
How to Uniformly Specify
Program Analysis and Transformation

with Graph Rewrite Systems

Uwe ABmann

INRIA Rocquencourt
Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France

Uwe.Assmann~inria.fr*

Abs t r ac t . Implementing program optimizers is a task which swallows
an enourmous amount of man-power. To reduce development time a sim-
ple and practial specification method is highly desirable. Such a method
should comprise both program analysis and transformation. However, al-
though several frameworks for program analysis exist, none of them can
be used for analysis and transformation uniformly. This paper presents
such a method. For program analysis we use a simple variant of graph
rewrite systems (edge addition rewrite systems). For program transfor-
mation we apply more complex graph rewrite systems. Our specification
method has been implemented prototypically in the optimizer generator
OPTIMIX. OPTIMIX works with arbitrary intermediate languages and
generates real-life program analyses and transformations. We demon-
strate this by several examples and measurements.

K e y w o r d s : Program analysis, program transformation, optimization, specifica-
tion, graph rewrite systems

1 I n t r o d u c t i o n

This paper presents a uniform specification method for program analysis and
transformation. It is based on graph rewrite systems (GRs), can be used for
arbi trary intermediate languages (also abstract syntax trees), and leads to effi-
ciently executing optimizer parts. The major idea behind it is the insight tha t
the intermediate representations in optimizers are graphs which are constructed
and manipulated by graph transformations. Thus it is quite natural to use graph
rewrite systems to specify both problems of program analysis and t ransforma-
tion.

With our specification method the process of writing an optimizer is divided
into four phases. First a data model for the graphs - - intermediate code as well

* This work has been supported by Esprit project No. 5399 COMPARE. Most of this
work has been done while the author was at Universits Karlsruhe IPD, Vincenz-
Priei]nitz-Str. 3, 76128 Karlsruhe, Germany

122

as analysis i n fo rma t ion - has to be developed. Secondly, program analysis has
to be specified by graph rewrite systems. For this we supply a special variant
of graph rewrite systems, edge addition rewrite systems (EARs). EARS are very
simple graph rewrite systems because they only allow the addition of edges to
graphs and do not remove any existing parts. Thirdly, program transformations
can be specified by more general graph rewrite systems which allow deletion of
edges, and insertion and deletion of nodes. Finally, after having described the op-
timization abstractly, the representations of the graph classes can be changed in
order to speed up the generated algorithms. The user also can feed the generator
with assertions so that the generator can apply index structures (dictionaries).
We will show that this is an essential part to achieve effiently executing optimizer
parts.

The structure of the paper is shaped along this process. We will present a
running example, the elimination of partial redundancies (lazy code motion)
[KRS94]. It comprises syntactic equivalence of intermediate expressions (sec-
tion 4.1), global data flow analysis (section 4.2), and a transformation phase
(section 5). Additionally we present some figures concerning the efficiency of the
generated algorithms. We conclude the paper with a section about related work.

To demonstrate the validity of the specification method the optimizer gen-
erator OPTIMIX and several optimizer parts have been developed within the
compiler framework CoSy [AAvS94]. All generated components work on the
common COMPARE medium intermediate representation, the intermediate lan-
guage CCMIR. The CCMIR serves as common platform for frontends in C,
Fortran-90, Modula-2, Modula-P [VH92], and soon C+-t- (ht tp ://www. ace. nl).

2 T h e m e t h o d

The central idea of our specification method is to regard the optimization process
as a sequence of applications of graph rewrite systems (Figure 1). We start with a
graph given by the frontend which is the abstract syntax tree or the intermediate
code sequence. First we have to perform program analysis. This is normally
done by several EARS, executed one after the other. These may comprise one
or several data-flow analyses. After that the transforming graph rewrite systems
can be applied.

The advantages of this scheme are the following. First we have a uniform
view on the intermediate language and the analysis information: everything is
represented as graphs, and all actions are done by graph rewriting. Second, in-
stead of describing everything with one big graph rewrite system (which could be
possible) we prefer to write a sequence of smaller ones. Larger graph rewrite sys-
tems tend to loose confluence or termination. With a suitable separation one can
isolate non-confluency or even resolve non-termination. Third, for smaller graph
rewrite systems we know how to generate good code because smaller rewrite
systems in general have a lower order than bigger ones: often linear or quadratic
algorithms can be achieved [Ai~95b]. Forth, this division breaks the optimization
task down into component problems which can be solved independently. If we

123

Inte~r~diatc code

112' ~

CC~IR

mttr-~lml

CCMIR'

Fig. 1. Left: Optimization as a sequence of graph rewrite system applications. Thick
boxes are generated phases. Right: our examples as an instance of the method

do not find a system for a certain task, or some developed system turns out to
be too slow, or we can always substitute it by a hand-written algorithm. This
is anyway the case for the frontend and the backend; they are implemented as
u s u a l .

