains of the relations, which is done by arrows. For 
the example we assume some familiar object types, such as blocks, statements 
and expressions. Several of them are generated by the frontend (Block, Assign, 
IntConst,  Plus) and form the basis for the optimization process. Others are 
generated by the optimizer: AssReg- and UseReg- objects denote assignments 
and uses of registers (Register),  objects of type ExprClass denote syntactically 
equivalent expressions. Also the relations are only partially produced by the 
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frontend (Stmts, Exprs, Lef t ,  Right). All others are the results of optimizer 
components, i.e. computed by graph rewrite systems. 

This data model can easily be transformed into a concrete data description 
language such as a fSDL [WKD94]. In such a language relations must be anno- 
tated by a concrete representation class, fSDL provides two kinds of representa- 
tions: bidirectional relations (such as Graph or EqGraph), and directed relations 
(such as Set or Lis t ) .  The relations in our figure carry such annotations. Note 
that this choice does not influence the specification, but the generated code. 

4 S p e c i f y i n g  t h e  a n a l y s i s  

4.1 Local analysis 

One of the central ideas of our specification method is to describe the collec- 
tion of information as simple graph rewrite systems which only add edges to 
graphs. One example for a local program analysis is the specification of syntac- 
tic equivalence of expression trees. This is the prerequisite for lazy code motion 
data-flow analysis. In intermediate languages such as the CCMIR we distinguish 
two kinds of expressions: those with operands (non-leaf expressions) and those 
without (leaf expressions). Among the first there are operators such as Plus, 
among the latter there are those such as IntConst.  

\ 1// a q  

a q  

Fig. 3. EQUIV: Syntactic equivalence of expressions 

Two arbitrary expressions are attribute-equivalent to each other if their at- 
tributes are the same. For IntConst  expressions the value of the constant must 
be equal. For Plus expressions their field 0nType must be equal. Two leaf expres- 
sions are equivalent if they are attribute-equivalent. Two non-leaf expressions are 
equivalent if they are attribute-equivalent and all their sons are equivalent. For 
IntConst  and Plus these conditions are expressed by the EARS in Figure 3. For 
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a complete specification of syntactical tree equivalence of expressions we have to 
add similar rules for all subtypes of expressions. 

Applying the rules of EQUIV to the intermediate representation of a pro- 
cedure yields a relation eq which is a parti t ion of all expressions and de- 
notes the syntactical equivalence relation over expressions. With another simple 
graph rewrite system we can generate for each partit ion a representant node 
ExprClass .  This object type will be used in the global data-flow analysis. Due 
to the lack of space we will not show this here. 

4.2 G l o b a l  data-flow analysis 

With EARS it is also possible to specify global data-flow analysis. If the EARS is 
recursive, the rules have to be applied until a fixpoint is reached. This is similar 
to finding a fixpoint in a distributive data-flow framework. We demonstrate this 
by some equations from the equation system for lazy code motion ([KRS94], 
p. 1138). This data-flow analysis relates the blocks of the program to its expres- 
sion classes, i.e. the syntactical equivalent expressions. If we encode this with 
graphs, the nodes are the blocks and the expression classes, whereas the edges 
represent the data-flow sets. Due to the lack of space we will only present the 
equation system for ISOLATED, as well as the non-recursive equation system for 
INSERT/REPLACE_0UT which determines the places of transformations at the end 
of blocks (Figure 4). We also do not show the initialization of the system, which 
can easily be written down with graph rewrite rules, too. 

The rules mean the following: an expression must be inserted at the end of 
a block, if is latest and not isolated there. An expression is isolated at the exit 
of a block if it is either earliest or isolated at the entry of all successor blocks. 
Thus isolatedness at the exit of a block is expressed by recursive rules, defined 
over the successors of the block, which makes the fixpoint evaluation necessary. 
An expression is to be replaced at the end of a block if it is computed there and 
not isolated and latest. 

