HOW TO USE SORTING PROCEDURES TO MINIMIZE A DFA

by

Barbara Schubert

Department of Computer Science

Submitted in partial fulfilment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
The University of Western Ontario
London, Ontario

December 1996

© Barbara Schubert 1997

i+l

National Library Bibliotheque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your B¢ Vetre réfdrence
Qur Sig Notre réfdrance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of his/her thesis by any means vendre des copies de sa thése de
and in any form or format, making quelque maniére et sous quelque
this thesis available to interested forme que ce soit pour mettre des
persons. exemplaires de cette thése a la
disposition des personnes intéressées.
The author retains ownership of the L’auteur conserve la propriété du

copyright in his/her thesis. Neither
the thesis nor substantial extracts

droit d’auteur qui protége sa thése. Ni
1a thése ni des extraits substantiels de

from it may be printed or otherwise celle-ci ne doivent étre imprimés ou
reproduced with the author’s autrement reproduits sans son
permission. autorisation.

0-612-21100-2

Canadia

ABSTRACT

In chis thesis we introduce a new idea. which can be used in the process of min-
imization of a deterministic finite automaton. Namely. we associate names with
states of an automaton and we sort them. We give a new algorithm. its correctness
proof. and a proof of its execution time bound. This algorithm has time complex-
ity O(n’logn). where n is the number of states. In the thesis. we explain how o
apply the new algorithm to an arbitrary partition of states. not only to the parti-
tion into final and nonfinal states. We present also two improved versions of the
new algorithm (the second version and the third version). The second version of
this algorithm which has time complexity ©(r?*) can be considered as a direct ini-
provement of Wood's algorithm [7]. Wood's algorithm has time complexity O(n?).
This algorithm checks whether pairs of states are distinguishable. It is improved
by making better use of transitivity. Similarly some other algorithms which check
if pairs of states are distinguishable can be improved using sorting procedures. The
third version of the new algorithm which has time complexity ©(n?) is compared to

the algorithm due to Hopcroft and Ullman [4] which has the same time complexity.

11

ACKNOWLEDGEMENTS

I would like to thank Dr. Helmut Jirgensen for his guidance and assistance.
I would like to thank my husband and my son. whose continuous encouragement

and support made this thesis possible.

Finally. I would like to acknowledge the Natural Sciences and Engineering Research

Council for their financial support of this research.

v

R g b b e anian Sbe s B

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION« © « v v v o v ..
ABSTRACT . . v v v e e e e e e e e e e e e e e,
ACKNOWLEDGEMENTS .« v v v v v e e e e e e e e e e

TABLE OF CONTENTS . v v o e e o e o e et s e s

CHapTER 1 - INTRODUCTION

CHAPTER 2 - BASIC NOTIONS

CHAPTER 3 —- WOOD'S ALGORITHMN

CHAPTER 4 - ALGORITHM DUE TO HOPCROFT AND ULLMAN

CHAPTER 3 - NEW ALGORITHMS
5.1. General Version
3.2. Second Version

3.3. Third Version o

Page
i

i

v

v

CHAPTER 6 - DIFFERENCE BETWEEN THE ALGORITHMS

CHAPTER 7 - CONCLUDING REMARKS

7.1. Summarvof Results
REFERENCES - . .« « © « v o v e i e i e e e e e e e e e
VITA . L oL o oL e e e e e e e e e e e

1

CHAPTER 1

INTRODUCTION

The problem of minimization of a Deterministic Finite Automaton (DFA) is consid-
ered a fundamental computing science problem. and has been extensively stuclied.
As this problem was studied. numerous algorithms were developed over the yvears.
The asymptotically fastest known algorithm for minimization is Hopceroft’s algo-
rithm [3]. Its time complexity is O(nlogn). A complete list of currently available
algorithms for minimization can be found in [6]. Hopcroft's algorithm. while asymp-
totically fastest. is very complicated. In practice. less efficient. but less complex.
algorithms are used - like Wood's algorithm [7]. and an algorithm due to Hopcroft
and Ullman [4].

We introduce a new idea. which can be used in minimization. Namely we asso-
ciate names with states of an automaton and we sort them. This algorithm can be
considered as a direct improvement of Wood's algorithm [7]. We will explain how ro
apply this algorithm to any arbitrary partition of states (not only to the partition
into final and nonfinal states). The thesis is structured in the following way:

o The general definitions which deal with arbitrary partitions of states of an

automaton are introduced.

e The algorithm due to Wood and the algorithm due to Hopcroft and Cllman

are explained and examples for both algorithms are presented.

® The general version of a new algorithm which uses sorting is introduced and

a proof of the correctness of the algorithm is presented. Then two special ver-
sions of the algorithm are explained. For the general version of the algorithm
an upper bound on the run time is calculated. For the second and the third
versions of the algorithm the least upper bound on the run time is calculated.
It is explained when sorting is an improvement. The second version of the al-
gorithm is compared to Wood's algorithm. The third version of the algorithm

is compared to the algorithm due to Hopcroft and Ullman.

In this thesis we present new algorithms for minimization. Specifically we achieve

the following:

Show how sorting of states can be used to minimize an automaton.

Present three versions of a new algorithm.

Explain when sorting of states can be more efficient by comparing two versions
of the new algorithm to two known algorithms.

Present a new algorithm in a way that can be used to solve directly prob-
lems. where states are partitioned into more than two blocks (like problems

presented in [1]).

(]

CHAPTER 2

BASIC NOTIONS

In this section we give the basic definitions concerning automata and establish the
relevant notation. Instead of the usual definition of an automaton as an acceptor we
define an automaton as a diagnoser in the sense of {1]. As an acceptor an automaton
has two types of states. final and nonfinal. As a diagnoser. it may have more then
these two types of states. Accordingly. in a diagnoser input words are classified by
the state reached. Specifically in an acceptor input words are classified as accepted
or not accepted. Diagnosers model. for instance. certain aspects of the process of
circuit testing.

We only give the definitions absolutely needed. For further notions and proper-

ties of automata we refer to [2].

Definition 2.1 Let S be a set. A partition II of S is a set of pairwise disjoint
subsets of S. the union of which is S.

For technical reasons we allow a partition to contain the empty set as an element.
Sometimes we need to exclude it explicitly. Thus if II is a partition of S. then rhe

partition I is defined as follows:

=1\ {0}.

EERTEEE

Definition 2.2 A deterministic finite automaton (DFA) M is specified by a quin-
tuple M =(Q.T.4. 5. B) where

Q is the alphabet of state symbols:

T is the alphabet of input symbols:

4 :Q x ¥ — @ is the transition function:

s € Q is the start state:

B =(B,.B>..... B.) is a partition of the states of the automaton.

As usual. we extend the transition function ¢ to a function of Q x £~ into Q by

q- if w=A\.
0g.w)=

oo(g.-r).u’). fw=urw withr eI uw &l
for all ¢ € Q and w € T~. where A denotes the empty word. Instead of é(q.w) we
write quw. The partition of states of an automaton allows one to classify the inpur
words. An input word w € ¥~ is of type B; if su € B;. Let gg be the equivalence
relation on @ defined by B. For ¢ € Q we write [¢|g to denote the og-class of q.
When |B| = 2. a DFA in the sense of Definition 2.2 is the same as a DFA in
the usual sense with. for example, B, the set of final states and B, = Q\B,. The

general definition is illustrated by an example below.
Definition 2.3 Let M/ = (Q.X.6.5. B) be a DFA. The language classification -\,
defined by 1f is the mapping 71 : B — 2% such that

~u(B;) = {w € | s € B}

If se.sw € B; for some B; € B. we say that v and w are equivalent and we write

M w.

I

<
—

Figure 2.1. Deterministic finite automaton .M.

Definition 2.3 allows us to conclude that the following statement is true: if [suw]g =
[s]g then v.w € 5y(B;) for some B; € B. that is. v =V .

Whenever we have a partition into two sets of final and nonfinal states. we can
classify the input words into the words accepted and not accepted by the automaton.
An example of the language classification for a different partition is presented in

the following example:

Example 2.1 Consider the automaton from Figure 2.1. Suppose that we have
the following partition of the states in this automaton: B; = {X}. B, = {}}.
B; = {U}. and B, = {W.Z}. This partition allows us to classify input words into
four sets: {\} corresponding to the block B;. {0} U700 corresponding to the block

B>. {1} U £711 corresponding to the block Bs. and £701 U £*10 corresponding ro

the block Bj.

Lemma 2.1 Let M =(Q.X.6.5.B) be a DFA and |B} =r. Then the family

T = {(33(B:) | 1< £ < royu(Bi) # 0}

s a pertition of ¥,

Proof: To prove that [TV is a partition. we have to prove that for every uw € T~
there exists exactly one B; € B such that «w € +y(B;). As the automaton 1/ is
complete and deterministic. for every w € &~ there exists exactly one B; € B such

that sw € B,. Thus w € 5\/(B;).

Definition 2.4 Let M/ =(Q.%.48.5.B) and M' =(Q'.Z.¢. 5. B’) be DFAs. Then

1 and 1/’ are equivalent if Y = [I¥'.

Using the notation from Definition 2.3 we can state that 1/ and 1/’ are equivalent
if the following statement is true:

- . !
for every v.w € & w =Y v if and only if w =" v.

Definition 2.5 Let M = (Q.X.6.5. B) be a DFA. We define the automaton 1/ in
the following way: X[= (Q.<.6.s. B) where

Q = {q| ¢ = su for some w € =-}.

B = {B; | 3¢ € Q such that ¢ € B;}. where B; = B;N Q.

and 6 : Q x & — Q.

We can state that B = {B; | ~as(B; # 0}. Thus B contains blocks with the stares
reachable from the initial state s. Every B; € B contains at least one reachable

state. B\ B conrtains either empty blocks or blocks which have only stares rhat

cannot be reached from the initial state. Notice that +y/(B,) for B; € B \ B is the

empty set. Thus the automaton M consists only from reachable states.

Lemma 2.2 Let M = (Q.%.6.5.B) be a DFA. Then M and)M are equivalent and
1Ql > Q.

Proof: Assume that v =¥ w for some v.w € ©*. Then v.w € ~y(B;) for some
B; € B. As 7y(B;) # 0 we have B; € B. Thus v =¥ w.

Let ¢ =" w for some v.w € ©*. Then v.w € var(B;) for some B_,- €B. AsBCB
we have B, € B. Thus v =Y w. If M has unreachable states then |Q| > |Q|.