In order to make this scheme work, all phases of the compiler have to use
a uniform object handling package including uniform graph and set classes. In
COMPARE this is solved by the data description language fSDL. It provides
graph and set functors (template classes). From this a uniform access interface
is generated [WKD94]. All hand-written and generated phases use this interface
so that a uniform data access is given.

3 Designing the data model

Before developing graph rewrite systems for program analysis and transforma-
tions, we have to say how the intermediate graphs look like. This amounts to
specifying a data model or graph schema [Sch90]. We have to layout the follow-
ing:

1. model the graph node types: among these are intermediate code instructions
such as expressions, statements, loops, procedures. Also already analyzed
information can be encoded in nodes of graphs, e.g. definitions, or expression
equivalence classes.

124

2. model the graph edge types (relations): First we have to model the infor-
mation the frontend produces, e.g. expression tree pointering, or statement
lists. Second we have to model all predicates we want to infer about the pro-
gram, i.e. the relations among the objects of the program and the analysis.
Examples are relations such as the classical flow dependencies, equvialence
relations, calling relations, control flow relations.

.~SdICtS

pu~t

Fig. 2. Data model as higraph.

Our running example relies on the data model in figure 2. The diagram is
a higraph, i.e. an extended ER-model [Har88]. Boxes denote entity types, box
inclusion denotes inheritance, n:m-relations are depicted by diamond boxes, n:l-
relations by simple arrows. Because we deal with directed graphs, we have to
indicate source and target domains of the relations, which is done by arrows. For
the example we assume some familiar object types, such as blocks, statements
and expressions. Several of them are generated by the frontend (Block, Assign,
IntConst, Plus) and form the basis for the optimization process. Others are
generated by the optimizer: AssReg- and UseReg- objects denote assignments
and uses of registers (Register), objects of type ExprClass denote syntactically
equivalent expressions. Also the relations are only partially produced by the

125

frontend (Stmts, Exprs, Lef t , Right). All others are the results of optimizer
components, i.e. computed by graph rewrite systems.

This data model can easily be transformed into a concrete data description
language such as a fSDL [WKD94]. In such a language relations must be anno-
tated by a concrete representation class, fSDL provides two kinds of representa-
tions: bidirectional relations (such as Graph or EqGraph), and directed relations
(such as Set or Lis t) . The relations in our figure carry such annotations. Note
that this choice does not influence the specification, but the generated code.

4 S p e c i f y i n g t h e a n a l y s i s

4.1 Local analysis

One of the central ideas of our specification method is to describe the collec-
tion of information as simple graph rewrite systems which only add edges to
graphs. One example for a local program analysis is the specification of syntac-
tic equivalence of expression trees. This is the prerequisite for lazy code motion
data-flow analysis. In intermediate languages such as the CCMIR we distinguish
two kinds of expressions: those with operands (non-leaf expressions) and those
without (leaf expressions). Among the first there are operators such as Plus,
among the latter there are those such as IntConst.

\ 1// a q

a q

Fig. 3. EQUIV: Syntactic equivalence of expressions

Two arbitrary expressions are attribute-equivalent to each other if their at-
tributes are the same. For IntConst expressions the value of the constant must
be equal. For Plus expressions their field 0nType must be equal. Two leaf expres-
sions are equivalent if they are attribute-equivalent. Two non-leaf expressions are
equivalent if they are attribute-equivalent and all their sons are equivalent. For
IntConst and Plus these conditions are expressed by the EARS in Figure 3. For

126

a complete specification of syntactical tree equivalence of expressions we have to
add similar rules for all subtypes of expressions.

Applying the rules of EQUIV to the intermediate representation of a pro-
cedure yields a relation eq which is a parti t ion of all expressions and de-
notes the syntactical equivalence relation over expressions. With another simple
graph rewrite system we can generate for each partit ion a representant node
ExprClass . This object type will be used in the global data-flow analysis. Due
to the lack of space we will not show this here.

