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In this thesis we introcLuce a nem iclea. which can be used in the process of min- 

imization of a deterministic finite automaton. Xamely. nie associate names nith 

states of an aiitomaton and we sort them. W e  gix-e a new algorithm. its correctness 

proof. ancl a proof of its esecution t h e  bound. This a lgor i th  has time comples- 

ity 0(n210gn). n-here n is the number of states. In the thesis. n-e explain lion- r o  

apply the nen* algorit hm to an a r b i t r q  parrition of states. not only to t ke parti- 

tion into h a 1  and nonfinal states. We present also two improvecl versions of the 

nen- algorithm ( the second version and the t hird version ). The seconcl version of 

tliis algorithm which has time complexity 8(n2) can be considered as a clirecr ini- 

provernent of Woocl's algorithm [?]. Woocl's algorithm has time cornplexit'- 0( n" 1. 

This dgonthm checks whether pairs of states are distinguishable. It is improvecl 

hy niaking better use of transitivity. Similarl- some other algorithms which check 

if pairs of states are clistinguishable can be improved using sorting procedures. The 

chircl version of the new algorithm which has time complesity O( n2) is comparecl to 

the algorithm due to Hopcroft and U h a n  [4 which has the same time complesity. 
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CHAPTEEL 1 

IXTRODCCTIOS 

The problem of minimization of a Deterministic Finite Automaton ( DFA ) is consicl- 

ered a fimdamental cornputhg science problem. and has been extensively stticliecl. 

-1s this problem mas sti~clied. ntmeroiis algonthms m-ere clevelopecl over the years. 

The asyrnptotica- fast est known algorit hm for minimization is Hopcroft ' s  algo- 

rit h m  [3]. Its rime complesit- is O( n log n ). -4 complete list of currently a~ii lahlr  

algoritlinis for minimization can be foimcl in [6]. Hopcroft ' s  algorit hm. nhile asymp- 

roticaLlj- fastest. is veq- complicated. In practice. less efficient. btir less conipks. 

algorithms are usecl - like Wood's algorithm [ i l  - ancl an algorithm chie to Hopcroft 

and rIlman (41. 

I T è  introclrice a ne- idea. c m  be used in minimization. Samely n-e asso- 

ciate names nith states of an automaton and we sort them. This algorithm can he 

consiclered as a clirect improvement of Ctood's algorithm [7]. I'e will explain hon- ro 

a p p -  this algonthm to any arbi t rq-  partition of states (not only to the partition 

into final ancl nonfinal states). The thesis is stnict~ired in the folloning m-: 

The senerd clefinitions which deal n5th arbitrary partitions of states of an 

aiitomaton are introducecl. 

The algo~thm due to Wood and the algonthm diie to Hopcroft and Cllnian 

are es7>lainecl ancl esamples for hoth al~orithnis are prwcnted. 



The general version of a nem algorithm m-hich uses sorting is introcl~irecl and 

a proof of the correctness of the algonthm is presented. Then tn-O special ver- 

sions of the algorit hm are explainecl. For the general version of the dgon t hm 

an upper boiuicl on the run t h e  is calculated. For the seconcl and the cliircl 

versions of the algorithm the least upper bound on the nin time is calcidatecl. 

It is esplained when sorting is an improvement. The second version of the al- 

gorithm is compareci to Woocl's algorithm. The third version of the a l j o r i r h  

is comparecl to the algorithm due to Hopcroft ancl L1Lman. 

In t his thesis -ire present neK algonthms for minimization. Specificd- n-e acliiei-r 

t h i  following: 

0 Show hon-sorting of states can be used to minimize an automaton. 

0 Present three versions of a new algorithm. 

0 Explain when sorting of st ates can be more efficient by cornparine; tn-O versions 

of the nen- algorit hm to two hown algorithms. 

a Present a n e n  algorithm in a n7ay that can be used to solve clirectly proh- 

lems. where states are partitioned into more than two blocks ( Iike problenis 

presented in [l] ). 



BASIC '3'OTIOYS 

Ln rhis section we &-e the basic definîtions concerning automata ancl establish the 

relevant notation. Instead of the usual definition of an automaton as an acceptor n-P 

define an automaton as a diagnoser in the sense of [l]. As an acceptor an automaton 

has tn-o types of states. final and nonfinal. As a clïagnoser. it m a -  have more tlieii 

these tn-O types of states. -4ccordingb-. in a diagmoser input n-ords are classified hy 

the state reacheci. Specifically in an acceptor inpiit worcls are clwsifiecl as acceptecl 

or not acceptecl. Diagnosers model. for instance. certain aspects of the procrss of 

circuit testing. 

1.è only ,ive the clefinitions absoluteiy neeclecl. For further notions ancl proprr- 

ries of automata n-e refer to p?]. 

Definition 2.1 Let S be a set. A partition II of S is a set of pairnise clisjoirir 

siibsets of S. the union of which is S. 

For technical reasons we allow a partition to contain the emptr set as an elenlent. 

Sometimes n-e need to exclude it explicitly. Thus if II is a partition of S. then rhe 

partition fi is clefined as follows: 



Definition 2.2 -4 determinhtic finite automaton (DFA) SI is s p e d e d  by a <pin- 

tuple JI = (Q. 5.6.s.B) where 

Q is the alphabet of state spnbols: 

5 is the alphabet of input stmbols: 

ù' : Q x S -+ Q is the t~ansition funetion: 

-5 E Q is the start state: 

B = ( Bi. B-. . . . . Br ) is a partition of the states of the automaton. 

-1s iisual. T e  estencl the transition function 6 to a function of Q x Y into Q b ~ -  

for a i l  q E Q ancl tc E Y. where X denotes the emptr word. Insteacl of b( q. ii* ) n-e- 

m i t e  qtr.  The partition of states of an automaton allows one to classifi- the inpiir 

n-orcls. I n  input nord tr E Sn is of type Bi if -5 IL- E Bi. Let g~ be the ecl~~idenrr 

relation on Q clefincd by B. For q E Q we mite [qjs to denote the ge-class of q .  

I h e n  IBl = 2. a DFA in the sense of Definition 2.2 is the same as a DFA in 

the usual sense njth. for example, BI the set of &al states and B2 = Q\B,. The 

zeneral definition is illustratecl b>- an example belom. 
.J 

Definition 2.3 Let JI = (Q. E. 6. -S. B) be a DFA. The lanquage classification 7 11 

clefinecl b -  -11 is the mapping 7-11 : B + -t2" such that 

If -W. .3 ti- E Bi for some Bi E B. ri-e s a y  that c and u- are equivalen t ancl 11-e \mite 

-JI 
t a =  I I ' .  