Otherwise |Q| = |Q].

Thus an automaton)/ with unreachable states is equivalent to the subautomarton
of M which contains all states of 1f except unreachable states. The automaton 1/
has at most the same number of states as 1/. Whenever we want to decide the
equivalence of two automata M and M’. we can just decide the equivalence of 1/

and M.

Definition 2.6 Let 1/ = (Q.X.0.5.B) be a DFA. A congruence ~ on 1/ is an
equivalence relation on Q such that Vq.¢' € Q. Va € T~
1. if ¢ ~ ¢’ then ga ~ ¢’a

2. if ¢ ~ ¢’ and ¢ € [¢'] g then ga € [¢'a]s

The second condition from Definition 2.6 can be rewritten in the following way: if
¢ ~ ¢ and [¢]p = [¢] 8 then [ga]g = [¢’a]g. The first condition is equivalent to the
following statement: if ¢ ~ ¢’ then quw ~ ¢'w for every w € ©*. The correctness of

this statement can be proved using induction.

Definition 2.7 Let M = (Q.Z.4.5. B) be a DFA. Two states p and ¢ of 1/ are

said to be equivalent if. for every w € T=. [qu]g = [pw]g. We write p = ¢ in

this case. The states p and ¢ are distinguisheble if there exists w € T such that

[pw]e # [quw]s: then the word w distinguishes p from q.

Lemma 2.3 The relation = is an automaton congruence on M and contained in
oB. Moreover. if ~ 1s any automaton congruence on M which is contained in og

then ~ C =.

Proof: To prove that the relation = is an automaton congruence we have to show
first that whenever p = ¢ then pa = ga for all ¢ € £. Let ¢.p € Q.a € £. By

Definition 2.7

pa = ga & Yuw € ¥ [paw]g = [qaw]p

Thus we have to prove that for all w € = [paw|s = [qaw]g. As p = q. [pu']sg =
[qu'lg for all «' € T=. So also for every w € T~ such that &' = aw we gert
[paw]s = [gaw]p as required. Now suppose that p = q and p € [¢|g. Then pa = qa
and so [pa]g = [qalg by the definition of =.

We now prove that = is contained in ¢g. By the definition. if p = ¢. then [pw]g =
[quw]p for all w € T*. Let w = A. Thus [p]g = [¢]s-

To prove that ~ C = let p.¢ € @Q be states for which p ~ ¢. As ~ is contained in vg
we have [p]g = [¢]|s. As this is a congruence relation pa ~ ga for every a € T and
so [palg = [qa]s. By induction we conclude that for every w € T~ [pw]g = [quwp

and so p = q.

Definition 2.8 Let M/ = (Q.X.6.5.B) and M' = (Q'.Z.¢".5'. B') be DFAs. Then
we say that the system ® = (x4.u¢) consisting of the mappings v¢ : Q — Q' where
Ke(s) = 5. and pue : B — B’ is a homomorphism of M into M’ if for arbitrary

pEQandwel.

(/)

re(pw) € pol[pwls)

and

ke(pw) = ro(p)ee.

It is obvious that the homomorphic image of M is a subautomaton of M'. If r¢
and pe are onto mappings then the system & is called surjective and 1’ is called
the homomorphic image of M. If additionally k¢ and pe are one-to-one mappings
then the system @ is an isomorphism and the automata M/ and M’ are said to he

isomorphic.

Definition 2.9 Let)M = (Q.X.4.5.B) be a DFA and ~ be a congruence on 1/
contained in ¢g and B = {B;.Ba..... B.}. We define the factor automaton M/ _ =
(Q/~.Z.8/~.s5~.B/.) with respect to that congruence where:
¢~={p€Qlp~q}
Bi/~={¢~ | ¢ € Bi}
B/~ =(B1/~-Ba/w.-... B./~}

0/ Ag~.a) = (qa)n

Notice that as ~ is contained in og we have that B/. consists of disjoint blocks.
Whenever B; is the empty set. the block B;/. is also the empty set. Obviously
|B| = |B/~|- As far as the behavior of 1[/. is concerned. we do not treat p. as a
set. but as a state. Hence we write p.a to denote 8/(p~.w). Thus p.a = (pa).

whereas in the form of sets one could only state that p.a C (pa)-~.

Lemma 2.4 Let M = (Q.X.6.5,B) be a DFA and ~ be a congruence on)M con-

tained in og. Let M/ _ = (Q/~.E.8/~.35..B/.) be the factor automaton. Then for

all w € £~ and p € Q we have pLw = (pt)~..

Proof: By Definition 2.9 for all @ € © we have that p.a = (pa).. Thus assume
that p.u«’ = (pw')~ for some v’ € £*. Then p.uw’'a = (pw’)~a and by Definition 2.9

(pw'}~a = (pw’a).. that is. p.uw'a = (puw'a)~.

Theorem 2.1 Let M = (Q.X.6.5.B) be a DFA and ~ be a congruence on M
contained in 0g. Let M/ _=(Q/~.Z.8/~.5~.B/.) be the factor automaton. Then
&, = (K~.pta) with ko(q) = ¢~ and p(B;) = Bi/~. for ¢ € Q and B; € B. 15 a

homomarphism of M onto M/...

Proof: To prove that the map ®. is a homomorphism we have to show thar. for
arbitrary p € Q and w € 7. ko (pw) = ru(p)w and k- (pw) € p([pw]g). Let
p € Qand w € T=. As for every ¢ € Q we have x..(pw) = (puw)~ thus by Lemma 2.4
r(pw) = (pw)e = (p)ww = k(phe. Also po([pw]s) = p~(Bi) = B;/~ where
pw € B;. As k.(pw) = (pw)~ and (pw). € B;/. we have x.(pw) € B;/.. To prove

that the map ®.. is onto. let ¢.. € Q/~. Then. for ¢ € Q. r(q) = q~.

Notice that by Lemma 2.3. given automata M. M/.. and M /-. the following

relation is always true: |Q| > |Q~| 2 |Q=|

Definition 2.10 Let M = (Q.%.46.5.B) and M’ = (Q'.S.¢'.5'.B') be DFAs. A
block re-assignment is a function (: B — B’ satisfying
1. for all w € T=. (([sw]g) = [s"w]p-

2. the restriction of (to B. (: B — B'. is injective.

Theorem 2.2 Let M =(Q.X.6.5.B) and M' = (Q'..¢".5'. B') be DFAs. M and

M’ are equivalent if and only if there exists a block re-assignment (: B — B'.

Proof: Suppose that M and 1/’ are equivalent. Define ¢ in the following wajy:

10

{ [s"te]g.. if B; = [sw]p.

¢(Bi) = -

B,eB ifB;.€¢B\B

where B; is arbitrary but fixed.

As every element in B can be written as [sw]p for some w € £*. we see that (is
defined for every element in the domain. To prove that (is well defined suppose thart
that for some B; = [sv]g and B; = [sw]g. we have [sv]g = [sw]g. Thus ¢ =Y w.
As 1 and M’ equivalent we have v =Y w and so [s'v|g: = [s"w]g: = ¢((B;). This
proves that the map ¢ is well defined.

By the definition of (. the first condition in Definition 2.10. that (([sw]g) = [s"«]p
is satisfied.

We have to prove that the image of ¢ is a subset of B’. Let [sw]g € B. Then
(([sw]g) = [s'w]p: by the definition. As [sw]g: € B’ we have proved that the image
of ¢ is a subset of B'.

To prove that the map (is one-to-one let ((B;) = ((B;) where B;.B;, € B. We
have to prove that B; = B;. The image of ¢ is in B'. Thus ((B;) = [+"«]s: and

=M

((B,) = [s't]p for some v.w € =*. Thus w v. As M and M’ are equivalent
«w =" ¢. Thus [sw]g = [sr]g. This proves that ¢ is one-to-one.

Now suppose that there exists ¢ with the required properties. We have to prove that
A and)M are equivalent. Let w =Y ¢ for some w.r € £*. Thus [sw]|g = [~¢]p.
But then (([sw]g) = ¢(([sv]B) as ¢ is well defined and so [s"w]|g: = [+'v]g. Thus

w =M ' Let w ="' v. Then [s'w]p = [s'v]g:. As (is one-to-one [sw]p = [s]p.

Thus w =Y ¢.

Corollary 2.1 Let M =(Q.Z.6.5.B) and M' = (Q'.X.8".5'.B’') be DFAs. Let

¢ : B — B’ be a block re-assignment. Then the map (is onto.

Proof: Let [s"w]|g: € B’. By the definition of (. for [suw]g € B we have (([sw]g) =

I1

[s"w]gr (sw is defined as the automaton M is complete). This proves that the map

¢ is onto.

Let M =(Q.%.6.5.B) and M’ =(Q’'.L.¢'.5'. B’} be DFAs. If there exists a block

re-assignment (. we say that M and M’ are (-equivalent.

Definition 2.11 Let M = (Q.X.6.5.B) and W' = (Q’. £.4. s'. B’) be (-equivalent
DFAs for some block re-assignment ¢ : B — B’. Two reachable states p € Q and
p € Q' are said to be (-equivalent if for every w € T~ we have (([pw]g) = [p'w]s.

We write p = p’ in this case.

Two states p and ¢ are equivalent if. applying any input word w. the resulting states
belong to the same block B;. Whenever we consider two (-equivalent automata 1/
and 1/’. two states p € Q and p’ € Q' are considered to be equivalent if. whenever
a state pu is in a block B;. then the state p'w is in the block ¢(B;).

As the map (is one-to-one and onto. two automata without unreachable states
are equivalent if and only if they are (-equivalent or (~'-equivalent. Similarly. if

rwo reachable states are (-equivalent. they are also (~'-equivalent.

Lemma 2.5 Let M = (Q.Z.6.5.B). and M' = (Q'.Z.46'.5'. B') be DFAs which are
(-equivalent for some block re-assignment (: B — B’. For reachable states p € Q

and p'.q €Q'. if p=Cp and p=C ¢ then p' =¢'.

Proof: As p =¢ p. then by Definition 2.11 (([pw]g) = [p'w]s: for every w & T~.
Similarly if p =€ ¢'. then (([pw]g) = [¢'w]s- Thus (({pw]s) = [p'w]s = [¢'w]p: for

every t € " which implies that p’ = ¢'.

Lemma 2.6 Let M = (Q.Z.6.5.B). and M' = (Q'.Z.¢'.5'.B’) be (-equivalent

DFAs. For reachable states p.q € Q and ¢ € Q. if p= ¢ and ¢ =° ¢’ then p=‘ ¢'.