4.2 G l o b a l data-flow analysis

With EARS it is also possible to specify global data-flow analysis. If the EARS is
recursive, the rules have to be applied until a fixpoint is reached. This is similar
to finding a fixpoint in a distributive data-flow framework. We demonstrate this
by some equations from the equation system for lazy code motion ([KRS94],
p. 1138). This data-flow analysis relates the blocks of the program to its expres-
sion classes, i.e. the syntactical equivalent expressions. If we encode this with
graphs, the nodes are the blocks and the expression classes, whereas the edges
represent the data-flow sets. Due to the lack of space we will only present the
equation system for ISOLATED, as well as the non-recursive equation system for
INSERT/REPLACE_0UT which determines the places of transformations at the end
of blocks (Figure 4). We also do not show the initialization of the system, which
can easily be written down with graph rewrite rules, too.

The rules mean the following: an expression must be inserted at the end of
a block, if is latest and not isolated there. An expression is isolated at the exit
of a block if it is either earliest or isolated at the entry of all successor blocks.
Thus isolatedness at the exit of a block is expressed by recursive rules, defined
over the successors of the block, which makes the fixpoint evaluation necessary.
An expression is to be replaced at the end of a block if it is computed there and
not isolated and latest.

For these equations we have to use two extensions of EARS, namely negation
and universal quantiflers [A~95a]. If an edge in a left hand side is marked with
NOT no edge of this type is allowed to occur between the corresponding redex
nodes. If a left hand side node is allquantified, then redexes must exist for all
graph nodes in a neighbor set matched by an ingoing left hand side edge. In
order to achieve a sound semantics for the negation we have to stratify the rules
so that they still yield a unique normal form [Af195a]. As s t ra ta exactly the rule
groups (equation systems) result which are mentioned in [KRS94]. Here they are
coalesced only for the purpose of demonstration. Also the given equations relate
almost one-to-one to the equations in [KRS94]. Thus, writing a specification for
global data-flow analysis, and generating an executable algorithm with OPTIMIX
can be done in very short time. Actually this part seems to be the most easy
part of the whole optimization process: take an arbitrary equation system, and
type it in.

In this paper we consider only intraprocedural analysis. For interprocedural
analysis special specification or evaluation strategies have to be applied to reach

127

~ ELRLI EST_IN

COMP_OOT

NOT ISO~AT OUT

EAR_ISO_IN

" -

: :. @~_l~T I~'rE~r-~
ISOLATED_

R~m_O~T

Fig.4. LCMANA: Data-flow analysis for lazy code motion: isolatedness, earliest-
ness, insert-out, replace-out. LCMANA-1 - LCMANA-5 make up the first rule group,
LCMANA-6-8 the second

the same preciseness. As EARS model distributed data-flow frameworks over
finite powersets there are several methods which can be applied [RHS95].

5 Specifying transformations

If we allow edge deletions, node additions, and node deletions, we can spec-
ify program transformations by deleting and adding objects from and to the
intermediate representation. Our running example is continued by specifying
some transformation rules for lazy code motion (Figure 5). We regard only
the necessary relations for transformation at the end of blocks (INSERT_OUT,
REPLACE_0UT). The first rule inserts an expression at the end of a block. No
nodes are deleted; only new statements for creating the expression value and

128

sr~tl, last I s s r a T ~ s~mts

Fig. 5. LCM: Insert and replace of an expression at the exit of a basic block

storing it into a register are created. Edge INSERT_OUT is deleted in order to
prevent that LCM-1 is applied again. LCM-2 also deletes nodes, because it has
to replace a computing instruction of an expression class to a UseReg instruction
which uses the already computed value from a register. In order to arrive at a
complete lazy code motion transformation similar rules for the beginning of the
blocks must be written.

With arbitrary additions and deletions we may loose termination and also
(strong) confluence. Of course termination is absolutely necessary. [A~95a]
presents two termination criteria which are statically decidable:

1. Termination by edge addition. In the case of EARS the rewrite process stops
when the added relations are complete. This can be carried over to general
graph rewrite systems, if each rule adds an edge of such a terminating relation
and no other rule is allowed to delete these edges again. Then the system
terminates because the terminating relation is complete.