For these equations we have to use two extensions of EARS, namely negation 
and universal quantiflers [A~95a]. If an edge in a left hand side is marked with 
NOT no edge of this type is allowed to occur between the corresponding redex 
nodes. If a left hand side node is allquantified, then redexes must exist for all 
graph nodes in a neighbor set matched by an ingoing left hand side edge. In 
order to achieve a sound semantics for the negation we have to stratify the rules 
so that  they still yield a unique normal form [Af195a]. As s t ra ta  exactly the rule 
groups (equation systems) result which are mentioned in [KRS94]. Here they are 
coalesced only for the purpose of demonstration. Also the given equations relate 
almost one-to-one to the equations in [KRS94]. Thus, writing a specification for 
global data-flow analysis, and generating an executable algorithm with OPTIMIX 
can be done in very short time. Actually this part  seems to be the most easy 
part  of the whole optimization process: take an arbitrary equation system, and 
type it in. 

In this paper we consider only intraprocedural analysis. For interprocedural 
analysis special specification or evaluation strategies have to be applied to reach 
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Fig.4.  LCMANA: Data-flow analysis for lazy code motion: isolatedness, earliest- 
ness, insert-out, replace-out. LCMANA-1 - LCMANA-5 make up the first rule group, 
LCMANA-6-8 the second 

the same preciseness. As EARS model distributed data-flow frameworks over 
finite powersets there are several methods which can be applied [RHS95]. 

5 Specifying transformations 

If we allow edge deletions, node additions, and node deletions, we can spec- 
ify program transformations by deleting and adding objects from and to the 
intermediate representation. Our running example is continued by specifying 
some transformation rules for lazy code motion (Figure 5). We regard only 
the necessary relations for transformation at the end of blocks (INSERT_OUT, 
REPLACE_0UT). The first rule inserts an expression at the end of a block. No 
nodes are deleted; only new statements for creating the expression value and 
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sr~tl, last I s s r a T ~  s~mts 

Fig. 5. LCM: Insert and replace of an expression at the exit of a basic block 

storing it into a register are created. Edge INSERT_OUT is deleted in order to 
prevent that  LCM-1 is applied again. LCM-2 also deletes nodes, because it has 
to replace a computing instruction of an expression class to a UseReg instruction 
which uses the already computed value from a register. In order to arrive at a 
complete lazy code motion transformation similar rules for the beginning of the 
blocks must be written. 

With arbitrary additions and deletions we may loose termination and also 
(strong) confluence. Of course termination is absolutely necessary. [A~95a] 
presents two termination criteria which are statically decidable: 

1. Termination by edge addition. In the case of EARS the rewrite process stops 
when the added relations are complete. This can be carried over to general 
graph rewrite systems, if each rule adds an edge of such a terminating relation 
and no other rule is allowed to delete these edges again. Then the system 
terminates because the terminating relation is complete. 

2. Termination by redex deletion: each rule deletes nodes or edges of types 
which are not added either. This means that  although the rules may add 
nodes and edges of other types they do not produce any redex again. Thus 
after deletion of all initial redexes termination follows. This is the case for 
LCM: LCM-1 subtracts the edge I~ISERT_OUT and LCM-2 the edge Computes. 
Thus it terminates, although it adds statements and expressions. 

These termination criteria are very useful if a graph rewrite system has to 
perform a finite number of actions depending on the size of the manipulated 
graph. This is the case for many code optimizations, especially for code motion 
and replacement algorithms: first they compute the places where to transform 
and then they transform only once. 
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If a graph rewrite system is not confluent, it delivers a correct, but  arbitrar- 
ily selected result. LCM cannot be proved to be confluent regarding its rules. 
However, because the redexes in the manipulated graph do not overlap, it is in 
deed confluent and delivers unique results. 

6 Execut ion  

6.1 Optimix meta-code-generatlon 

In order to understand how the specifications given so far can be executed ef- 
ficiently, we will give a short overview on a special (meta-)code-generation for 
graph rewrite systems [AB95b], the order evaluation. This technique is based on 
the idea that  we will find all redexes of a rule if we regard all possible permu- 
tations of source nodes of left hand sides and look up the rest of the redex by 
traversing neighbor sets. For that the order of the graph rewrite system has to 
be calculated, which is the maximal number of source nodes in left hand sides. 
If a graph rewrite system has order k, we also call it Grts(k). 