Proof: As p = ¢ then [puw]g = [quw]p for every w € ¥". As ¢ =° ¢'. then by
Definition 2.11 {([qw]g) = [p’w]s for every w € ¥=. Thus {([pw]s) = [¢'w]s: for

every « € . which implies that p =¢ ¢'.

Lemma 2.7 Let M = (Q.Z.6.5.B). and M' = (Q'.Z.¢'.5'. B') be DFAs without
unreachable states which are (-equivalent. Then for every p € Q there exists p' €

such that p =° p'. Similarly for every p' € Q' there ezists p € Q such that p = p'.

Proof: Let p € Q. As every state in)/ is reachable there exists w € T~ such thar
p = sw. By the definition of { we have (([sw]g) = [s'w]|g. Let p’ = s'w. Also by
the definition of { we have that. for every ' € £~. (([sww']g) = [s'wuw’]g. Thus
for every w’ € £ we have (([pw']g) = [p'«']gr and so p =* p'.

Let p € Q'. As every state in M’ is reachable there exists w0 € T~ such thar
p’ = s'w. Notice that p’ € B! for some B! € B’. As the function ¢ is onto. there
exists p = sw € Q such that (([sw]p) = [s'w]p'. Also by the definition of ¢ we have
that. for every «’ € T°. (([sww']lg) = [s'ww’]p. Thus for every «’ € £ we have

C([pw]g) = [p'w'}pr and so p =¢ p'.

Definition 2.12 Let)M = (Q.Z.4.5.B) be a DFA. The automarton 1/ 1s minimal

if for all automata M’ = (Q'.X'.¢".s. B’) equivalent to M. |Q| < [Q’].

The known algorithms for minimization of a DFA are usually explained using the
partition of states into the two sets of final and nonfinal states. so B = (F.Q\F). For
the partition into final and nonfinal states two automata are equivalent if and only
if they accept the same language. The minimal automaton M’ constructed from
the automaton M should accept the same language as M\ and have the minimal
number of states.

Thus one should be careful applying the above definitions and theorems ro a

i3

specific example. It can be the case that only one mapping is permitted and so
the definitions of the equivalence should be modified. For example given automara
M=(Q.C.6.5.F)and M' =(Q',X,¢.5.F'). where F and F’ are the sets of final
states. the only permitted map is y where p(F) = p(F’) and (Q \ F) = Q' \ F".
However. as far as minimization is concerned. this restriction is not relevant: if L
is the language accepted by M then the minimal acceptors for L and £=\ L are

isomorphic.

Theorem 2.3 Let M = (Q.Z.6.5.B). and M' = (Q'..¢'.5'.B") be DFAs with
B = B and B' = B’ (thus there are no unreachable states and there are no empty
blocks). If M and M’ are equivalent then there is ¢« DFA M" and there are surjective

homomorphisms ® and ®'. such that ® : M — M" and &' : M[' — A",

Proof: Let M" = 1[/- and ® = ®= as defined in Theorem 2.1. It was proved
in Theorem 2.1 that &= : M — 1f/= is a surjective homomorphism. Notice thar.
as M and)M’ are equivalent. they are (-equivalent for some block re-assignment
¢ : B — B’. Also notice that (= (. As B = B and B’ = B’ we have { = (.
Define ®' : M’ — 1[/= in the following way:
&'(q') = q= where ¢’ =€ ¢
#'(Bj) = p(C(BY))
We have to prove that &’ a surjective homomorphism.
1. First prove that ¢’ is a mapping.
Let ¢’ € Q'. As M and M’ are equivalent. by Lemma 2.7 there exists ¢ € Q
such that ¢’ =¢ ¢. Thus #(¢') = ¢=. Let B! € B’. As (is defined on its
domain there exists B; € B such that ((B;) = B;. Thus as p is defined on it
domain then 4 is also.
Suppose ¢' =° q and ¢ = p. By Lemma 2.5 p = ¢q. Thus p= = ¢=. Hence »’

is well defined.

14

T AR s R e T

This proves that ¢’ is well defined.

1\
'

We have to prove that ' is a homomorphism.

We first prove that x(p'w) = K'(p')w for every p’ € Q' and w € T~. Br
definition &’(p’w) = ¢= where p’w =¢ ¢. By Lemma 2.7 there exists p € Q
such that p’ =¢ p. By the definition of =¢. p’w =¢ pwr. By Lemma 2.5 pu = ¢
and so ¢= = (pw)=. Finally. by Lemma 2.4 (pw)z = p=w = ~'(p')v.

We have to prove also that &'(p’w) € p/([p'w]g:) for every p’ € Q' and « € T~.
By Lemma 2.7 there exists ¢ € @ such that p’ =¢ ¢q. By the definition of
=¢ we have (([p'w]s = [quw]s. Thus p({([p'w]s) = ul[qw]s) = B:/= where
(quw)= € Bi/=.

3. To prove that the map @’ is onto let ¢= € Q/=. By Lemma 2.7 there exists
q¢' € Q' such that ¢/ =¢ q. Thus #'(¢’) = g~. As u and (are onto. then the

map y' is also onto.

Corollary 2.2 For every DFA M = (Q.X.8.5. B) containing only reachable states
there is @ minimal DFA M’ = (Q'.£.¢'.5'. B') equivalent to M. which is unique up

to isommorphism. Moreover M’ is isomorphic wnth M /.

Proof: First we will prove that the automaton Mz is minimal. By contradiction
assume that there exists an automaton /" such that 1/” and 1/< are equivalenr and
Q"] < |Q/=|- As the automata " and M= are equivalent they are (-equivalent
for some (: B/= — B”. By Lemma 2.7 for every =" € Q" there exists := = Q
such that =" =¢ =z and for every z= € Q there exists a corresponding =" € Q. As
Q"] < |@Q/=| there exst distinct states p=.¢= € Q/= and a state p” € Q' such that
p= =° p” and ¢= =° p". But then by Lemma 2.5 we have ¢g= = p= and so we should
have p= = ¢= a contradiction.

To prove that the minimal automaton is unique up to isomorphism suppose that we

have a minimal automaton 1/’ # Mz which is equivalent to 1/. Consider the maps

® and ®’ defined in Theorem 2.3. The map & : M= — 1/: is the identity map.
By Theorem 2.3 the map ® : M’ — M is onto. As the cardinality of the minimal
automata is the same (|Q| = |@Q’|) we can conclude that the map $ 0 ® = &' is an

isomorphism.

Corollary 2.2 allows us to conclude that one of the ways to construct the minimal
automaton is to search for =. the largest congruence contained in ¢g. The next def-

initions will be used directly in the construction of the algorithm for minimization.

Definition 2.13 Let M = (Q.%.8.5.B) be a DF 4. Given an integer * > 0. we
say two distinct states p.q € Q are k-distinguishable if there is a word o € T*.
jw| < k. which distinguishes p from q. that is [pw]g # [¢qw]g. If p and ¢ are k-

distinguishable we write p £* ¢. If there is no such word. then we say that p and ¢

are k-indistinguishable and we write p =* ¢.

Theorem 2.4 Let M = (Q.X.6.5.B) be ¢ DFA. For two distinct states p.q £ Q

with p =% q. p =5 ¢ if and only if. for all a € =. pa = qa.

Proof: By |w] denote the length of the word w. Suppose that p =f*! ¢ for some
p.q € Q and & > 0. Then [pw]s = [qw]p for every w € T~ such that || < bk +1

(thus k+1>1). As0<|a| <1forall a € . we have pa =" ga.

Suppose that for all ¢ € . pa =* ga. As pa =F ¢ga no word w € T~ such that

lw| < k distinguishes pa and ga. Thus [paw]g = [gaw].. As every v’/ € T~ such

that |’ € k+ 1 can be expressed as &’ = aw. we have p =1 ¢.

Clearly two states are distinguishable if they are k-distinguishable. for some & > 0.

If we cannot distinguish p and ¢ with words of length at most & + 1. for some & > 0.

—k+1

then we cannot distinguish them with words of length at most k. Thus. p q

implies p =F ¢. for all & > 0. that is. =**! C =*. We say =**! is a refinement of

1o

=*_ Similarly. we obtain = C =F, for all £ > 0.
There are various definitions around for Q. For the discussion about options see

[6]. In this thesis the following definition is used:

Definition 2.14

O(f(n)) = {g | I>oTv>a¥a>nlg(n) < cf(n)]}

QU f(n) = {g | 0¥ ¥>03n>x[g(n) > cf(n)]}

O(f(n)) ={g | >0Ix>0¥nsx[9(n) < cf(n)] and 330V >03n>x[g(n) 2 cf(n)]}

CHAPTER 3
WOOD'S ALGORITH)I

In this section we present Wood's algorithm [7] for the minimization of complere
DFAs. This algorithm is illustrated by an example. in which the tabular method is

used to construct a minimal DFA.

Algorithm 3.1
Input: A complete DFA with set of states Q. all states reachable. set of inpur
symbols T. transitions defined for all states and inputs. start state s. and the
partition of states B.
Output: A minimal DFA)/’ equivalent to the DFA /.
Method:
1. Construct an initial partition II* of the set of states for & = 0. This partition
has at most |B| blocks of states.
2. Let k := Lk +1 and apply the following procedure to construct a new partition
IT*. Initially let IT* := II*-!.
For each block G of II*. for which |G| > 2 do
begin
partition G into subblocks such that two states s and #
of G are in the same subblock if and only if for all

input symbols a. the states sa and #a are in the same block of IT¢~!

1

(4]

/* at worst. a state will be in a subblock by itself */
replace G in II* by the set of all subblocks formed
end.
3. IfI*' =%, let IT := IOI¥
else repeat from step (2).

1. Construct the minimal automaton using the partition II.

Wood's algorithm has time complexity O(n3).

a [

).
a - — T b -
a
A

- ¢ (90

O b ~(2)

Figure 3.1. Deterministic finite automaton M,
with the partition of states into two blocks: By =
{1.3.4} and B> = {2.3.6}.