Fi,gure 2.1. Deterministic finite automaton -Clo 

Defuiition -1.3 don-s us to concliicle that the follonring statement is true: if [.+ t r ]  ,EJ = 

[..ris then r .  ir E i I r ( B i )  for some Bi E B. that is. r Sr tr. 

Whenever w e  have a partition into tn-O sets of final and nonfinal states. 11-e can 

rlassifj- the input words into the worcls accepted ancl not acceptecl b -  the automaton. 

.in esample of the language classification for a different partition is presenrecl in 

the folloning esample: 

Example 2.1 Consider the automaton fiom Figure 2.1. Suppose that n-t. haw 

the following partition of the states in this automaton: Bi = {S}. B2 = (1-1. 

BJ = {L'). ancl B4 = Z}. This partition dows  us to classi-  input worcls inro 

four sets: {A} corresponcling to the block Bi. {O} u Y00 corresponcling to the hlork 

B2- {l) u 5'11 corresponcLng to the block &. anci 5-01 u Y 1 0  correspondin? r o  



the hlock Ba. 

Lemma 2.1 Let JI = (Q. Y. 6.5.8) be a DFA and IB( = r .  Then the fanzilg 

fi" - - {?.dBi) 1 15 5 r-? .dBi)  #O} 

is a partition of Y. 

ProoE To prow that fi-" is a partition. n-e have to prove that for e w q -  ii- E T= 

there esists esactly one Bi E B such that tr E ?-,[(Bi). As the automaton Jf i.; 

complete and cleterministic. for eveq- u. E Y there exists esactly one Bi E B siicli 

chat ..;w € B,. Thus tî? E T - \ ~ ( B ~ ) .  

Definitiou 2.4 Let .If = (Q.S.8.s.B) and JIf = (Qf .  5.b'-.LBfj be DFAs. Then 

JI and JI' are equiwknt if fii" = fi"". 

Csing the notation fiom Definition 2.3 Fe can state that J I  ancl -11' are equivalenr 

if the folloning statement is tnie: 

for every r. ir E Y' tr d' c if and only if tr ="" r .  

Defiuition 2.5 Let -11 = ( Q. X. 5. S. B ) be a DFA. We clefine the automaton .v in 

the follon-ïng w - :  11 = ( (O. S. b . .S. B ) n-here 

Q = { q  1 q = .sir for some tr E Y}. 

B = {Bi I 3 q  E Q such that q E Bi}. rvhere B; = BinQ.  

and b : Q x 5 i Q. 

11-P cnn state that B = {Bi 1 7.ir(Bi # 0). Thus B contains hlocks with the stares 

reachable from the initial state s- Eveq- Bi E B contains at least one rerichal>la 

sate.  B \ B contains either empty hlocks or bloclis n-hich have onl3- statps tliar 



rannot be reachecl from the initial state. Sotice that ;-\[(B,) for B, E B \ B is the 

enipty set. Thus the automaton -if consists only £rom reachable states. 

Lemma 2.2 Let W = ( Q . ~ . & J .  B )  be a DFA. Then -II and are equiualent and 

IQI 2 IQI- 

Proof: Assume that c &' m for some u. w E Y. Then r .  u. E y J I ( B i )  for some 

Bi E B. -4s yJr(Bi) # II we have Bi E B. T ~ U S  L? df W. 

Let &' uv for sorne r .  u. E Sa. Then r. u? E S.II(B;) for some B, E B. As B 2 B 

n-e have B, E B. Thiis r n"' W. If JI has imeachable states then I Q I  > IQI. 

Othernise IQ I  = [QI. 

Thus an automaton JI n5t.h unreachable states is ecluident to the stiha~ttomatoo 

of J I  n-hich contains all states of JI rscept unreachable states. The atnomaron 31 

has at most the same number of states tas -11- Whenever we nZhnt to decide the 

ecpidence of two automata JI and -.P. m-e can jiist decide the cc~iüdence of J I  

and JI'. 

Definition 2.6 Let SI = (Q.S.6.z.B) be a DFA. -1 congrtience - on Jf is a11 

eq~uvalence relation on Q such t hat Vp. q' E Q. Vu E 5' 

1. if q - q' then qa - q'a 
2 if (I - q' ancl q E [q1ls t hen qa E [q'a] 

The second conclition fiom Definition 2.6 can be rewritten in the folloning way: if 

q - qt and [q]s = [qtIs then [ p l s  = [qlale. The first condition is ecpkdent to the 

folloning staternent: if q - q' then qm - q'w for eveq- tr E S*. The correctness of 

this statement can be provecl using induction. 

Definition 2.7 Let II = (Q. 5.6. .S. B )  be a DFA. Two states p and q of -11 are 

iaid ro l x  eqaivalent if. for every tr E X'. [ q ~ ] ~  = né n-rite p q in 



this case. The srates p and q are distzngaàuhable if there esisrs ir E Y such rhar 

# [qwIs : then the word w dUtingvWhes p fiom q. 

Lemrna 2.3 The ~ela t ion  i3 an automaton congruence o n  JI and contained in 

91. Moreo.ver. if - W any automaton congruence on 3.I u>hich i s  contained in g s  

then - C =_ 

Proofr To pro1-e that the relation G is an automaton congruence we have r o  shc~n- 

first tkar n-henever p E q then pu = qü for d u E Z. Let q - p  E Q.u E T. BJ- 

Definirion 3.1 

Thus n-e have to prove that for ail ir E Y. [pau*lB = As p q.  kîc-'lB = 

[qti-'] for d tr' E Y. So &O for every u. E 5' such thar ti*' = ou- n-e ger 

[pi ii.] = [qa 1 4  as recpired. Xow suppose that p = q ancl p E [q] T hen pci qri 

ancl so [pal = [qa] by the definition of E- 

11. non- prove that = is contained in 2s. By the definition. if p E q.  then = 

[ q t ~ - ] ~  for aU a* E Y. Let ti* = A. Thus [ p l B  = [qlB. 

To pro\-e that - E iet p. q E Q be States for n-hich p - q. -4s -- is containecl in GB 

n-e have b] = [q] . As t his is a congruence relation pn - q« for every ci E and 

s o  [pIB = [pl - By incliiction we conclude that for eveq tr E 5- [pu-] = [qt i*j  

and so p q .  