For order evaluation we have to compute an edge disjoint path cover for each 
left hand side. This is a set of paths which cover the left hand side such that  
they intersect each other only at their end points. Then the problem of finding 
a redex for a given set of source nodes in the manipulated graph is reduced to 
a join of the path problems of the edge disjoint path cover. Consider Figure 6 
which contains a path cover of LCM-2. For this rule OPTIMIX generates the 
code in Figure 7. The outer loops (1) and (2) enumerate the path problem of 
path 1. The inner loops (3) and (4) enumerate path 2. The paths are joined with 
a nested-loop-join under the join condition c = c2, because we need to find the 
intersection of their enumerated objects. 

I 
RIPI~CB_OUT I ~ p r s  

Fig. 6. A edge-disjoint path cover for LCM-2 with two paths. Path 1 is drawn with 
normal edges, path 2 with dotted edges 

For non-recursive (recursive) graph rewrite systems the order evaluation has 
complexity O(nketP)(O(nk+2etP)), where l the length of the longest path of a 
path cover over all left hand sides, p the maximum number of paths in a path 
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Input-" Node type Block. Relations Stmts, 
~'xprs, REPLACE_OUT, Computes, InRegister 

Output-" Modified intermediate code: expressions replaced by UseReg expressions 

/* Enumerate path I */ 
f o r a l l  b E B l o c k  d o  (1 )  

f o r a l l  c E b . R E P L A C E _ O U T  d o  ( 2 )  
r ~ c . l n R e g i s t e r ;  / ,  1:l-relation */ 
/* Join with path 2 */ 
f o r a l l  s E b . S t m t s  d o  (3)  

f o r a l l  e E s . E x p r s  d o  (4 )  
c 2 ~-- e . C o m p u t e s ;  / *  n:l-relation */ 
[* Join condition */ 
i f  n o t  c = e 2 t h e n  

c o n t i n u e  ; 
[* Redex (place for transformation) found. */ 
.. D o  t h e  t r a n s f o r m a t i o n  .. 

F i g .  7.  A l g o r i t h m  g e n e r a t e d  for  L C M - 2  

cover, n the maximal number of nodes in a node type, and e the maximum 
out-degree of a node concerning an arbitrary relation. However, for concrete 
algorithms often better costs result because many relations are n: l  and often 
object domains are partitioned by graphs. Because the test for LCM-1 can be 
overlapped with the loops of algorithm 7, it can be used to solve LCM. LCM 
is non-recursive, because it does not create new redexes for itself. According 
to the order evaluation cost formula it has complexity O([Block[le6), because 
k = 1, 1 = 3,p = 2. Then Computes and I n R e g i s t e r  are n:l- and l:l-relations, 
respectively. Also expressions are partit ioned over the blocks, i.e. loop (3) and (4) 
only loop once over all expressions of a procedure. Thus the generated algorithm 
has cost O([Block[[Expr[[ExprClass[). It is also clear that  if other directions are 
chosen for the relations of the data  model, a graph rewrite system with higher 
order may result. For our example we use already a reasonably good one, but in 
general this needs some thinking. 

EQUIV has order 2, because the rules for attribute-equivalence contain iso- 
lates in the left hand sides. It is recursive. A theorem in [AB95b] shows that  
because we deal with expression trees the fixpoint computation can be avoided. 
Also, L e f t  and Right  are n:l-relations. Thus EQUIV can be solved with order 
evaluation in O([Expr[2e 3) because 1 = 1, p = 3. However, e is here much smaller 
than [~.xpr[ because the relations eq and a t t r e q  parti t ion ~.xpr. If we neglect 
their cardinality, we achieve a quadratic algorithm in the number of expressions. 

LCMANA has order 1, because Block is the only source node type of all 
rules. Because it is recursive, we have to apply fixpoint computation. Because 
1 = 2,p = 2, we have complexity O([{Block,ExprClass}[ae4). However, if 
we use a bitvector representation for the relations, the standard round-robin 
iteration for data-flow analysis results. Because bitvector union/intersection 
has linear effort in the number of expressions, a concrete algorithm has cost 
O(IBlock]2]ExprClass] x ]Block]]ExprClass[) = O(]Block]S]ExprClass]2). This 
rough estimate can be improved by taking the loop nesting of the control-flow 
graph into account [Hec77]. 
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All terminating graph rewrite systems can be solved by order evaluation. For 
terminating and confluent systems it will deliver the unique normal form. For 
non-confluent systems it will deliver a correct, but arbitrarily selected result. 
Hence order evaluation provides a simple and uniform solution procedure for 
program optimization problems. Thus we are able not only to specify analysis 
and transformation uniformly, but also execute the specifications with a uniform 
execution mechanism. 