Let II* be the partition of states at step k. The initial partition of states. II°.
is defined as B. as two states are 0O-indistinguishable if and only if they are in rhe
same block of B. Thus =° = og. There are r = |B| equivalence classes formed by
=0 If all states are equivalent to each other. and so |[I°] = 1 we can terminarte
the algorithm and the minimal automaton will have only one state. At step 2 we
calculare new equivalence classes and so a new partition of states [I'. and compare it

with the partition II°. Then we are using Theorem 2.4. to construct new partitions

19

20

OO0

Figure 3.2. Minimumstate finite automaton /j.
This automaton is equivalent to the automaton
M.

of states into equivalence classes (II2. then II%. and so on). Thus we construct = by

refining =° to give ='. =! to give = and so on. This continues until =F~! = =

(until IT¥-' = IT%).

state a b
1 e el 3....
2 S SOV 4....
3 S S 3....
4 cee2een 6....
3 JUTE TOUR 4....
6 SN TRUR 6....

Table 3.1. Transition table with the same finite
automaton as in Figure 3.1 (automaton M,).

We present an example using a tabular method to minimize the automaton 1/,
(Figure 3.1). We show the partition of states into equivalence classes by drawing

horizontal lines.

Example 3.1 Consider the automaton \/; from Figure 3.1. This automaton is also
displayed in the transition table (Table 3.1). Let [p]; denote the equivalence class

of the state p with respect to =F. We also write [p] if = is understood.

=0 a b
B;:1 wef2]ees Bl
Bsy: 2 O 21 TR 1

Table 3.2. First partition.

Immediately. from the definition of =° we have [1]o = [3]o = [t]o = {1.3.1} = B,
and [2]o = [3]0 = [6]o = {2.5.6} = B>. We display this information in the modified
transition table (Table 3.2.). in which equivalence classes are separated by horizontal
lines. The reason is that when computing =!. we make use of the fact that p =' ¢ if
and only if p =° ¢. pa =° ¢ga. and pb =° ¢b. But this holds if and only if [plo = [qg]o-
[palo = [galo. and [pbly = [¢blo. In other words. if and only if the rows of p and ¢ are
“equivalent”.

Consider [1]o = {1.3.4} first. By inspection. every pair of rows from this set are
distinct. More precisely [lajo # [3a)o- [1b]o # [4blo. and [3a]o # [4a]o. This implies
1. 3. and 4 form singleton equivalence classes in =!.

On the other hand. rows 2 and 3 are equivalent and different from row 6. Thus.
we obtain Table 3.3. To construct =2. we only need to examine the rows 2 and

3. since all other equivalence classes are singletons. Once more these two rows are

22

4

I
0 [

[=>] N1 I (V] VS FULY
I\
| = = DO | o

v
— r

Table 3.3. Second partition.

equivalent. Hence => = =! = =. and we are done. The final minimal automaton is

shown in Figure 3.2.

CHAPTER 4

ALGORITHM DUE TO HOPCROFT AND ULLMAN

state a b c
p TN o, tooee el Ueeee
q SN SUURRRUTY T SUURRIUNN | LSOO

Table 4.1. State Table. A pair of states which
should be compared at some point in the algorithm

The problem with the algorithm presented in the previous chapter is that it can
perform useless comparisons between pairs of states. One can save much work by
bookkeeping. Note that. whenever rr # s for some r.s € Q. then puw £ qu for every
p.q = Q and w € T~. such that pw = r and quw = s.

Suppose that p.g.r.s.t.u.v.w € @ and {a.b.c} C ¥ and we have found the
information shown in Table 4.1 which we will call state teble. Assume we know
nothing about the pairs {(r.s).(f.u).(v.w)} (we don’t know if they are distinguish-
able or not). Then (p. ¢) are distinguishable or indistinguishable depending on what
we find out later about these pairs. So. for every one of these pairs. we place (p.q)
on a list linked to the pair. It is called the list to mark. Then. if we later find that
one of these pairs is distinguishable. we go through its list and mark pairs on it as

distinguishable: in this way. we do not have to check p and ¢ for distinguishabiliry

23

—00

>
Y

a

Figure 4.1. Deterministic finite automaton .1/»
with the partition of states into two blocks By =
{1.2.4.5} and B> = {3}.

a b

ol
O EC

Figure 4.2. Minimumstate finite automaton ;.
This automaton is equivalent to the automaton
M.

repeatedly. Thus note that. when (p. ¢} become distinguishable as a consequence of

the distinguishability of (r.s). say. then also the list originating at (p. ¢) needs ro
be dealt with. Note also. that a pair can appear on several lists.

One way to implement this algorithm. according to [4]. is to use a triangular
(n —1) x (n — 1) table D. where n is the number of states. We call this the
distinguishability matriz. Assume @ is totally ordered in an arbitrary. but fixed
way. Thus Q = {¢-qi.---. ¢n—1 }- The entries of this matrix are initialized to zero:
and we set the d;; entry of D to one. whenever we establish that ¢; and ¢, are
distinguishable. where : < ;.

To use this method. we must start with one or more pairs of states known ro
be distinguishable. Clearly. every state ¢; € By is distinguishable from the states
belonging to different blocks of B. thus it is distinguishable from every ¢, € B..
This corresponds to the construction of =° in Wood's algorithm. The states from
the same block B may or may not be distinguishable from one another: we do not
know that yet. Hence in the distinguishability matrix D we go through all rows
and mark every column corresponding to a state belonging to a different block. For
example if some row ! represents a state ¢; € Bj. we mark every entry in this row
corresponding to a column j representing state ¢; & Bi.

Next. we consider every pair (g;.q;) which corresponds to an unmarked entry.

d;, = 0. We look at the next-state functions of ¢; and ¢, (state tables) to see

i
whether there is any input that takes them to a pair known to be distinguishable.
If they do. than ¢; and ¢; are also distinguishable. That is. we compare rheir rows
in the state table. We have three possible outcomes:

a) the rows are identical or equivalent

b) the rows differ by states known to be distinguishable

c) the rows differ by states about which we do not know yet

In case a. we leave their table entry unmarked (d;; = 0): in case b we can mark

them as distinguishable (d;, = 1) and we recursively mark every pair oun the list to

mark. in case ¢ we have the situation shown in Table 4.1. and we do what we have
proposed at the beginning to avoid additional (useless) comparisons. That means
for every input symbol a € € we put (¢;.¢;) on the list to mark of (g;a. ¢;a).

When we have checked all unmarked entries. the algorithm terminates. We can
identify the sets of equivalent states by examining the entries for each row or column
of the matrix. Any zero in the row (column) for state ¢ marks another state that
is equivalent to ¢. Since state equivalence is a true equivalence relation. we can
accumnulate classes of states by taking advantage of transitivity. The equivalence
classes are the states of the new machine.

Below one can see the algorithm:

Algorithm 4.1

Input: A complete DFA with set of states Q. all states reachable. set of input sym-
bols <. transitions defined for all states and inputs. start state s. and the partition
of states B.

Output: A minimal DFA 1/’ equivalent to 1/

Method:

1. For every ¢;.¢; € . where i < j. if ¢; € By and ¢; € B, do mark (¢;.q;).

[

. For each unmarked pair (¢;.¢;) do
3. if for some input symbol a. (g:a. ¢ja) is marked then
begin
mark (g:.q;):
recursively mark all unmarked pairs on the list to mark for (g;.q;)
and on the lists to mark of other pairs that are marked at this step.
end
4. else

for all input symbols « do

put {¢i.q;) on the list to mark for (g:a. ¢ja) unless ¢.a = g,a.

5. Construct the minimal automaton using the information from the matrix.

This algorithm is more efficient than the obvious marking algorithm. The time

complexity is 0(n?). where n is the number of states.

Example 4.1

R SO R . > S d....
1 SR | FOUUEURN Lo .. 0.... ... 0....
2 e Lo . 0..c. ... 0....
3 | et sl 1.
S AU UL UVt 0....

Table 4.2. Initial distinguishability matrix.

cee2ie K S 4. .
1 eelon L. ... 0.... ... 0....
2 e e l.... .0 OO
3 | e e I....
o U UUU R CUU O 0....

Table 4.3. Second distinguishability matrix.

Consider the machine in Figure 4.1. The initial distinguishability matrix is shown

in Table 4.2. Here state 3 is the only state belonging to B, and as such it ix

R S R T 4. 3....
1 SN P 1....
2 | s el 1. 1.
3 | et s I...
S PO 0....

Table 4.4. Third distinguishability matrix.

distinguishable from all other states: hence there are ones in the row and column
for state 3 and zeros everywhere else. Initially we assume all the other states are
equivalent: now we must see whether thev really are. We start by considering zero
entries for state 1: we must first determine whether it is distinguishable from states

2. 4. and 3.

dy»: Comparing states 1 and 2. we have

state ceerllaer aaes b....
1 N T SN
2 S SN 3....

We can say that an input b will take the pair (1.2) to the pair (2.3). Since 2 and 3
are known to be distinguishable. states 1 and 2 are distinguishable. too. So d;» =1
and our next matrix will be the matrix from Table 4.3.

dyy: When we compare states 1 and 4. we get inconclusive results:

state veerlleene eenn b....
1 v lees 020
4 NTS BT J

In this case. states 1 and 4 will be distinguishable only if states 2 and 3 are: bur
we don’t know yet. We could come back later. after we have checked 2 and 3. and

try again. but for large machines this would be prohibitively time consuming. So

we enter the pair (1.4) in the list to mark associated with (2.5). We can represent
this list by writing

(2.3) — (1. 4)
If (2.3) later turns out to be distinguishable. then we merely have to go down the
list of pairs associated with (2.5) and mark them as distinguishable. If it should
happen that 2 and 3 never turn out to be distinguishable. then 1 and 4 won't be.
either.

d5: The same happens when we compare States 1 and 5:

state ceeelleen anen b....
1 el L2l
3 SV SO Y

So we add (1.3) to the list to mark associated with (2.3). This list is now
{(2.3) — (1.4) — (1.3}

d»;: Next we consider states 2 and 4 and we have

state U AT b....
2 . S 3....
4 vl 5....

In this case. a takes (2.1) to the distinguishable pair (2.1). so 2 and 4 are distin-
guishable. Thus dyy = 1.

d»5: For states 2 and 3. we have

state ceeelleeee aeen b....
2 O ST 3....
2 el Ll 3....

and we see that 2 and 5 are dis'tinguishable. But we have a list attached to (2.3):
going down this list. we see that we can mark (1.4) and (1.3) as distinguishable.
Thus we set dys = dyy = d15 = 1 and in Table 4.4 one sees the next distinguishability
matrix.

dy5: Since we know that state 3 is distinguishable from all the other states. we move

on to state +: the only pair we need to test is (4.3):

state ceeelleee e b....
4 U ST S....
3 T SO 3....