Definition 2.8 Let 11 = (Q. S.6.s. B) and 11' = (Qt.S.b'..s'. B') be DFAs. Tlien 

n-e sa' that the system <P = ( K Q . ~ @ )  consisting of the mapping h-+ : Q - Qt n-lierr 

A-+(.+) = .sr. and p4 : B + Br is a homomorphi,rm of J I  into JI' if for arhitrary 

p E Q ancl u. E Y. 



It is obrious that the homomorphic image of JJ is a subatitomaton of JI'. If h-.p 

ancl {rs are onto mappings then the system <P is callecl surjective ancl -II' is calletl 

the homomorphic image of -11. If aclditionally and are one-to-one mappings 

then the system O is an isomorphism and the automata -11 mil -11' are said to he 

isomorphic. 

Definition 2.9 Let -11 = ((Q. 5.6.5. B) be a DFA and - be a congnlence on -11 

containecl in mcl B = {BI .  B?. . . . .Br}. We clefine the factor aiiromaton W!_ = 

( Q / % .  X.0/4.- .5,. BI, ) with respect to that congruence nihere: 

~ - = { P E Q  I P - ~ I  

Bi/, = (q* 1 'I E Bi} 

B / ,  = ( B I / , .  B2/,- - - Br /+}  

b / & - . c ~ )  = (qc& 

Xotice that as - is containecl in g~ we have that B/, consists of disjoint blocks. 

lT%enever Bi is the empty set. the block Bi/, is d s o  the empty set. Obviously 

1 B 1 = 1 BI- 1. AS fat as the behavior of JI/, is concernecl. n-e do not treat p, as a 

set. but as a state. Hence we mite p,a to denote 6/,(p,. tr ). This p,cr = ( p u ) ,  

n-hereas in the form of sets one cotdcl O&- st ate that p,a C ( pa ), . 

Lemma 2.4 Let .II = (Q.X.6.s, B) be a DFA and -- be a congnrence on JI con- 

tained in os. Let JI/, = (QI,. 5.6/,.s,. BI,) be the factor a.~rtomaton. Thrn for 



al1 u* E S' and p E Q .we have p,<cT = (pu),. 

Proofr Br Definition 2.9 for all a E 5 we have that p,a = (pu), .  Thriç assume 

t hat p, u*' = ( pm' ), for some w' E C'. Shen p, wfn = ( pw' ),a and b -  Defxnition 2.9 

(pr ' ) ,a  =   pu!'^),. that is. p,wta = (pufa) , .  

Theorem 2.1 Let JI = (Q. S. 6. S. B )  be a DFA and - be a congruence o n  .II 

on ta ined  in 9 ~ .  Let -XI/, = ( Q I , .  P .  &/_. .s_. B / _  ) be the factor a.irtornaton. Then 

<p_ = ( s _ . p _ )  .with ~ ( q )  = (I, and p , ( B i )  = Bi/,. for q E Q and Bi E B. i.~ a 

hom.omorphism of JI ont0 JI/,. 

Proof: To prove that the map a, is a homomorphism we have to shon- t h .  for 

a r b i t r -  p E Q and cc* f Y-. n,(pw) = K,(P)u'  and h-,(pu-) E p - ( [ p ~ ] ~ ) .  Ler 

p E Q C ~ c I  11- E 5'. As for eveq- q E Q we have R , ( P L P )  = thus hy L e m a  2.4 

~ ~ ( p w )  = ( p w ) -  = ( p - ) ~  = R,(P)w. .Us0 p S ( k w l s )  = p, (Bi )  = B i / ,  n-here 

pu* E Bi. -1s ~ ( p ~ r )  = ( p w ) ,  ancl (pu*),  E Bi/, n-e have ~ , ( p t r  ) E Bi/, . % prow 

that the map Q9, is onto. let (I, E Q/,. Shen. for q E Q. ~ ( ( 1 )  = q*. 

Sotice that bu Lemma 2.3. Wven automata -11. M .  and -IL/E. the follon-irig 

relation is aln-ays tnie: IQ I  2 IQ, 1 2 [QJ. 

Definition 2.10 Let ..II = (Q.5.b.s. B )  and Ji' = (Qt.Z.6;'.s'. Bf) he DFAs. -4 

block re-assignment is a funcfion i : B -t B' satisfving 

1. for ail u. E Y .  < ( [ . s w ] ~ )  = [ ~ ' c + -  

2. the restriction of < to B. < : B + B'. is injective. 

Theorem 2.2 Let -11 = (Q. X. b. S.  B )  and -'If = (Q'. 5.5'. a'. B') be DFAr. AI and 

11' a n  eq-uiualent if and onzy if theie e x k t 3  a block ~e-ass%gnment < : B - Bf. 
Proof: Suppose that JI ancl JI' are equhalent. Define < in the folloning n-a'-: 



n-here B, is arbitraq- but Eued- 

As eveq- element in B can be written as [su:lB for some uv E Y. we see that < i i  

ciefinecl for et-en- element in the domain. To prove t hat i is well defineci suppose t har 

thar for some B, = [ J U ] ~  and B; = [ s < L ~ ] ~ .  we have [s r ]s  = [ s ~ r ] ~ .  Thus r G-" W .  

As .II anci .Ir ecphdent me have r G"" cc. and so [ s ' L * ] ~ ~  = [ d l i ~ * ] ~ I  = <(B, ). TL5 

proves that the map i is weU definecl. 

By the cIefïnÏtion of i. the first condition in Definition 2.10. that i ( [ . ~ w ] ~ )  = [.Al$. 

is satisfied- 

IJ-e ha\-e to pro\-e chat the image of < is a siibset of Br. Let [.w] E B. Thrn 

<( [.-wIB ) = [ . ~ ' i r ] ~ '  bu the definition. As [ s ' ~ ] ~ t  E B' we have provecl that the irnasr 

of < is a siibset of B'. 

Io prow t har the map < is one-tmone let ?( Bi ) = <( B, ) n-hcre Bi. B, E B. 

 ka^ to prove that Bi = B,. The image of < is in B .  Thus <(Bi = [.,'ti*lBt and 

CI B, ) = [;irrlst for some r .  ir E Y. Thus a* E-"' r .  As M and .Ur are ecpiml~nr 

-.\I 
i l* = 1.. Thiis [s irjs = [s r Is .  This proves that < is one-to-one. 