2. Termination by redex deletion: each rule deletes nodes or edges of types
which are not added either. This means that although the rules may add
nodes and edges of other types they do not produce any redex again. Thus
after deletion of all initial redexes termination follows. This is the case for
LCM: LCM-1 subtracts the edge I~ISERT_OUT and LCM-2 the edge Computes.
Thus it terminates, although it adds statements and expressions.

These termination criteria are very useful if a graph rewrite system has to
perform a finite number of actions depending on the size of the manipulated
graph. This is the case for many code optimizations, especially for code motion
and replacement algorithms: first they compute the places where to transform
and then they transform only once.

129

If a graph rewrite system is not confluent, it delivers a correct, but arbitrar-
ily selected result. LCM cannot be proved to be confluent regarding its rules.
However, because the redexes in the manipulated graph do not overlap, it is in
deed confluent and delivers unique results.

6 Execut ion

6.1 Optimix meta-code-generatlon

In order to understand how the specifications given so far can be executed ef-
ficiently, we will give a short overview on a special (meta-)code-generation for
graph rewrite systems [AB95b], the order evaluation. This technique is based on
the idea that we will find all redexes of a rule if we regard all possible permu-
tations of source nodes of left hand sides and look up the rest of the redex by
traversing neighbor sets. For that the order of the graph rewrite system has to
be calculated, which is the maximal number of source nodes in left hand sides.
If a graph rewrite system has order k, we also call it Grts(k).

For order evaluation we have to compute an edge disjoint path cover for each
left hand side. This is a set of paths which cover the left hand side such that
they intersect each other only at their end points. Then the problem of finding
a redex for a given set of source nodes in the manipulated graph is reduced to
a join of the path problems of the edge disjoint path cover. Consider Figure 6
which contains a path cover of LCM-2. For this rule OPTIMIX generates the
code in Figure 7. The outer loops (1) and (2) enumerate the path problem of
path 1. The inner loops (3) and (4) enumerate path 2. The paths are joined with
a nested-loop-join under the join condition c = c2, because we need to find the
intersection of their enumerated objects.

I
RIPI~CB_OUT I ~ p r s

Fig. 6. A edge-disjoint path cover for LCM-2 with two paths. Path 1 is drawn with
normal edges, path 2 with dotted edges

For non-recursive (recursive) graph rewrite systems the order evaluation has
complexity O(nketP)(O(nk+2etP)), where l the length of the longest path of a
path cover over all left hand sides, p the maximum number of paths in a path

130

Input-" Node type Block. Relations Stmts,
~'xprs, REPLACE_OUT, Computes, InRegister

Output-" Modified intermediate code: expressions replaced by UseReg expressions

/* Enumerate path I */
f o r a l l b E B l o c k d o (1)

f o r a l l c E b . R E P L A C E _ O U T d o (2)
r ~ c . l n R e g i s t e r ; / , 1:l-relation */
/* Join with path 2 */
f o r a l l s E b . S t m t s d o (3)

f o r a l l e E s . E x p r s d o (4)
c 2 ~-- e . C o m p u t e s ; / * n:l-relation */
[* Join condition */
i f n o t c = e 2 t h e n

c o n t i n u e ;
[* Redex (place for transformation) found. */
.. D o t h e t r a n s f o r m a t i o n ..

F i g . 7. A l g o r i t h m g e n e r a t e d for L C M - 2

cover, n the maximal number of nodes in a node type, and e the maximum
out-degree of a node concerning an arbitrary relation. However, for concrete
algorithms often better costs result because many relations are n: l and often
object domains are partitioned by graphs. Because the test for LCM-1 can be
overlapped with the loops of algorithm 7, it can be used to solve LCM. LCM
is non-recursive, because it does not create new redexes for itself. According
to the order evaluation cost formula it has complexity O([Block[le6), because
k = 1, 1 = 3,p = 2. Then Computes and I n R e g i s t e r are n:l- and l:l-relations,
respectively. Also expressions are partit ioned over the blocks, i.e. loop (3) and (4)
only loop once over all expressions of a procedure. Thus the generated algorithm
has cost O([Block[[Expr[[ExprClass[). It is also clear that if other directions are
chosen for the relations of the data model, a graph rewrite system with higher
order may result. For our example we use already a reasonably good one, but in
general this needs some thinking.