Since the two rows are identical. we cannot distinguish states 4 and 5 and hence
conclude that they are equivalent. So our final matrix is still Table 4+.4. Our

minimal-state machine is. therefore. illustrated in Figure 4.2.

In programming this procedure. the easiest way to handle the chaining of un-
decided states is to make the distinguishability matrix a matrix of records. with a
field for the mark (1 or 0) and a field for a pointer to the chain. The matrix entries
are initially set to 0 and nil. After marking all nonaccepting states as distinct from
all accepting states by putting 1 in the appropriate entries of the matrix. one goes
through the matrix. If a pair is not immediately distinguishable. it 1s added to rhe
lists to mark of all next-state pairs. except where the two next states are identical.
If a pair is found to be distinguishable. one marks the matrix entry with a 1 and
then follows up the chain. if any. Notice that the chains may branch. so the follow-
up procedure must be made recursive. This recursive procedure always terminates.
as there is a finite number of the pairs of states which can be marked. If a pair is

already marked its list to mark is not considered.

30

CHAPTER 5

NEW ALGORITHMS

In this chapter three new algorithms for minimization are presented. They are
called: General Version. Second Version and Third Version. All these versions
of the minimization algorithm are based on the same concept. These algorithms
assign names to all states in an automaton. Then they sort the names of states of
an automaton to minimize it. After sorting. if some states are renamed. the list
is sorted again. The names of states have the following property: if at step k of
the algorithm states have distinct names. they have distinct names at every step
k+i. where : > 1. The algorithms terminate if. as a result of sorting. the list is nor
changed (states are not renamed).

The General Version of the minimization algorithm sorts the whole list of names
of states at every step of the algorithm. The upper bound for this version is
O(n*logn). The General Version of the minimization algorithm is not an efficienr
one. It does not use the information that. as a result of sorting at step k. at step
k + 1 we already know some pairs of states which should have distinct names. Thus
there is no need to check if they are still distinct by sorting the whole list. The
Second Version of the algorithm uses this information and it sorts the whole list of
names class by class as one class of states has different names from all others classes

of states). The time complexity for this version of the minimization algorithm is

31

()
(V]

O(n?).

The Second Version of the minimization algorithm may still sort a class of states
which have the same name. Thus no changes are made. In the Third Version of the
algorithm only initially all classes are sorted. At the next steps of this algorithm
only classes of states with distinct names are sorted. This version has the same

time complexity as the Second Version of the minimization algorithm. O(n?).

5.1. General Version

W® : ﬁ@ ” ‘® .

a a

Figure 5.1.1. Deterministic finite automaton /|
with B = («. {4, B.C}.{X.Y.Z}).

The new algorithm for minimization is based on Wood's algorithm. Wood's algo-
rithm works as follows: One starts with =% = ¢g. as two states are 0-indistinguishable

if and only if they are in the same block of B. There are rr = |B| equivalence classex

formed by =°. We construct = by refining =° to give =!. =' to give =* and so on.

This continues until =* = =r+1.

The main idea used in the new version of the minimization algorithm is to give
unique names to the equivalence classes formed at every step of the algorithm. At
step k of the algorithm every state p belonging to the same equivalence class will
also have the same name. and states belonging to different classes will have different
names. By N} we denote the name of the equivalence class to which the state p
belongs at step k of the algorithm. Let A™* = {\m._ (',) '(';‘)} be the set of
classes of states at step k of the algorithm. This set is in sorted order and thar is
why we have subscripts 1.2....u where u < |Q|. Whenever p and q are in the same
class .\ - they have the same name. We use the symbol NE () to denote the name of
the /th class of \™ (the class \{})). Thus. if p =*~! ¢. then p. ¢ € \{, for some / and

Nk = NF = NE

G- and if p 257! ¢ then Ny # NF. Whenever an equivalence class

is changed (class is divided). the states from this class will get new names. |\
represents the number of distinct names of states (number of equivalence classes)
at step k of the algorithm.

Suppose we are given an automaton M =(Q.X.48.5. B). Let & = (ay.as.....a,,).
where the input symbols are ordered in an arbitrary but fixed way. With every state

p € Q. we associate the pattern P: at step k.

Pt = (/v'f..vk NE \‘p,,m)
Let P* = { (”.7:’("2) 'P(ku)}. where u < |Q|. denote the partition of states ar
step k of the algorithm according to their patterns. [P*| is the number of distincr
patterns at step k of the algorithm and note that |*| < |P*| for every & > 0. Thus
A* corresponds to =¢~! and P* corresponds to =*.

To avoid the calculation of patterns before every sorting. states can be repre-

sented by state structures: the state structure of a state p consists of the current

name N} of p. the new name N:H' and the transition list of p. The transition
list of every state is implemented by pointers such that the pointer for pa; in the
state structure of p points to the state structure of the state pa;. Thus a list of state
structures contains the information about the names of states and the patterns. The
current names of states are used to calculate patterns. The new names of states
are calculated at step & of the algorithm but they are used in the construction of
patterns at k + 1 step of the algorithm.

After sorting. the list of state structures is ordered in some predefined way. We
will call this sorted list StateStructures. Now the algorithm can be presented. We

assume that all states are reachable.

Algorithm 5.1.1

Input: A complete DFA with set of states Q. all states reachable. set of inpur
symbols ¥, transitions defined for all states and inputs. start state s. and the
partition of states B.

Output: A minimal DFA 1/’ equivalent to the DFA 1/.

Method:

1. Using the function GetNewName associate the name N with every block

B;. So if p € B; then .Vp‘ = Npg,. Let N, be the last name calculated by

GetNewName.

(V]
.

Sort patterns.
WasRenamed := False. /¥ initially no states were renamed */

RenameAll(StateStructures. WasRenamed. V...).

bl

If any state was renamed (WasRenamed = True) then repeat from step (2)

Ot

else terminate the algorithm and construct the minimal automaton by parti-

tioning the states according to their names.

Function GetNewName(V.)
/* Given the name N this function calculates and returns a new name N,o. If
and all other names currently used in the main program were calculated using this
function. all these names including .V, are distinct. It is assumed that V. is the
last name calculated previously using this function. One possible function f which
can be used is (assuming that .V is an integer): f(N) =\ +1. */
begin

Naew 1= f(Vase)

GetNewName := N

end
Procedure RenameAll(StateStructures. WasRenamed. Vi,)

/* Given the sorted list of patterns. encoded in the list of state structures. this
procedure renames appropriate states in such a way that whenever stares have
different patterns they have different names. and whenever they have the same
patterns they have the same names. It is assumed that the last name calculared
by GetNewName was V... WasRenamed is set to true if GetNewName is called at

least once. */

begin
- K
Ni=1)N)
kL L\
NpFb=

for every 1 € {2.3..... |Q|} do

begin
if P, _ # Py and N} _ # N* then
- \k
N:=NF

else if P;_ # Py and N} _ := N¥ then

begin

35

WasRenamed := True

N := GetNewName(Vi)

Nt =V
end
Nitt= N
end
end

The function GetNewName returns a “new name (that means a name which is not
currently used by any state). To accomplish that we use the function GetNewName
every time a new name has to be introduced. and we pass to this function the
“last” name (Vjase) it has calculated. The name N, can be initially set to 0
and GetNewName can use consecutive binary numbers for names. Thus. if we use
GetNewName at step 1 of the algorithm. and as a result we have three blocks of
states named 0. 1. and 01. GetNewName(01) will return 10 (01 + 1 = 10). As rhe
maximum number of distinct names required in this algorithm is n. the longest
binary number used to represent the names has the length at most logn.

Initially we have |.\"}| classes. where |.\"!| = |B|. At every step k of the algorithm
new equivalence classes are formed and compared to the classes formed at step & —1.
Renaming is done in the following way. Suppose that at step k —1 of the algorithm.
states p and ¢ are in the same class and thus they have the same name. If at the nexr
step the states p and ¢ have different patterns. they should be distinguished and so
at least one state: p or ¢ should get a new name at this step. If at step & all states
from some class have the same pattern. there is no need to change their names. The
procedure RenameAll accomplishes that. Whenever the procedure GetNewXName is
called at least once. that means some states were renamed and in the algorithm we

repeat steps (2). Notice that the list of states structures passed to this procedure

36

is sorted by patterns. As patterns are constructed from the names of states and
the first element in the given pattern is the name of the state. the names of states
are also sorted. Notice that in the procedure RenameAll by renaming states we are
changing the patterns. But the information about old patterns should be available
until the end of this procedure. One way to handle that is to keep two names in the
state structure. The first one should represent .\’1’;' and should be used every time
the pattern is calculated. The second one should represent a new name N5*'.
Next we see an example. Then we will prove that this algorithm always termi-

nates and that the automaton constructed using this algorithm is minimal.

AT (=Y p(N}) pa(N},) PN
_\'('” =1: «(1) (1) «(1)
Ny =2 A(2) B(2) X(3)
C(2) 4(2) Z(3)
B(2) C(2) 1(3)
Ny =3 A(3) (1) Y(3)
Y(3) C(2) «(1)
Z(3) B(2) «(1)

Table 5.1.1.

Example 5.1.1 We illustrate the algorithm applied to the automaton 3/, in Fig-
ure 3.1.1. This is a minimal automaton and the example shows that the algorithm
can verify this fact. In this example we are not following directly the procedure Re-
nameAll. When the block of states is divided into k blocks. procedure RenameAll
renames only & — 1 blocks not changing the name of one block. In this example all

such blocks will be renamed.

37

AP (= P(NE) pa(N7,) phi N)
.\'(21) =1: (1) «(1) «(1)
NZ, =2 A(2) B(2) X(31)
C(2) A(2) Z(32)
B(2) C(2) Y(32)
Ny =3L: X(31) «(1) Y (32)
N =32 ¥(32) C(2) (1)
Z(32) B(2) «(1)

Table 5.1.2.

A= (=)). .\’g) pa(\";’a) ph(\’;’o)
.\'(3” =1: (1) (1) (1)
N7, =21 A(21) B(22) X(31)
\'(33) = 22: C(22) A(21) Z(32)
B(22) C(22) Y(32)
N7y =31 X(31) «(1) 1(32)
.\'("f;) = 32: Y (32) C(22) <(1)
Z(32) B(22) (1)

Table 5.1.3.