Xon- suppose that chere esists with the recli&ecl properties. I e  have to prow t hnr 

Jf and .II' are eqiudent . Let io G" r for some ir. r E Y. Thus [r t1*le = [.- r ]  - 

But tlien (( [zcrjs ) = i ( [ s i ? j s )  as i is well defined and so [sfti-jBt = [ ~ ' i . ] ~ , -  Thit'; 

' W .  Let cc o"" c .  Then [ ~ ' < l ? ] ~ t  = [.$'r]Bt. As < is one-to-one [ . ~ l ( * ] ~  = [c i ls .  11' = 

Thus ir d' r .  

Coroilary 2.1 Let II = (Q.Z.6.s.B) and -11' = ( Q ' . X 6 r . s r . B ' )  be DFA.s. Let 

< : B 7 B' be a bloeh ~e-ausignment.  Then the map C zs onto. 

Proof: Ler [ a r i i * I s .  E Br. By the definition of 1. for E B n-P have i( [ . - r l * j a  , = 



[ . 5 ' ~ ] ~ 1  ( sir is defined as the automaton -11 is complete). This proves that rhe map 

Let 31 = (Q.X.6.s. B )  and -Ut = (Q'.Z.6'.sf. B') be DFAs. If there esists a block 

re-assignment C. we sa)- that -11 and &Ift are i -eq t~ iva len t .  

Definition 2.1 1 Let -11 = ( Q. P. 5. S. B ) and -\f' = ( Q'. S. 6'. .sr. Br)  be C-ecluivalenr 

DFAs for some block re-assignment < : B -F Br. Two reachable states p E Q and 

E Q' are said to be c-eqaiualent if for evev ir E 1' Te ha\-e <( [pirjs ) = [ p ' ~ ]  

Il-P wïte  p & p' in tliis case. 

Tn-O s t ares p and q are ecliü~ïdent if. applying an>- input word ir . the residt ing st a tes 

l~elong to the same block Bi. \Thenever we consicler tir0 <-equivalent automata 11 

nncl 11'. tno states p E Q and p E Q' are considered to be ecpiivalent i t  n-henewr 

a state pli* is in a block Bi. then the state p'ir is in the block <(Bi). 

-4s the map < is one-to-one and onto. two automata withoiit unreachable stares 

are ecpkdent if and O -  if they are <-ecluivalent or i-'-equident . Similady. if 

tn-o reachable states are <-ecpi\dent. the:- are also <-L-equivdent. 

Lemma 2.5 Let  -11 = (Q. S .  6. S. B). and -'If = (Q'. 5.6'. sr. Bf ) Le DF"4s   hi ch are 

i - equ iva l en t  f o r  some block i e - a a i g n m e n t  i : B -i Br. For reachable s tates  p E Q 

and p'. q' E Q'. if p S p' and p S q' t h e n  pr G qf. 

Lemma 2.6 Let  JI = (Q.Z.6.s.B). and JI' = (Q'.S.D".af. Br)  be i -eqai-valent  

DF-4s. For ieachabze d a t e s  p. q E Q and q' E Q'. if p q a n d  q zC q' then p E~ q'. 



Lemma 2.7 Let 31 = (Q.S.6.s .  B). and .\If = (Q'. 5.8'.sf. Br)  be DFAs witholrt 

anreachable &tes which are i-eqriualent. Then for every p E Q there e x i d  p' E Q' 

J-uch that p EC p'. Similady for every p' E Q' there ezivts p E Q ssch that p d p'. 

Proof: Let p E Q. -1s ewq- state in -11 is reachable there exists tr E T' siich thar 

p = JU*. Bu the definition of i vre have i ( [$wls)  = [ $ ' w ] ~ I .  Let p' = ;iftr. -11~0 b -  

the definition of < we have that. for e v e -  ir' E 5'. i( [.sti?trfIs ) = [.y'ii. tr']Bp. Thiis 

for eveq- tr ' E Y' w e  have i( [purl ) = [p'w'] and so p =S pl. 

Let p' E QI- -4s eveq- state in Mt is reachable there esists w E Z= sticli thar 

p' = .*'tr. Totice that p' E BI for some BI E B'. -4s the fimction < is onto. tlierr 

esists p = -5 ir E Q siich t hat <( ) = [S'U.] .Us0 b -  the definition of < n-e haw 

tliat. for eveq- tr' E Y. <([.~trw']~) = [s'wU"lBr. Thus for e w r -  tr' E Y n-e have 

<( [Ptrrls ) = [plal and so p =c p'. 

Definition 2.12 Let JI = (Q. 5. b. a. B) be a DF-1. The automaton JI is niiuinial 

if for a l l  aiitomata -11' = ( Q'. Y. 5'. S.  B' ) ecluivalent to -11. IQI 5 IQ'I. 

The h o n n  algorithms for minimization of a DFA are iisuall>- explainecl using r h  

partition of states into the two sets offinal and nonfinal states. so B = (F .  Q\F). For 

the partition into h a 1  and nonfinal states tn-O automata are ecpkalent if and onl-  

if they accept the same language. The minimal automaton -\If constnicted frorii 

the automaton JI  shodd accept the same langage as J I  and have the mininial 

ntuiiber of s t at es. 

Thus one should be carefiil applying the above definitionc and theormis ro a 



~pecific esample. It can be the case that only one rnapping is permitteci and $0 

rhe clennitions of the ecluidence should be modifiecl. For esample $\-en automara 

-11 = (Q.P.6.s. F) and M' = (Q' ,E ,br .b .  Fr). where F and F' are the sets of final 

States. the O&- permitted map is p where p(F)  = p ( F t )  ancl p(Q \ F) = Q' \ P. 

Hoa-ever, as far as rninimization is concernecl, this restriction is not relemnt: if L 

is the language accepted by .\J then the minimal acceptors for L and SM \ L <are 

isomorpliic. 

Theorem 2.3 Let  JI = (Q. P. 6. S. B). and -11' = (Q'. 5.6'- sr.  BI) be DF-4.4 with 

B = B and B' = B' ( t h a s  there are no unreachab[e stutes and  there am n o  e m p f y  

b l o c h ) .  If SI and SP are eqiiiualent then there is a RFA JI'' and  t h e m  are .weccti,tw 

homo~rnorphz.~rna O and W .  sach fhat 0 : -11 - JI" and Q' : JT -+ Mt'. 

Proot- Let -11' = -If/= and 8 = O. as definecl in Theorem 2.1. It n-as prowtl 

in Theorexn 2.1 that 0, : 31 - -If//, is a surjective homornorphism. Sotice rhar. 

as JI ancl -11' are ec~uident. thev are C-ecluident for some block re-assi~nnienr 

i : B - Br. ;Usa notice that i = <. As B = B and B' = B' we ha\-e C = (. 