EQUIV has order 2, because the rules for attribute-equivalence contain iso-
lates in the left hand sides. It is recursive. A theorem in [AB95b] shows that
because we deal with expression trees the fixpoint computation can be avoided.
Also, L e f t and Right are n:l-relations. Thus EQUIV can be solved with order
evaluation in O([Expr[2e 3) because 1 = 1, p = 3. However, e is here much smaller
than [~.xpr[because the relations eq and a t t r e q parti t ion ~.xpr. If we neglect
their cardinality, we achieve a quadratic algorithm in the number of expressions.

LCMANA has order 1, because Block is the only source node type of all
rules. Because it is recursive, we have to apply fixpoint computation. Because
1 = 2,p = 2, we have complexity O([{Block,ExprClass}[ae4). However, if
we use a bitvector representation for the relations, the standard round-robin
iteration for data-flow analysis results. Because bitvector union/intersection
has linear effort in the number of expressions, a concrete algorithm has cost
O(IBlock]2]ExprClass] x]Block]]ExprClass[) = O(]Block]S]ExprClass]2). This
rough estimate can be improved by taking the loop nesting of the control-flow
graph into account [Hec77].

131

All terminating graph rewrite systems can be solved by order evaluation. For
terminating and confluent systems it will deliver the unique normal form. For
non-confluent systems it will deliver a correct, but arbitrarily selected result.
Hence order evaluation provides a simple and uniform solution procedure for
program optimization problems. Thus we are able not only to specify analysis
and transformation uniformly, but also execute the specifications with a uniform
execution mechanism.

6.2 Speeding up

The following sections present some numbers and shows how to speed up the
execution of order evaluation. Within CoSy two optimizer configurations have
been tested: a Modula-2 compiler with lazy code motion, and a C compiler with
copy propagation.

Our experience is that by using graph rewrite systems the development time
of an optimizer is greatly reduced. Our estimate is that about 50% savings are
possible. For instance, equation systems such as LCMANA can be typed in in a
few hours. If the generator generates correct code the correctness of the generated
algorithm can be achieved quite quickly. Also in transformation the savings are
enourmous: normally it is a tedious work to write algorithms which search for
the transformation places. Using graph rewriting this is automatic.

Also the relation of generated and hand-written part in the optimizers is
very interesting. Because OPTIMIX does not yet implement all possible fea-
tures, still some parts are hand-written. Nevertheless, the constructed optimizer
components consist of about 60-80% of generated code and the hand-written
parts are not critical for the runtime of the optimizers. We estimate that with
an industrial-strength implementation of OPTIMIX 90% of an optimizer can be
generated without problems.

6.3 Effectiveness of generated optimization phases

The lazy code motion optimizer demonstrates that graph rewriting in deed can
produce effective optimizers. The following table shows the execution times in
seconds of some routines of the Stanford benchmark from Henessy and Nye. The
optimizer achieves up to 32% speedup, although it is a prototypical implemen-
tation. Gcc and sun-cc are much more effective here. However, the quality of
the optimized program code is a matter of the quality of the specification of the
optimizer components. Thus much better results are possible by improving the
specification, e.g. by including better alias information.

Routine without LCM with LCM

Queens
MatrixMult
Puzzle
Quicksort
Erastothenes

11.9
12.6
4.9
8.3
32.5

!10.9
8.5
4.0
7.4
24.1

speedup in % gcc -04 sun-cc -04
8 4.7 5.2
32 2.9 5.9
!18 1.4 1.8
13 2.8 6.1
25 24.7 19.5

132

6.4 Overall op t imiza t ion speed

In order to test the compilation speed of the generated components, the two
compilers were compared running with and without optimization, compiling the
Stanford benchmark. The table shows that the optimizers add about factor 3-7
to the runtime of the compilers. Clearly gcc and sun-cc are faster here, although
they perform more optimizations. However, for generated optimizer parts the
results are very good: OPTIMIX and the specified components are quite new
implementations which leave a lot of possibilities for improvements. Also the
lazy code motion optimizer performs already rather a computation-intensive op-
timization: it computes four data-flow equation fixpoints and syntactical expres-
sion equivalence. Again, with an industrial-strength implementation the velocity
of the generated optimizer parts could very well reach that of hand-written parts.