Thus we are given a DFA M; with the partition of states of this automaton
B =(B,.B,.B3) = ({«}.{4.B.C}.{X.Y.Z}). Since B is a partition. each state

p is in exactly one block B;. We assign the initial name N} to each state p € Q in

s e & 2 hent e

A=) p(N;) patN,,) pb(N ;)
Ny =1 w(1) w(1) <(1)
N, =21 A(21) B(22) X(31)
.\’{‘3' = 221: C(221) A(21) Z(32)
N, =222 B(222) C(221) 1(32)
N, =30 X(31) «(1) ¥(32)
N =32 1(32) C(221) <(1)
Z(32) B(222) <(1)
Table 5.1.4.
\? (=) p(N}) pa(N},) PN)
Ny, =1L «(1) «(1) «(1)
\]’l) =21: A(21) B(22) X(31)
NG, =221 C(221) A(21) Z(322)
Np, =222 B(222) C(221) ¥(321)
Ny, =31 X(31) «(1) 1(321)
.\‘gﬂ = 321: Y (321) C(221) <(1)
N =322 Z(322) B(2232) «(1)

the following wajy—:

Table 5.1.5.

.\}::jiprBj

39

This gives the following initial names to every state:
-
Nl=1

Nl=N,=N

by =-2

N

.\7;{::.\.!!;:)1_}_:3

Ve use the tabular method to compute =* from =*—! using sorting. We illustrare

the state structure using the following format:
N¥ pa(NE) pb(N},)

where p. pa. and pb denote pointers . and N5. V¥ . and Y% denote the current
names of the states p. pa. and pb. Remember that the numbers before brackers
(pointers) and the brackets are not needed for sorting purposes. Also notice thart
the comparisons are macde between elements .V;‘ which are included in the pattern.
and not between other elements. So every _\7";' in the pattern is treated as one
element. not as a sequence of symbols or letters. It should be remembered thar
individual N} have different lengths because of the renaming.

The inirtial situation is shown in Table 5.1.1. After sorting the names of the
states. we have only 3 equivalence classes. But when we sort the patterns. we see
that {X'} and {Y". Z} should be distinguished. So the class 3 should be divided into
two classes. and the names of the states should be changed to 31 and 32 to get ='.
We write a shorter horizontal line to denote that at the next step of the algorithm.
the class should be divided. and so states in this class should he renamed. The
results of the next sorting steps are shown in Table 5.1.2. Table 5.1.3. Table 3.1.41.
and Table 5.1.5. Finally we see that =*==> (|.\"®| = |P?|) and we cannot combine

any states (no two states are equivalent) and so the automaton 1/, is minimal.

Theorem 5.1.1 Let M = (Q.X.6.5.B). Algorithm 5.1.1 terminates in at most

n — 2 steps. where n = |Q|.

Proof: The algorithm terminates when =F = =**!, for some & > 1. First we have
to prove that whenever =F = =**!, then =% = =**'_ for all i > 0. If =F = =F+1,
then p =* ¢ implies that P¥ = P¥ and so pa =* qa for every « € T. But this implies
that p =*? ¢. By induction =* = =%+ for all i > 0.

If |\| = 1. then the algorithm terminates with = = =°. having one equivalence
class containing all states. In this case all states are indistinguishable. Otherwise
A > 2. and 2 < | *| < n. At every step of the algorithm we have at least one

addirional class. Thus the main loop in the algorithm is called at most n — 2 times.

Corollary 5.1.1 Let M = (Q.X.8.5.B) be a complete DFA having only reach-
able states and M' = (Q'..48'.5', B’) be the corresponding DFA constructed using

Algorithm 5.1.1. Then M’ is a minimal complete DFA equivalent to M.

Theorem 5.1.2 The runtime of Algorithm 5.1.1 1s bounded from above by O(n* log n).

Proof: The algorithm terminates in at most n — 2 steps where n = |@|. At every
step one sorting procedure is performed. It requires at most nlog n comparisons.

This gives the required upper bound O(n*logn).

This algorithm is based on sorting of states. At every step of the algorithm
names of states are sorted once. Thus the minimal time for the algorithm can not
be less than the time required to sort the list of patterns once (to check if =% = =!).
It will be O(nlog n) if and only if all patterns are distinct. Otherwise it depends on
the number of distinct patterns. Assume that |.\}| # 1 as the case of |\™| is trivial.
Consider the example when B = {B,. B} and the block B, contains only one state.

Suppose that in the minimal automaton we have just 2 states. This corresponds to

=

having n elements to sort. where only one is different from all others. This implies
that patterns are sorted just once. Using mergesort when we merge any 2 lists we
can combine the “same” elements. so the maximum number of elements in the lists
to be merged is 2 and the maximum number of comparisons is n + logn. This
implies that the best case for this algorithm has time complexity O(n).

It is difficult to describe precisely which automaton will represent the worst case
as. the more comparisons are made at every step of the algorithm (during sorting).
the fewer potential steps can be done in this algorithm. Also. during consecutive
steps of the algorithm the list of states is more ~in order”. so fewer comparisons
need to be used to sort it. Consider the example when. using mergesort. nlog n
comparisons are made at the first step of the algorithm. That implies that all stares
are distinguishable and so the main loop of the algorithm can be executed at most

once more.

5.2. Second Version

Wood's algorithm does not check every pair of states at every step of the algorithm.
Only the pairs of states which are indistinguishable at the given step indistinguish-
able are checked to decide if they can be distinguished. Similarly Algorithm 3.1.1
can be improved by requiring that, at every step & of the algorithm. states having rhe
same names are sorted separately (these are the classes of (k — 1)-indistinguishable
states). Thus patterns of states belonging to the same block .\'(’f) are sorted sep-
arately. By StateStmct-ure.s(.\"ﬁ)) denote the set of state structures of the states

belonging to the same block .\, of .\™ at step & of the algorithm.

Algorithm 5.2.1
Input: A complete DFA with set of states Q. all states reachable. set of inpur
symbols T. transitions defined for all states and inputs. start state s. and the

partition of states B.

Output: A minimal DFA V' equivalent to the DFA /.
Method:

1. Using the function GetNewName associate the name Vg, with every block
B;. So if p € B; then N} = Np,. Let Ny, be the last name calculated by
GetNewXName.

2. WasRenamed := False. /* initially no states are renamed */

3. For every block of states \'(':) do

begin

sort patterns

RenameBlock(StateS tructures(.\f'(’:f)).WasRenamed. N,)
end.

1. If any state was renamed (if WasRenamed = True) then repeat from step (2)
else terminate the algorithm and construct the minimal automaton by parti-

tioning the states according to their names.

Procedure RenameBlock(StateStructures(.\'(ff)).WasRenamed. Vi,)

/* This procedure is given the sorted list of patterns of states encoded in the list
of state structures. These states have the same name .\'[";.). The procedure renames
appropriate states in such a way that whenever states have different patterns they
get different names. and whenever they have the same patterns they get the same
names. It is assumed that the last name returned by GetNewName is N},,,. Was-
Renamed is set to true when the function GetNewName is called at least once.
*/

begin

N:= ‘\.Ifx

kel .\
'\Px =\

for every 7 = {2. 3 l-\‘(l:)i} do

begin
if PX_ # P} then
begin
WasRenamed := True
N :=GetNewName(Vs)
Nase : =V
end
NEH = X
end

end

Renaming is done in a way similar to the general version of the algorithm. The
procedure RenameBlock is different from RenameAll only because. to the proce-
dure RenameBlock. the information about state structures of only one block .\'(’f)
is passed (not the information about state structures of all states). Thus. initially.
the names of the states are the same but. because patterns can differ. the procedure

RenameBlock can assign different names to some states.
Theorem 5.2.1 The runtime of Algorithm 5.2.1 is O(n?).

Proof. The length of the lists of patterns which are merged during mergesort can
not be more than the number of distinct classes in the given set of patterns which
has to be sorted. If we assume that the number of distinct patterns is g. the lists
to be merged can not be longer than ¢g. So the number of comparisons required
to merge two lists is no more than 2¢g — 1. As the lists are merged at most »
times during mergesort. the total number of comparisons required by mergesort is
bounded by (2¢ — 1)n. The number of comparisons is the highest when at each step

of the algorithm only one additional class is formed. So after sorting any class we

have at most ¢ = 2 distinct classes. As in this version of the algorithm we sort class
by class. at each step of the algorithm we have at least 1 merge less to do. So the

maximum number of comparisons is:

(29 —1ln+(29-1)(n—-1)+ ... +(2¢—-1)2+(2¢9g—1)
where ¢ = 2. Thus the upper bound is O(r?).

To show that O(rn?) is the time complexity for this algorithm. consider the
automaton yors: = (Q.X.6.5. B) where Q = {p1.po..... Pn}- s =p1. & = {a.b}.
B = {{pi-p2----- pu-t}-{pn}}. and

pi-y for:>2

&(pi.a) =)
p1 fort=1

o(pi.b) = pa

An example of such automaton for n = 6 is shown in Figure 5.2.1. This represents
the case when B = {B,.B,}. and only Z is in B,. To minimize this automaton. or
rather to use the algorithm to verify that the automaton is minimal. the patterns
have to be sorted n — 2 times (compare Table 3.2.1 and Table 5.2.2). Considering
the automaton M- at step & of the algorithm we have k& singleton classes and
one class ,\'(‘f) containing n — k elements. It is possible to eliminate the sorting of the
singleton classes. but all elements in the class with n — & elements should be checked
at the given step of the algorithm. Thus we need at least n—1. n—2. n—3. n—4....
comparisons. This means that the algorithm has time complexity Q(n?) and so it

has time complexity O(n?).

The best case is the same as in the general version of the algorithm. This is the
case when in the minimal automaton there are only two states. This corresponds ro
having n elements to sort. where only one is different from all others. Thus patterns

are sorted just once and the maximum number of comparisons is n + log n. Thisx

implies that the best case for this algorithm has time complexity O(n) similarly ro

the general version of the minimization algorithm.

a.b b b b a
Y
b
O
a.b
Figure 5.2.1. Deterministic finite automaton 1/,
for which it takes Q(n?) comparisons to verify that
it is minimal using the second or the third versions
of the algorithm. The states in this automaton are
partitioned into two blocks B, = {1.B.(.D. E}
and B. = {Z}.
A (=0 o _\'pl) pal .\’;a) pPhIN)
\'(l”-:]_; E(1) D(1) Z(2)
D(1) C(1) Z(2)
C(1) B(1) Z(2)
B(1) A(1) Z(2)
A(1) Z(2) Z(2)
NL =2 Z(2) Z(2) Z(2)

Table 5.2.1.