Define 9' : -Il' - JI/, in the following way: 

KI( q' ) = q~ wwhere q' aC q 

p f ( W  = A m ) )  

né have to prove that Q' a surjective homomorphism. 

1. First prove that a' is a rnapping. 

Let q' E Q'. As -JI and .LIr are equident. br Lemma 3.5 rhere esists (1 E Q 

such that q' S q .  Thus ~ ' ( q ' )  = q=. Let BI E Br. -1s < is clefineci on irs 

clomain t here e'iisrs B, E B such that <( Bi) = B,. Thus as p is clefineci on irs 

clomain then p' is also. 

Suppose q' a< q and q' S p. By Lemma 2.5 p r q .  Thus p, = qi. Hmcp h-' 

is n-dl defined. 



This proves that O' is vüeU defhed. 

2. I é  have to prove trhat 9' is a honiomorphism. 

llë first pro\-e chat iir(p'to) = tc'(p')w for every p' E Qr and ir E 5'. BJ- 

clefinition d ( p f  ~ L T )  = q=_ where p'zr ci p.  By Lemma 3.7 there esists p E Q 

such that p' & p. By the clefinition of p'ir zC pw. By Lemma '2.3 pu- q 

- and so (I-- = ( ytr ),. Finallu. bu Lemma 2.4 (pi& - p, tr. = K'( p' ) r .  

l é  have to prove &O that d ( p f  U- ) E pl( ~ L L ' ] ~ ,  ) for eveq- p' f Q' anc l  ir f Tg. 

Br Lemma 2.7 there eiuists q E Q siich that p' a< q. B5- the clefinition of 

E~ mye have C( [p'trls1 = [qtrjs Thus p ( i ( w t ~ * ] ~ # )  = p( [qirls ) = Bi/. n-here 

( q t ~ *  )= E Bi/=- 

3. To pro\-e that the map 0' is onto let ql E QIi. By Lemma 2.7 there esisrs 

q' E Q' such that qf zC q. Thus k ( q f )  = q,  As 11 and i are onto. then the 

map p' is also onto. 

Coroilary 2.2 For eaery DFA JI = ( Q. 5.6. S. B ) containing onlg reachable .dater 

there t* a minimal DFA JIr  = (Q'. S .  b'.sf. Br) equivalent to  JI .  urhich is unique ~p 

t n  ùomorphzsm. ~ ~ o T € ? o W T  31' W isonzorphic ewzth JI / , .  

Proof: First n-e dl prove that the automaton -1- is minimal. By conrracliction 

assume that t here esists an automaton JI'' such that -11" and .\lz are ecliiirdent and 

Q < Q As the automata .U" and -1- are equident the>- are <-eqiii\-aient 

for some i : BIz - B". By Lemma 2.7 for eveq* z" E Q there esists 2. Q 

st~ch that z" rc r= - and for ever-y - E Q there exists a corresponcling z" E Q". -4s 

IQ"I < IQ/,I there esist distinct states p,. qE E Q/a and a state p" E Q' such rhat 

pi =' p" and q= d p". But then by Lemma 3.5 we have qq, r p,  ancl so n-e shoiild 

have p, = qz a contradiction. 

To pro\-e that the minimal automaton is unique up to isomorphism suppose that n-P 

have a minimal automaron JI' # - 1  m-hich is equident to -11. Consider the niiilw 



@ and <Pr definecl in Theorem 2.3. The map O : JIE - JIz is the identiry map. 

By Theorem 2.3 the rnap @ : -11' 4 1- is onto. -1s the cardinality of the minimal 

aiiromata is the same ( [QI  = IQ'I) mie can conclude that the rnap @' O 8 = Qf is an 

isoniorphism. 

CoroUaq- 2.2 allows us to conclude that one of the xays to constnict the minimal 

automaton is to search for z. the largest conenence contained in ?B. The next clef- 

initions dl be used directly in the constniction of the algonthm for nùniniizarion. 

Definition 2.13 Let JI = (Q.Z?L.s .B)  be a DF.4. Given an intejer k 3 O .  n-P 

sa-  tn-O distinct states p. q E Q are k-di.~tinguishable if there is a n-orcl IL -  E Zn. 

j t r /  5 k. which distingr~ishes p fiom q. that is [pu*Is f [ q w l s .  If p ancl q are k- 

disting;lushahle we m e t e  p f k  q.  If there is no such n-orcl. then n-e sa-  that p and (1 

are L-indistinp~ishable ancl n-e m n t e  p G". 

Theorem 2.4 Let JI = ( Q .  S. 6. S. B )  be a DF.4. For t-wo distinct states p. q E Q 

uiith p &q. p E~+' q i f  and on1.y if. for al1 a E S .  pn r\~. 

Proof: Bu In1 clenote the length of the word tr. Suppose that p &-+" for rouie 

p.q  E Q ancl k 2 0. Then ['mls = T QU?]^ for eveq- t r  E 5' such that lu-/ 5 k i- 1 

(thus k + 1 2 1). -4s O 5 la1 5 1 for ail a E 5. n-e have pa =\a. 

Suppose that for ail a E 5. pa E" qa. -4s pa E' qa no n-ord u. E Y' such rliat 

1 a- 1 5 b dis t ing~zishes pa and qa. Shus [pu?] = [q r~« * ] ,  . As eeveq- w f  E Sm siicli 

that lu.'[ 5 k + 1 can be expressecl as t r f  = cru.. n-e have p rhl (1 - 

Clearly tn-O st ares are distinguishable if the!- are k-distingushabIe. for some I -  2 0. 

If n-e carmot clistingùsh p ancl q nith nmrcls of length at most k + 1. for sonie b 2 0. 

rhrn n-e cannot clistingush them nith words of length at most b.  Thiis. p '1 

iniplies p S q .  for all L- 3 O. that is. rhf' C - &. We sa'- ikC1 is a refinemcnt of 



n t  SSimilarly. we obtain r E P", for ail k > 0. 
Tliere are ~arioizs definitions around for Q. For the clïsc~~sion about options see 

[G] . Ln t his rhesis the followhg definition is usecl: 



WOOD'S ALGORITH11 

In this section Fe present TVoocl's algorithm [il for the minimization of complerc 

DFAs. This algorithm is illustratecl by an exampie. in which the tabalar .mp.thod is 

tisecl to constritct a minimal DFA. 

Algorit hm 3.1 

Inp-tri: -4 cornplete DFA nith set of states Q. ail states reachable. set of input 

s p h o l s  5. transitions definecl for d states and inputs. start state S. ancl the 

partition of states B. 