6.2 Speeding up 

The following sections present some numbers and shows how to speed up the 
execution of order evaluation. Within CoSy two optimizer configurations have 
been tested: a Modula-2 compiler with lazy code motion, and a C compiler with 
copy propagation. 

Our experience is that by using graph rewrite systems the development time 
of an optimizer is greatly reduced. Our estimate is that about 50% savings are 
possible. For instance, equation systems such as LCMANA can be typed in in a 
few hours. If the generator generates correct code the correctness of the generated 
algorithm can be achieved quite quickly. Also in transformation the savings are 
enourmous: normally it is a tedious work to write algorithms which search for 
the transformation places. Using graph rewriting this is automatic. 

Also the relation of generated and hand-written part in the optimizers is 
very interesting. Because OPTIMIX does not yet implement all possible fea- 
tures, still some parts are hand-written. Nevertheless, the constructed optimizer 
components consist of about 60-80% of generated code and the hand-written 
parts are not critical for the runtime of the optimizers. We estimate that with 
an industrial-strength implementation of OPTIMIX 90% of an optimizer can be 
generated without problems. 

6.3 Effectiveness of generated optimization phases 

The lazy code motion optimizer demonstrates that graph rewriting in deed can 
produce effective optimizers. The following table shows the execution times in 
seconds of some routines of the Stanford benchmark from Henessy and Nye. The 
optimizer achieves up to 32% speedup, although it is a prototypical implemen- 
tation. Gcc and sun-cc are much more effective here. However, the quality of 
the optimized program code is a matter of the quality of the specification of the 
optimizer components. Thus much better results are possible by improving the 
specification, e.g. by including better alias information. 

Routine without LCM with LCM 

Queens 
MatrixMult 
Puzzle 
Quicksort 
Erastothenes 

11.9 
12.6 
4.9 
8.3 
32.5 

!10.9 
8.5 
4.0 
7.4 
24.1 

speedup in % gcc -04 sun-cc -04 
8 4.7 5.2 
32 2.9 5.9 
!18 1.4 1.8 
13 2.8 6.1 
25 24.7 19.5 
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6.4 Overall  op t imiza t ion  speed 

In order to test the compilation speed of the generated components, the two 
compilers were compared running with and without optimization, compiling the 
Stanford benchmark. The table shows that the optimizers add about factor 3-7 
to the runtime of the compilers. Clearly gcc and sun-cc are faster here, although 
they perform more optimizations. However, for generated optimizer parts the 
results are very good: OPTIMIX and the specified components are quite new 
implementations which leave a lot of possibilities for improvements. Also the 
lazy code motion optimizer performs already rather a computation-intensive op- 
timization: it computes four data-flow equation fixpoints and syntactical expres- 
sion equivalence. Again, with an industrial-strength implementation the velocity 
of the generated optimizer parts could very well reach that of hand-written parts. 

Compiling Stanford benchmark Slowdown factor 
M-2, lazy code motion 7.2 
C, copy propagation 2.9 
gcc -04 2.2 
sun-cc -04 3.1 

6.5 Speeding up express ion equivalence 

[AB95b] shows that an index structure can be used to speed up EQUIV. This 
structure maps attributes to nodes and simulates virtual edges between the two 
isolates of EQUIV-1/EQUIV-2. With this modified production EQUIV turns 
into an EARS(l) and its cost changes to O(IExprle3). If the maximum number of 
elements in expression classes is small compared with the number of expressions, 
the runtime of EQUIV will be dominated by the cubic cost factor only for very 
large programs. 

o 

450 

400 

350 
300 
250 
200 
150 
100 
50 
0 

Runtime of  EQUIV 

order algorithm ~-~ ....... 
index on s u b t y p e / - -  

index also on attribut~ - -  
/ 

/ / /  

500 1000 1500 2000 2500 
number of  expressions 

This assumption is supported by the diagram above. Here the runtime of 
a Modula-2 compiler including the EQUIV algorithm is measured. The upper 
curve shows clear quadratic runtime in the number of expressions of the program 
(order evaluation). The curve in the middle is measured with a hash index over 
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the expressions; the hash index function comprises the subtypes of the expression 
nodes. The lower curve additionally comprises attributes of the most frequent 
expressions. Although the behaviour is not linear in the number of expressions 
the cubic factor starts to dominate the runtime only when very large procedures 
are compiled. Thus using a good hash function doubles the speed of the compiler: 
the use of index structures is very important in practice. 