Compiling Stanford benchmark Slowdown factor
M-2, lazy code motion 7.2
C, copy propagation 2.9
gcc -04 2.2
sun-cc -04 3.1

6.5 Speeding up express ion equivalence

[AB95b] shows that an index structure can be used to speed up EQUIV. This
structure maps attributes to nodes and simulates virtual edges between the two
isolates of EQUIV-1/EQUIV-2. With this modified production EQUIV turns
into an EARS(l) and its cost changes to O(IExprle3). If the maximum number of
elements in expression classes is small compared with the number of expressions,
the runtime of EQUIV will be dominated by the cubic cost factor only for very
large programs.

o

450

400

350
300
250
200
150
100
50
0

Runtime of EQUIV

order algorithm ~-~
index on s u b t y p e / - -

index also on attribut~ - -
/

/ / /

500 1000 1500 2000 2500
number of expressions

This assumption is supported by the diagram above. Here the runtime of
a Modula-2 compiler including the EQUIV algorithm is measured. The upper
curve shows clear quadratic runtime in the number of expressions of the program
(order evaluation). The curve in the middle is measured with a hash index over

133

the expressions; the hash index function comprises the subtypes of the expression
nodes. The lower curve additionally comprises attributes of the most frequent
expressions. Although the behaviour is not linear in the number of expressions
the cubic factor starts to dominate the runtime only when very large procedures
are compiled. Thus using a good hash function doubles the speed of the compiler:
the use of index structures is very important in practice.

6.6 Graph representations

We also measured the influence of the graph representations on the runtime
of the Modula-2 compiler. For that the LCMANA component was run with a
list-based and a bitvector-based implementation for the data-flow sets. Both
representations can be exchanged by changing the concrete class of the relations
in the fSDL data specification (and of course, by adapting any non-generated
code). When compiling the Stanford benchmark, the bitvector implementation
is about 6 times faster than the list-based implementation. The difference lies in
the implementation of the union and intersection operation of neighbor sets: on
bitvectors these operations are linear and on lists they are quadratic.

This shows that it is very important which data representations are chosen
for the manipulated graphs. Thus the final phase of writing an optimizer with
graph rewriting consists of selecting the right data representation. Fortunately
this can be done by only changing the data model; the generator adjusts its
code generation automatically. This reveals a unique strength of our method:
the specification is independent of the representation of the graphs.

7 R e l a t e d w o r k

Sharlit [TH92] and PAG [AM95] are two tools for generating efficient data-flow
analyses. With both tools users have to supply data structures in C for the lattice
elements and also for flow functions. Thus exchange of implementations is not
so easy. SPARE [Ven89] follows the same approach and is additionally tied to
the Synthesizer Generator. Generation of data-flow analysis from modal logic
specification stems from [Ste91]. Although the powerful modal operators allow
very short specifications, an application in a real-life compiler is not known.
All these tools allow for the specification of more complex lattices and flow
functions. However, we believe that our method is much more intuitive for the
average programmer because it relies on the more familiar concept of graphs.

Only few approaches are known which integrate transformations. SPECIFY
[Koc92] additionally provides a proof language but was never implemented com-
pletely. GENESIS [WS90] allows very powerful transformation specifications.
Preconditions can be specified in a variant of first-order logic. However, because
fixpoint computations cannot be specified, generation of data-flow analysis is
not possible. Also it seems that the code generation scheme is quite ad hoc.

Also the existing tools for graph rewrite systems could be used for genera-
tion of program optimizers. PROGRES [Sch90] is the most advanced. However,

134

it is designed for an interactive user environment and not for batch processing.
Currently it does not allow for fixpoint computations and is tied to an under-
lying database, although it provides an excellent user interface. UBS systems
[DSr95] provide a subclass of graph rewrite systems which can be handled more
efficiently. However, the described implementation is still too slow for program
optimization. OPTIMIX produces much faster algorithms: order evaluation of
EQUIV (which only adds edges) performs at least 23002/400 = 13000 redex
tests/second 2. Using an index the system is twice as fast: thus OPTIMIX should
also provide one of the fastest existing tools to execute graph rewrite systems.

8 O u t l o o k

We have presented in this paper a novel uniform specification method for pro-
gram analysis and transformation. EARS can be used for analysis, terminating
GRS for transformation. Both can be evaluated uniformly and efficiently with
order evaluation. With this method for the first t ime complete optimizers can be
specified. The prototypical tool OPTIMIX demonstrates that it is also possible
to generate them.

EAI~S are equivalent to Datalog with binary predicates [Af595a]. The idea that
Datalog can been used to describe data-flow analysis has also been discovered
by [Rep94]. However, the restriction to binary predicates makes it possible to
use efficient graph search algorithms.