O~ctp-ut: A minimal DFA JI' equimJent to the DFA -11. 

M e t  hod: 

1. Constnict an initial partition IIk  of the set of states for Ji = O. This parrition 

has at most 1 BI blocks of states. 

2. Let k := k + 1 and apply the following procedure to constn~ct a new partition 

IIk. kiitially let II\:= 11"'. 

For each block G of II\ for n-hich IGI 2 2 do 

begin 

partition G into siibblocks such that tn-O states s and t 

of G are in the same siibblock if ancl O&- if for all 

input s-hoh n. the states -MI and t(r are in the sanie block c f  II"' 



/* at n-orst. a state n5I.l be in a subblock by itself */ 

replace G in IIk b -  the set of all si~bblocks formecl 

end- 

else repeat fiom step (2).  

4. Constntct the minimd automaton ushg the partition II. 

Wood's algorithm has tirne complexity 0(n3). 

Figure 3.1. Deterministic finite automaton JIi 
witli the partition of states into tn-O blocks: BI = 
( t .3-4)  and B3 = (22.5). 

Let n".e the partition of states at step k. The initial partition of states. II0. 

is defineci as B. as two states are O-inclistinguishable if and O -  if they are in t h  

sanie block of B. Thits S' = 9 ~ .  There are r = IBI eqtudence classes formecl 1 1 -  

no. If ail states are equident to each other. and so lIIol = 1 we can terminate 

the algorithni and the minimal arttomaton -dl have onlv one state. At step '1 n-P 

calculate nen- eqiiimknce classes and so a new partition of st at es II'. and compare i r 

witk the partition II0. Then n7e are using Theorem 2.4. to constswr nm- pnrtitioiis 



b 

Figure 3.2. Minimumstate finite autoniaton JI(. 
This automaton is equivalent to the automaton 

SI1. 

of States into equhalence classes (p. then IF3. and so on ). Thus n-e constnict I 1):- 

refining to gve -et. a ' to $1-e G' and so on. This continues uniril G ~ - ~  - - =' _ 

( iuit il I I k - l  = 119). 

Table 3.1. Transition table with the same finite 

automaton as in Figure 3.1 (automaton .Ili).  

We present an esample using a tahular methocl to minimize the automaton .\Il 

F i e  1 .  W e  show the partition of stares into ecpkalence classes hy ciranino 

horizont al lines. 



Example 3.1 Consicler the automaton ML fkom Figue 3.1. This automaton is also 

clisplayecl in the transition table (Table 3.1). Let [plk clenote the ecl~idenre  class 

of the state p with respect to E'. Wë &O mite  [pl if & is ~mcterstood. 

Table 3.2. First partition. 

b e c l i a t e l -  from the definition of =O we have [ l Io  = [310 = [Alo = {1.3.4} = Bi 

ancl [?Io = [SIo = [6Io = {?.S. G }  = B.z We displq- this information in the moclifird 

transition table (Table 3.2.). in n-hich eyuidence classes are separatecl bj- horizontal 

lines. The reason is that n-hen computing w e  make use of the fart t hnt p r1 q if 

ancl o d -  if p q. pn z0 qn. and pb =O qb- But this holds if and only if [plo = iqj,,. 

k c l l o  = [clclIo. ancl Ipb], = [qbIo. In other worck. if and only if the ron-s of p and q are 

'*eqiiident '- . 

Consicler [lIo = {l. 3.4) first . B. inspection. every pair of ron-s frorn t Lis set are 

distinct. More precisely [laIo # [3ajo. [1blo f [4bjo. and [3aIo # [-laIo. This iniplies 

1. 3. 'and 4 form singleton equiialence classes in ='. 
On the ot her hancl. ron-s 2 and 5 are equident and clifferent fiom ron 6. This. 

n-e obtain Table 3.3. To constnict ='. n-e only neecl to examine the ron-s '2 and 

.j. since all other ec@alence classes are singletons. Once more tliese tn-o r o w  arta 



Table 3.3. Second partition- 

1 

3 
4 
9 - 

q"deut.  Hence =' = 5' = =. and we are clone. The final minimal automaton is 

sholrn in Figpre 3.3. 

....[il ........ [3] .... 1 

.... [4] ........ [Û] ..-. 

.. ..[2] ........ [6]. .-- 

.... pl. .... ...p 1.. .. 



ALGORITHSI DPE TO HOPCROFT AXD L L L J I A S  

state 

P 

Table 4.1. State Table. X pair of States which 
should be cornparcd at some point in the algorithm 

CL b c 

.*.- r -..* .-*- t ..-- W... r .... 
1 

The problem nith the algorithm presented in the previous chapter is that it can 

perform ~iseless cornparisons between pairs of states. One c m  save much n-ork h -  

bookkeeping. Xote t hat . m-henerer r- g s for some r. s E Q. then pir f qir for e w r -  

p q  E Q ancl tr E Sm. such that pw = r and qw = -5- 

Stippose that p.q. i b . s .  t. t r .  v. w E Q and {a. 6.  c }  C T. and n-e ha\-e foiuid tlir 

information shonn in Table 4.1 n-hich we will call state table. -isstuue n-e h o i -  

uothing abolit the pairs {( r.. 8). ( t .  u ). ( r. w ) 1 ( we d o i t  laon- if the. are clisringtdi- 

able or not ). Then (p. q ) are distinguishable or indistingiishable clepencling on n-liat 

n-e h c l  out later about these pairs. So. for every one of these pairs. ve place (p. q 

on a List linkecl to the pair. It is c d e d  the list to mark T h n .  if n-e later fincl t h t  

one of these pairs is clïstingpishable. n-e go through its List and mark pairs on i r  a': 

distingiishalde: in this n-a.. m * ~  do not have to check p and q for ciisting~tislial>ilir!- 

(1 S .  1 ,,., II',... 



Figure 4.1. Deterministic finite automaton 3r2 
wit h the partition of S t a t e s  into two blocis BI = 
{1.2 .4 .3)  and B3 = (3).  