6.6 Graph representations 

We also measured the influence of the graph representations on the runtime 
of the Modula-2 compiler. For that the LCMANA component was run with a 
list-based and a bitvector-based implementation for the data-flow sets. Both 
representations can be exchanged by changing the concrete class of the relations 
in the fSDL data specification (and of course, by adapting any non-generated 
code). When compiling the Stanford benchmark, the bitvector implementation 
is about 6 times faster than the list-based implementation. The difference lies in 
the implementation of the union and intersection operation of neighbor sets: on 
bitvectors these operations are linear and on lists they are quadratic. 

This shows that it is very important which data representations are chosen 
for the manipulated graphs. Thus the final phase of writing an optimizer with 
graph rewriting consists of selecting the right data representation. Fortunately 
this can be done by only changing the data model; the generator adjusts its 
code generation automatically. This reveals a unique strength of our method: 
the specification is independent of the representation of the graphs. 

7 R e l a t e d  w o r k  

Sharlit [TH92] and PAG [AM95] are two tools for generating efficient data-flow 
analyses. With both tools users have to supply data structures in C for the lattice 
elements and also for flow functions. Thus exchange of implementations is not 
so easy. SPARE [Ven89] follows the same approach and is additionally tied to 
the Synthesizer Generator. Generation of data-flow analysis from modal logic 
specification stems from [Ste91]. Although the powerful modal operators allow 
very short specifications, an application in a real-life compiler is not known. 
All these tools allow for the specification of more complex lattices and flow 
functions. However, we believe that our method is much more intuitive for the 
average programmer because it relies on the more familiar concept of graphs. 

Only few approaches are known which integrate transformations. SPECIFY 
[Koc92] additionally provides a proof language but was never implemented com- 
pletely. GENESIS [WS90] allows very powerful transformation specifications. 
Preconditions can be specified in a variant of first-order logic. However, because 
fixpoint computations cannot be specified, generation of data-flow analysis is 
not possible. Also it seems that the code generation scheme is quite ad hoc. 

Also the existing tools for graph rewrite systems could be used for genera- 
tion of program optimizers. PROGRES [Sch90] is the most advanced. However, 
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it is designed for an interactive user environment and not for batch processing. 
Currently it does not allow for fixpoint computations and is tied to an under- 
lying database, although it provides an excellent user interface. UBS systems 
[DSr95] provide a subclass of graph rewrite systems which can be handled more 
efficiently. However, the described implementation is still too slow for program 
optimization. OPTIMIX produces much faster algorithms: order evaluation of 
EQUIV (which only adds edges) performs at least 23002/400 = 13000 redex 
tests/second 2. Using an index the system is twice as fast: thus OPTIMIX should 
also provide one of the fastest existing tools to execute graph rewrite systems. 

8 O u t l o o k  

We have presented in this paper a novel uniform specification method for pro- 
gram analysis and transformation. EARS can be used for analysis, terminating 
GRS for transformation. Both can be evaluated uniformly and efficiently with 
order evaluation. With this method for the first t ime complete optimizers can be 
specified. The prototypical tool OPTIMIX demonstrates that  it is also possible 
to generate them. 

EAI~S are equivalent to Datalog with binary predicates [Af595a]. The idea that  
Datalog can been used to describe data-flow analysis has also been discovered 
by [Rep94]. However, the restriction to binary predicates makes it possible to 
use efficient graph search algorithms. 

I would like to thank Jiirgen Votlmer and Andreas Winter. As main imple- 
mentors of the mentioned optimizer components and first users of OPTIMIX they 
forced me to spent a lot of nights in front of my machine; however, I believe, 
with nice results. 
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