I would like to thank Jiirgen Votlmer and Andreas Winter. As main imple-
mentors of the mentioned optimizer components and first users of OPTIMIX they
forced me to spent a lot of nights in front of my machine; however, I believe,
with nice results.

References

[AfJ95a]

EA~95b]

[AAvS94]

JAM95]

Uwe Allmann. Generierung von Programmoptimierungen mit Grapherset-
zungssystemen. PhD thesis, Universit/it Karlsruhe, Kaiserstr. 12, 76128 Karl-
sruhe, Germany, July 1995.
Uwe At3mann. On Edge Addition Rewrite Systems and Their Relevance to
Program Analysis. In J. Cuny, editor, 5th Workshop on Graph Grammars
and Their Application To Computer Science, to appear in Lecture Notes in
Computer Science. Springer, 1995.
M. Alt, U. Al~mann, and H. van Someren. Cosy Compiler Phase Embedding

with the CoSy Compiler Model. In P. A. Fritzson, editor, Compiler Con-
struction, Lecture Notes in Computer Science 786, pages 278-293. Springer
Verlag, April 1994.
M. Alt and F. Martin. Generation of efficient interprocedural analyzers with
pag. In A. Mycroft, editor, Static Analysis Symposium, volume to appear of
Lecture Notes in Computer Science, Spinger Verlag. Springer Verlag, 1995.

The measurements of EQUIV comprise the runtime of the frontend. For simplifica-
tion a quadratic algorithm is assumed for the number of tests. In fact even more
tests are done

135

[DSr95]

[Har88]

[Hec77]

[Koc92]

[KRS94]

[Rep94]

[RnS95]

[Sch90]

[Ste91]

[TH92]

[Ven89]

[VH92]

[WKD94]

[ws90]

Heiko DSrr. Efficient Graph Rewriting and Its Implementation, volume 922
of Lecture Notes in Computer Science, Spinger Verlag. Springer Verlag, 1995.
D. Hard. On visual formalisms. Communications of the ACM, 31(5):514-
530, May 1988.
M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland,
1977.
Gerd Kock. Spezifikation und Verifikation yon Optimierungsalgorithmen.
GMD Bericht 201, Universits Kaxlsruhe, 1992.
J. Knoop, O. Rfithing, and B. Steffen. Optimal code motion: Theory and
practice. Transactions on Programming Languages and Systems, 16(7), July
1994.
Thomas Reps. Solving Demand Versions of Interprocedural Analysis Prob-
lems. In P.A. Fritzson, editor, Compiler Construction, volume 786 of Lecture
Notes in Computer Science, pages 389-403, April 1994.
T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In A CM Symposium on Principles of Programming
Languages, volume 22, pages 49-61. ACM, January 1995.
A. Schiirr. Introduction to PROGRES, an Attribute Graph Grammar Based
Specification Language. In Graph-Theoretic Concepts in Computer Science,
volume 541 of Lecture Notes in Computer Science, pages 444-458. Springer
Verlag, 1990.
Bernhard Steffen. Data flow analysis as model checking. In Proceedings of
Theoretical Aspects of Computer Software (TA CS), pages 346-364, 1991.
S. W. K. Tjiang and J. L. Henessy. Sharlit - A tool for building optimizers.
SIGPLAN Conference on Programming Language Design and Implementa-
tion, 1992.
G. A. Venkatesh. A Framework for Construction and Evaluation of High-
Level Specifications for Program Analysis Techniques. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, June
1989.
Jfirgen Vollmer and Ralf Hoffart. Modula-P, a language for parallel pro-
gramming: Definition and implementation on a transputer network. In
Proceedings of the 199P International Conference on Computer Languages
ICCL'9$, Oakland, California, pages 54-64. IEEE, IEEE Computer Society
Press, April 1992.
H.R. Waiters, J.F.Th. Kamperman, and T.B. Dinesh. An extensible lan-

guage for the generation of parallel data manipulation and control pack-
ages. In P. Fritzson, editor, Proceedings of the Poster Session of Com-
piler Construction, number LiTH-IDA-R-94-11 in PELAB Research Report.
LinkSping University, 1994.
D. Whitfield and M. L. Sofia. An approach to ordering optimizing transfor-
mations. In A CM Conference on Principles and Practice of Parallel Pro-
gramming (PPOPP), 1990.