Figure 4.2. Minimurnstate finite automaton JI:_. 
This automaton is equivalent to the automaton 

.\r2. 

r~peateclly. Thiis note t hat . R-hm ( p. q ) becorne clistingxishable as a ronseqiimw of 



the clistinguishabilit~ of ( r. s). sa!-- then also the Est originating at (p. q ) needs to 

he cleaIt with. Sote &o. t hat a pair can appear on set-eral lists- 

One way to implement this algorithm. according to [4]. is to use a triangdar 

( n  - 1 )  x ( n  - i )  table D. where n is the n~unber of States- We c d  this r h  

distinguishabilitg matriz. Assume Q is totally orclered in an a r b i t r -  but fï~ecl 

n-aj--. Thus Q = {qo- pl. . . . . G - 1 ) .  The entnes of this matris are initialized to zero: 

and n-e set the clG entq- of D to one. whenever we esrablish that q; ancl rl, are 

clisting-uishable. n-here i 5 j .  

To use this method. we must start -$th one or more pairs of states knonv to 

be clistin@shahle. ClearIy. eveq- state q; E Bk is clistingxishable fkom tlie starrs 

belongng to different blocks of B. thus it is distinguishabk from e- q, Bk. 

This corresponds to the construction of in Wood's algorithm. The s t a r s  fkoui 

the sanie block Bk ma>- or m q  not be distin,@hable fiom one another: n-e clo not 

b o n -  that yet. Hence in the distingzishabilit- mat ri^ D we go tchroiigh aU ron-s 

and mark eveq- column corresponding to a state belonging to a clifferent hlock. For 

escaple if some rom- i represents a state q,- E Bk. nie mark ewq- entry in rhis ron- 

corresponding to a co~umn j representing state q, # Bk. 

Gst. n-e consicler ei-ery pair {qi- q, ) n-hich corresponds to an ~uunarkecl e n t - .  

di, = O. F e  look at the nesr-state functions of q; ancl q, (state tables) to 5 r ~  

n-herlier there is any inpi~t chat t&es them CO a pair h o n n  to be cListin~~u~;linl~lr.. 

If the>- clo. than <li and q, are also distin,pishable. That is. n7e compare tlieir ron-s 

in the state table. 1% have tthee possible otitcomes: 

a )  the rom are identical or eqiüvalent 

b )  tlie ron-s differ bl- states k n o m  to be distinguishable 

C )  the ron-s ciiffer by states about which n7e do not knoit- yet 

In rase a- n-e leave their table entry iuunarked (d,, = O): in case 11 n-e can mark 

tlieni as clistinguishable (di, = 1) and w e  rec~~rsi\-el' mark e l -  pair 011 the li3r r o  



mark- in case c we have the situation shom in Table 4.1. ancl n-e clo n-Lat n-e haw 

proposecl at the beginning to avoid additional (useless) comparisons. That meana 

for eveq- input s-bol a E 5 we put (qi.  qj ) on the Est to mark of ( q i c ~ .  a u ) .  

Khen we have checked a.U unrnarlred entries. the algorithm terminates. \Te can 

iclent if- the sets of ecphalent s tates b -  esamining the entries for each rom or co1um.n 

of the matris. - k q  zero in the row (coltunn) for state q m ar k  another state that 

is e c ~ ~ u d e n t  to q.  Since state ecluidence is a tnie ec~~uvzdence relation. n-P can 

acciunidate classes of states b -  t a h g  adwmtage of transitivitc The eqiuralenc-e 

classes are the states of the new machine- 

Belon- one can see the algorithm: 

Inpr~ t :  A complete DF-1 nith set of states Q. all states reachable. set of inpiit iyni- 

bols X. transitions clefined for z d  states and inputs. s ta r t  state S. and the partition 

of srates B. 

O-utput: -4 minimal DFA JI' ecpident  to -11 

Method: 

1. For e x -  qi- q, E 5. mhere i j. if qi E Bk and qj $! Bk do mark ( q . .  q, i .  

2. For each i u ~ a r k e c l p a i r  ( q i . q j )  do 

3. if for some input symbol CL E CL. q;n ) is  marked t hen 

begin 

mark ( q;. qj ): 

recursively mark a l l  unmarkecl pairs on the Lst to mark for ( q; .  q,, ) 

ancl on the lists to mark of other pairs that are marked at t his srrp. 

end 

for ail input s p h o l s  a do 



put (q ; .  rlj ) on the list to mark for (qin. qja) t d e s s  q;cr = q,u- 

-5. Constnict the minimal automaton using the information £iom the matris. 

This algorithm is more efficient than the obvious marking algorithm. The time 

cornplexit~ is O( n2 ). where n is the number of states. 

Table 4.2. Initial dktinguishability matris. 

Table 4.3. Second distinguishabilitv matris. 

Consicler the machine in Figure 4.1. The initial distinguishability mat ris is slion-n 

in Table 4.2. Here state 3 is the only state helonging to Br ancl as such ir  is 



Table 4.4. Third distinguishability matrix 

clistinguishable from all other states: hence there are ones in the row and coliuiin 

for state 3 ancl zeros everywhere else. Initidy R-e assume all the ot her states are 

0 zero qui~-alent: non- we miist see whether they r e d y  are. \Te start by consiclerin, 

~ n r  ries for st ate 1: n-e aiust &sr determine whet her it is tiist inppisliabk from s t n t t.5 

2. 4. and 5 .  

dl :  Cornparine states 1 and 2. me have - 

K e  can s a -  that an inpiit b w3.I talie the pair (1.2) to the pair (2.3) .  Since 2 and 3 

are h o n m  to be distinguishable. states 1 ancl 4 are clistingi&ihable. too. So d I 2  = 1 

and otu: nest matris wiil be the mat ri^ £rom Table 4.3. 

clI,:  \%%en we compare states 1 and 4. we get inconclusive restdts: - 

In tLs case. states I =CL 4 wiU be distinguishable o.  if states 2 ancl 5 are: I i i i r  

we tlon't knom yet. lT7e codd corne back later. after we have checketl 2 and 5 .  and 

try again. but for large machines this n-oulcl be prohibitidy tirne consuniinq- Sc) 



n-e enter the pair ( 1.4) in the list to mark associated with ( 2.5 ). We can represenr 

this List bu n-riting 

If ( 1 . 5 )  later turns out to be distinguishable. then we merel- have to go clonn the 

list of pairs associatecl with (2.5) and mark them as disting'~Üshable. If it slioidcl 

kappen that 2 and 5 net-er turn out to be distinguisshable. then 1 and 4 n-on't he. 

eit her. 

c l L i :  The same happens mhen we compare States 1 and 5: - 

So n-e acld (1.5) to the list ro mark associated with (2.3). This List is non- 

2 : Sext we consider st at es 2 and 4 and we have - 
.... ........ ..-. 1 state ( a b 1 

In this case. CL takes (2.4) to the distinguishable pair (2 .1) .  so 2 and -4 are disrin- 

? For srates I? and 3. m-e have - 
state .... CL ........ 