A7 (= p(N}) pa(N,,) pb(N ;)
.\“(11) = 11: E(11) D(11) Z(2)
D(11) C(11) Z(2)
C(11) B(11) Z(2)
B(11) 4(12) Z(2)
NG, =12 A4(12) Z(2) Z(2)
Ny =2 Z(2) Z(2) Z(2)

Table 5.2.3.

AP (=) p(NY) pa(N},) ph(N7)
NGy =111: E(111) D(111) Z(2)
D(111) C(111) Z(2)
C(111) B(111) Z(2)
NG, =112 B(112) A(12) Z(2)
NG =12 A(12) Z(2) Z(2)
Ny =2 Z(2) Z(2) Z(2)

Table 5.2.4.

5.3. Third Version

In the second version of the algorithm the states are sorted class by class. It can
happen that we sort a class in which all states have the same pattern. There ix

no need to sort such classes. Thus. similarly to the algorithm due to Hopcroft and

At (=%) (N} pa(N}, PHN)
NG, = 1111 E(1111) D(1111) £(2)
D(1111) C(1112) Z(2)
N, =1112: C(1112) B(112) Z(2)
Ny =112 B(112) A(12) Z(2)
NG, =12 4(12) Z(2) Z(2)
N5 =2 Z(2) £(2) Z(2)

(3)

Table 5.2.5.

A7 (=Y PN pal N}, PN)
.\“5” = 11111: E(11111) D(11112) Z(2)
D(11112) C(1112) Z(2)
.\'('?_,l = 1112: C(1112) B(112) Z(2)
NG, =112 B(112) A(12) Z(2)
N, =12 A(12) Z(2) Z(2)
NG =2 Z(2) Z(2) Z(2)

Table 5.2.2.

Ullman. we want to deal only with the states which have to be distinguished. Let
L and L be the lists of classes of the states to be sorted. Thus at step & of rhe

A*] < |Q|. In the algorithm. classes

algorithm L = {\{{,. A, .. \(;)} where t <

from the list L are sorted by patterns taking one class at a time. and at the same

L ——— o p——————

time the new list A is built. Only initially can it happen that we sort classes in

which all patterns are the same. Then we sort only classes in which some states

have different patterns.

Algorithm 5.3.1

Input: A complete DFA with set of states Q. all states reachable. set of input

symbols Y. transitions defined for all states and inputs. start state s. and the

partition of states B.

QOutput: A minimal DFA W’ equivalent to the DFA 1[.

Method:

1.

N

- W

Ot

Using the function CalculateNewName associate the name Ng, with every
block B;. So if p € B; then _\",} = Npg,. Let N be the last name calculared
by CalculateNewXName.
Let K :=L := 0. /* initially the lists i and L are empty */
Put all classes .\ |}, on the list to sort L.
For every class of states .\"(’5) from the list to sort L do
begin
sort patterns
Totally RenameBlock(StateStructures(\'{';)) Vst) /* rename states */.
UpdateListToSortKX(StateStructures. C IassStnlct(.\»'[‘f]}.I\')
end.
Let L := K and K := null.
If L # @ then repeat from step (1)
else terminate the algorithm and construct the minimal automaton by parti-

tioning the states according to their names.

In this algorithm the following structures and procedures are used:

Structure StateStruct(q)

/* The structure for a state q holds the following information:

1.

3.

The result of applying a single input symbol to the state p. This informarion
is contained in the transition list which is a list of pointers to appropriate state
structures. [t is assumed that £ = {q,.a..... a,, }. where input symbols are
ordered in arbitrary but fixed way.

The information about every predecessor state p. This information is con-
tained in the connection set which contains the pointers to the appropriate
state structures.

The pointer to the structure. CIassStmct'(.\'ﬁ)) which contains informartion
about the class .\ to which the state ¢ belongs at the given step of the

algorithm. */

transition list= (StateStruct™(ga,). StateStruct™(¢a,). StateStruct*(qa,))

connection set= { {StateStruct™(p).a) |p €Q.acSpa=q}

ClassStruct™{ .\'[’j,)

Structure ClassStruct(.\'}’f,)

/* The structure for a class .\'(’:T} holds the following information:

1.

2

Name of the class \{“} (used to calculate the pattern at step &).

Name of the class \";‘)“ (used to calculate the pattern at step & 4+ 1).

The information about all states belonging to the class -\’-(L.:)- This information
is contained in the set of states. The set of states contains the pointers to the
state structures of appropriate states.

The information about the current names of successor states of the states
belonging to the class .\-’{f, (If names of successors states are different for some
input symbol a;. that means that patterns are different and so the class \(‘,)

should be divided). It is assumed that ¥ = {a;.az..... @} where input

symbols are ordered in arbitrary but fixed way. */

-k
\'(t)

N[t /* new name of this class */

/* name of a class and so name of all states belonging to this class */

set of states = { StateStruct™(z) | z €.V} }

marking list = (mark(a;). mark(az). mark(a,))

Function CalculateNewName(Vias. Vprev)

/* Given the names Ny, and Vprev. this function calculates and returns a new name
N.cw. The name Ny, is the last name calculated using this function. The name
Nprev is the current name of the state/class for which the new name is to be calcu-
lated. If N and all other names currently used in the main program were calculared
using this function. all these names including N, are distinct. The function f
should have the inverse function g with the property that if f(Vase. Nprev) = Moo
then ¢(Nacw) = Nprev- */

begin

Noew 1= f last - - pre\)
CalculateNewName := N ...

end

Procedure TotallyRenameBlock(StateStructures(\'(':)). Nlase)

/* This procedure is given the sorted list of patterns of states encoded in the list of
state structures. These states have the same name \(,) The procedure renames all
states in such a way that whenever states have different patterns theyv get different
names. and whenever they have the same patterns they get the same names. It is
assumed that the last name returned by CalculateNewName is Nj,,,. */
begin
N := CalculateNewName(Njase. N) /* construct a new ClassStruct *

“hk+l . \T
A Py A

/

ol

for every / € {2.3.....|\(;)|} do
begin
if Py_ # P’ then
begin
N :=CalculateNewName(Nja. VS)
NMase =V
end

.\':"{'1 =Y\

end

end

52

/* construct a new ClassStruct */

Procedure UpdateListToSortIX(StateStructures. ClassStnlct(.\'(L;)). L)

/* Given the information about the class in which the states have been just re-

named this procedure updates the list to sort A'. If it detects that patterns of

states in some class .\'(‘;) hecome distinct (because of the renaming of states from

the block .\'(ﬁ.,). it puts this class at the list to sort i". StateStructures is a pointer

to the linked list containing information about all state structures and class struc-

tures (StateStruct and ClassStruct). ClassStruct(.\'(’f)) is a pointer to a structure

containing the information about the class which has been just renamed. */

for every StateStruct(¢) from the set of states in ClassStnmt(.\'(’;f))

/* Thus ¢ € .\'(':T). Assume g € .\"(‘,T[*/

begin

for every (StateStruct(p).a) from the connection set in StateStruct(q)

/* Assumep € \7.,. wherer =korr=k+1%/

-
ifA7, L

begin

if in StateStruct(.\)) mark(a)= N and N # N7 and ¢(.V) = g(.\

-k+1 ki)
()

e T w w———

put ,\'(:) in the list to sort A
else
mark(a) := ;\’(L}’)"l

end

end

In Algorithm 5.3.1 initially all patterns are sorted. but then we want to make sure
that at the next step we sort only the classes of states with distinct names and
so the classes which will be divided. One way to implement this is to introduce
two structures: the state structure and the class structure. They will be denoted
by StateStruct(q) and CIassStmct(.\"(’f-)). By StateStruct™(¢) denote the pointer ro
the state structure of ¢ and by ClassStnwt"(.\v'(’f)) denote the pointer to the class
structure of the class .\'(':f).

Notice that to the procedure TotallyRenameBlock we pass the list of state struc-
rures and to the procedure UpdateListToSortlx we pass the information about one
class structure. In both procedures we have to access information about state struc-
tures of the same states. But in the procedure TotallvRenameBlock this list of stare
structures should be in sorted order.

At step 1 of the algorithm. the list L corresponds to the list of the classes sorted
at step 1 of the third version of the minimization algorithm. Starting from the
step 2 we make sure that we do not sort classes which contain the same patterns.
At every step k of the algorithm we construct the new list L. By N we denote
the /th name of some state p. where £ > i. We should make sure that this name
contains information about the (¢ — 1)th name of the state p. Thus renaming of
states should be done in such a way that the new name of a state p. N'*. contains
an information about .\-';"‘. that means the previous name of p. The new name for

any class of states should be calculated using the function f which has the following

property: f calculates a new name and there exists an inverse function for f. which
can calculate the previous name of any state.

Every class structure contains the current name of a class and the marking set.
The name .\'(";.] and the marking set represent the pattern of every state belonging
to the class .\]’f) at step k of the algorithm. After renaming. in the procedure Up-
dateListToSortlk we are trying to update appropriate patterns. If patterns cannot
be updated uniquely. this means that patterns are distinct and the class should be

divided.

Example 5.3.1 Consider the automaton Mj; from Figure 5.1.1. We will show how
to apply the third version of the algorithm to this automaton. Only the first step
will be explained.

Suppose that after the initial partition. the classes .\'(II). .\?2). and .\?3) are given
the names 1. 2 and 3 and they are put on the list to sort L. After sorting the
patterns of the class .\}, the states in this class get the name 1.

Notice that in this example we do not follow the procedure TotallyrRenameBlock
which requires that the block of states gets a different name every time this pro-
cedure is called. But initially. when the classes of 0-indistinguishable states are
sorted. it can just verify that they are l-indistinguishable also and so there is not
need to change their names. At the next steps of the algorithm. the classes of
distinguishable states are sorted and so we should make sure that they all will ger
new names. Then the procedure UpdateListToSortK is called. Notice that only rhe
marking set in ClassStruct(.\(},) is updated by this procedure. as Ay is the only
class not contained in the list to sort L. Thus after execution of this procedure we

have the following class structures (notice that some elements in the marking sets

have not been calculated yet which we will denote by A).

ClassStruct(.\))

1 /* the previous name of this class */

1 /* the current name of this class */
set of states = {w}
marking list = (1.1)

ClassStruct(.\?z))

A /* no previous name for this class */

2 /* the current name of this class */

set of states = {4.B.C}
marking list = (. \)

ClassStruct(.\)

A /* no previous name for this class */

3 /* the current name of this class */
set of states = {X.}.Z}

marking hist = (. \)

Then the class .\7}, is sorted and it gets the name 2. After the execution of rhe

procedure UpdateListToSortIK. the marking list of ClassStruct(‘\Eﬂ) is updated and

the class structures look as follows:

ClassStruct(.\?1)

1 /* the previous name of this class */

1 /* the current name of this class */
set of states = {«}

marking list = (1.1)

ClassS truct(.\:';))
2 /* the previous name of this class */
2 /* the current name of this class */

set of states = {4. B.C}

marking list = (2.)
/* no previous name for this class */

ClassStruct(. \(3})
*
/* the current name of this class */

/\

3
set of states = {«}

marking list = (\.\)
Then we sort \?3) and we have to rename states. The state X will get the name 31
and the states ¥” and Z will get the name 32. At the same time two new classes are
created (\ 3 (2 and. \72 (1)) The states X. ¥". and Z have the following state structures:
StateStruct™*(Y’)

StateStruct(X)
transition list (StateStruct™(w

connection set { (StateStruct™(4). b) }

ClassStmct'(.\'é))

StateStruct(}’)
transition list (StateStruct(C'). StateStruct™(«))
connection set { (StateStruct™(B). b). (StateStruct*(X).5) }

ClassStruct'(.\.'a))

StateStruct(Z)
transition list (StateStruct™(B). StateStruct™(«))
connection set { (StateStruct™(C’). b) }

W e
=\g =V

ClassStruct (.\'a))
Consider the state X € \.;‘3) As (StateStruct™(4). b) is in the connection set of \
we set mark(b) =

and 4 is in the class .\'?2). in class structure of .\
has the following class structure

Thus now the class .\

W e — PP P Ty W

ClassStruct(.\ ?2])
2 /* the previous name of this class */
2 /* the current name of this class */
set of states = {w}

marking list = (2.31)

State Y} has two elements in the connection set. Consider StateStruct™(B.b). As
B & \},. in the class structure of .\"(?2, we should set mark(b)=V},, = N}, Buw
already we have mark(b)=N3,. Note that N3, # N7, (31 # 32). but at step 1
of the algorithm states belonging to these classes have the same name (namely 3).

Thus put .\;.12) on the list to sort A. Then we have to consider (StateStruct™(X). b).

-}

Notice that X belongs to .\?"3} now (from .\/?3, the classes .\.»?j;) and .\ (1) vere createcl).

Thus we update class structure of .\'33):

ClassStruct(.\-'é))
3 /* the previous name of this class */
31 /* the current name of this class */
set of states = { X}
marking list = (A.32)
Considering the state Z and (StateStruct(C').b) from the connection set we see that
C € \}, which is already on the list to sort. Thus at step 2 of the algorithm we

have only the class .\'3, on the list to sort L.

Theorem 5.3.1 The runtime of Algorithm 5.2.1 is O(n?).

Proof: By Theorem 3.2.1 the upper bound for this algorithm is O(n?) (Algo-
rithm 35.3.1 makes at most as manyv comparisons as Algorithm 35.2.1 if constants

are ignored).

e e s

To show that ©(n?) is the actual time complexity for this algorithm consider the
automaton My, defined in Section 5.2. An example of such automaton for n = 6 is
shown in Figure 5.2.1. To minimize this automaton. or rather to use the algorithm
to verify that the automaton is minimal. only initially the whole list of patterns
is sorted and then n — 3 different classes have to be sorted by patterns (compare
Table 5.2.1 and Table 5.2.2). where n is the number of states. Notice that. even when
only classes which have to be sorted are sorted. all states in these classes should be
checked so at each step of the algorithm we need at least n. n —2. n —3. n —4. ..

comparisons. This means that the algorithm has time complexity O(n?).

The best case for this algorithm is the same as for the previous versions of the
minimization algorithm. It is the case when the minimal automaton has only 2
states.

This version of the minimization algorithm requires that the names of states have
a certain property. It is not enough to ensure that a new name introduced during the
algorithm is distinct from all other names currently used. This name should contain
the information about the previous name of a class/state. One way to accomplish
that. is to find a function f which can calculate such a name. Another way is to use
the element from the structure ClassStruct. representing the previous name of rhis
structure (but then the marking list should have two fields for every every input
symbol). Such an element is also needed to keep the information about the current
patterns for all states (so during renaming in the procedure TotallyRenameBlock
the patterns are not changed). Thus the number of distinct names needed for this

version of the minimization algorithm is at most n.

CHAPTER 6

DIFFERENCE BETWEEN THE ALGORITHMIS

Wood's algorithm [7] can be improved by making better use of transitivity. Given
an automaton /. for some states p. ¢ and = of this automaton. suppose that at step
k of the algorithm we find out by checking the pairs (p.¢) and {g. =). that the stares
in these pairs are k-indistinguishable. By transitivity. we can conclude that the
states (p. =) are also A-indistinguishable. So there is no need to check the pair (p. =)
separately. One method that efficiently uses the notion of transitivity is sorting.

Sorting procedures can also more efficiently distinguish states. Assume that at
step k of the algorithm. unique names are associated with states so that sorting
can be performed. Suppose that for some states p.q and =. the states in the pair
(p.q) and the states in the pair (g, z) are k-distinguishable and as a result of sorting
we obtain the list (p.g.z). This allows us to conclude that the states from the
pair {p. =) are also k-distinguishable. This improvement applies not only to Wood's
algorithm but also to Hopcroft and Ullman's algorithm [4].

The new algorithms presented in this thesis are based on sorting. All versions of
the new algorithm are similar to Wood's algorithm as they have the same partition of
states at every step (although the second version is the closest to Wood's algorithm).
With some modifications. this algorithm can be implemented similarly to Hopcroft

and Ullman's algorithm (this is the third version). Also at the same time all versions

39

of the new algorithm are totally different from the two existing algorithms which
are based on the comparisons between pairs of states. The algorithms presented in
this thesis are not based on the comparisons between pairs of states but on sorting
them. We claim that it is more efficient and we will try to explain why.

The second version of the algorithm. similarly to Wood’s algorithm. which has
time complexity O(n®). does subsequent refinement of classes. At every step the
partition given by Wood's algorithm is the same. and at every step both algorithmys
are checking the same states. At the same time the time complexity is better.
as it is only O(n?). The reason for that is that. to get the next refinement. the
states are sorted while in Wood's algorithm the states are compared pairwise giving
equivalence classes. So in one step the maximum number of comparisons for the
new algorithm is nlogn (and if this maximum is really reached that means thart
the process of minimization is finished). and in Wood's algorithm it is always n?
independently of the automaton.

[t is easy to show that the second version of the algorithm is asymprotically
faster than Wood's algorithm. because of the difference in time complexity. It is
not the case with the algorithm due to Hopcroft and Ullman. Time complexity is
the same for both algorithms.

To explain why sorting in most cases should be better for the algorithm due
to Hopcroft and Ullman. consider the example where at some point you have rhat
the following states {1.2.3.4.3.6.7.8} are not distinguished pairwise. and at some
point during the algorithm we find out that after the input symbol ¢ we distinguish
states {la.2a.3a.1a} and {3a.6a.7a.8a}. So according to the algorithm due to
Hopcroft and Ullman we should distinguish the pairs (1.5). (1.6). (1.7). (1.8).
(2.5).(2.6). (2.7). (2.8).(3.5). (3,6). (3.7). {3.8). (£.5). (4.6). (4.7). and (+.3) so
we need 16 steps. If we have more states. by dividing them into half we will need

n/2+n/2 = n?/1 steps. But if we just rename states. we can sort them (n of them)

GO

in time n logn which is asymptotically better.

There is only one case when the algorithm due to Hopcroft and Ullman can be
faster doing the next refinement than algorithms using sorting methods. This is
the case when we need to distinguish states {1} and {2.3.4.5.6.7.8} (so only one
element in the new equivalence class). In that case the Hopcroft and Uliman's al-
gorithm needs n — 1 comparisons while. for example mergesort needs approximately
n + log n comparisons.

Notice also that the initial division of states. when we are doing that pair by
pair. in Wood's and Hopcroft and Ullman's algorithms takes n? steps but when
we just sort states (patterns associated with states) we need only n of them as
explained in Section 5. Whenever this initial sorting procedure is the last sorting
procedure to call we have the best case for the new algorithm. So the best case
for this algorithm has time complexity O(n) versus O(n?) for Wood’s and Hopcroft
and Ullman’s algorithms.

The length of any name used in the new versions of the minimization algorithm
can he at most log n. where n is the number of states. It can be argued that the time
for each comparison of any two names should be considered when time complexity
is calculated. But if we do that then also in Hopcroft and Ullman's algorithm the

time required to calculate the address in the matrix should be considered.

61

CHAPTER 7

CONCLUDING REMARKS

7.1. Summary of Results

In this thesis the new algorithm for the minimization of a DFA is presented. The
three versions of this algorithm are discussed and compared to the existing algo-
rithms for the minimization of a DFA. It is explained why the method used in the
new versions of the minimization algorithm should be more efficient than the merh-
ods used in Wood's algorithm and in the algorithm due to Hopcroft and Ullman.
The main results shown in this thesis are

e A new method which can be used in the minimization of a DFA.

e The new algorithm can be used to minimize the automaton with the partion

of states into more than two classes of states directly.
e [t is explained which kind of existing algorithms can be improved by using

the sorting method presented in this thesis.

[TV}
.

REFERENCES

. J. A. Brzozowski. H. Jirgensen: A model for Sequential Machine Testing and
Diagnosis. Journal of Electronic Testing: Theory and Applications 3 (1992).
219-234.

F.Gésceg. [.Peak: Algebraic Theory of Automata. Akadémial Niado. Budapest.
1987.

. J. E. Hopcroft: An nlogn Algorithm for Minimizing the States in a Finire Au-
tomaton. in: Z. Kohavi. ed.. The Theory of Machines and Compurations. Aca-
demic Press. New York. 1971. 189-196.

. J. E. Hopcroft. J. D. Ullman: Introduction to Automata Theory. Languages and

Computations. Addison-Wesley, New Jersey . March 1979.

5. P. AL B. Vitanyi. L. Meertens. Big Omega Versus the Wild Functions. SIGACT

-

News. Volume 16. number 4. 1985. 56-59.

. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms. Eind-
hoven University of Technology, The Netherlands. 1995.

. D. Wood:. Theory of Computation. John Wiley & Sons. New York. 1987.

63