. .,.,. ...-.. ... 

and n-e see that 2 ancl 5 are clistin,~shable. But m-e have a list at t achecl to ( 2.5 1: 

0-oing clonm this list. n-e see that we can mark (1.4) ancl (1.3) as clisting~iishal~l~. 
?J 

Thus n-e set d25 = d14 = dl ,  = 1 ascl in Table 4.4 one sees the nest clisting~~is;uisliabilit~- 

mat ris. 

Since n-e knon- that state 3 is distinguishablefrom ail the other States. n-e niow - 



on to stare 4: the O* pair nie neecl to test is (4 .5) :  

state ,,,,ci,, , , , . . , b . . . , 
*.-* 1 .*.* .--.a.--. 

. . *  .... a *,.. 

Since the two rom are identical. we cannot distinguish states 1 and 5 ancl hence 

conclude that they are ecpimlent. So our &al rnatrk is still Table -4.4. G L L ~  

iIiinirual-st ate machine is. therefore. illtistrated in Figure 4.2. 

In progarnming this procedure. the easiest w q -  to hanclle the chaininj of im- 

cleciclecl states is to make the distinguishabilit- matris a matris of records. nit k a 

fielcl for the mark ( l or O ) and a field for a pointer to the c h a h  The matris entrie'; 

are initiaUr set to O and nit. .mer markhg ail nonaccepting states as clistinct h n i  

all accepting states b -  putting 1 in the appropriate entries of the matris. one gotas 

rhotigh the matris. If a pair is not immediatel- ciisting~ushable. it is adclecl ro r k r  

lisrs to mark of cd nest-state pairs. escept n-here the two nest states are identical. 

If a pair is foimcl to be clisting~tishable. one marks the matris entq- nirh a 1 aucl 

then foUoms up the chain. if any. Xotice that the chains ma>- branch. so rhe follon-- 

up proceclure must be made recursive. This rectirsive proceciure ah-ays t enninates. 

as tliere is a finite number of the pairs of states which can be rnarked. If a pair i i  

akeaclr markecl its list to mark is not consiclerecl. 



CHAPTER -5 

SEW ALGORITHLIS 

In rliis chapter thee  nen- algorithms for minimization are presenred. The>- are 

callecl: Generd 1.-ersion. Seconcl iërsion ancl Third 1.-ersion. ,AU these versions 

of the niinimization algorithni are based on the same concept. These algorit hnis 

asaign names to all states in an automaton. Then the>- sort the names of srates of 

an automaton to minimize it. -fter sorting. if some states are renamed. the List 

is sortecl again. The names of states have the folloning property: if at step X. of 

the algorithm states have distinct names. the>- have distinct nanies ar ex-ery step 

A. + i. n-here i 2 1. The aigorithms terminate if. as a result of sorting. the lisr is nor 

changd ( states are not renamed). 

The General Ij-ersion of the minimization algorithm sorts the n-hole list of names 

of srates aat eveq- step of the algorithm. The upper bound for tliis version is 

O r O 1. The General 1;ersion of the minimization algorit hm is not an efficient 

one. It cloes not use the information that. as a residt of sorting at step k. at i tep 

1- + 1 n-e alreacl- bon7 some pairs of states nhich should have cclist inct names. Tlitts 

there is no neecl to check if the? are still clistinct b5- sorting the m-hole list. The 

Second lérsion of the algorithm uses this information ancl it sorts the nhole List of 

names class hy class as one class of states has clifferent names from all others clasa~s 

of st ates 1. The t ime complesitu for t his version of the niini~riizat ion algori t hm i i  



O( r)' ). 

The Second lërsion of the minimization algorithm r n q  still sort a class o f  sr arcs 

nhich ha\-e the same name. Thus no changes are macle. In the Thircl \-ersion of r he 

algorithm onlv initia&- d classes are sorted. At the ne- steps of this algorith 

only classes of states nrith distinct names are sorted. This version has the same 

time complesity as the Second Version of the minimization algorithm. O( n' ). 

5.1. Generd Version 

Figure 5.1.1. Deterministic finite automaton JI; 
rrith B = (d. (-4 B.C*). {S. Y. Z)). 

The nen- algorithm for minimization is based on ~Yood's algorit hm. Iood's algo- 

rit hm n-orks as follon-s: One starts n i t h  f0 = 9s. as tn-O states are O-inclistinguislial>le 

if aiid only if they are in the sanie hlock of B. Thme are I -  = B 1 qiiival~ncr c1aw.c 



formecl 1 -  =O. \Te construct by refining s0 to give ='. rL to give =' ancl so on. 

- . This continires ~mtil rk = Ai' 

The main idea used in the nem version of the minimization algorithm is to gke  

~iniqtie names to the equidence classes formecl at e v e -  step of the dgorirhm At 

srep k of the algonthm every state p belone& to the same e~~~üvalence class n-ill 

also have the same name. and states belonging to clifferent classes v d l  have clifFerent 

names. By .'-: we denote the name of the e q ~ ~ d e n c e  class to n-hich the S t a c e  p 

helongs at step k of the algorithm. Let .lek = { . ~ i ~ ~ . + \ ~ , . - - - - . \ i ~ ~ }  be the set of 

classes of states at step k of the algorithm. This set is in sortecl order ancl rhar is 

11-hy n-e have ssubsrrip ts 1.2. . . . u where u 5 1 Q 1. Fhenever p and q are in t lie sanie 

rlass ,\El. they have the same name. FT;e use the s p b o l  .l-E, to denote the namc of 

the ith class of .\" ( the class .li:) ). Thiis. if p rk-' q.  then p. q E .\;II for some i and 

-1: = -1; = -]-El. and if p f '-' q then -1; # -\:. Whenerer an equiralencc ciasr 

is changed (class is dividecl). the states h m  this class n4l get nen- names. !.lakt 

represents the nimber of distinct names of states ( niunber of eqiuvalence classe.; ) 

at step X e  of the algorithm. 

Suppose n-e are $\-en an automaton -11 = (Q. Z.6.s. B). Let S = ( r i , . n 2 .  .... ci,,, 1. 

n-here the input s'mbols are orclered in an arb i t rq-  but &ed n-ay. Tiït h e v e -  s t are 

p E Q. n-e associate rhe pattern P: at step k. 

Let Z>" { P ( " I , . P ~ ) .  . . . .PL,}. where a $ IQI. denote the partition of States ar 

srep k of the algonthm according to their patterns. IPkI is the number of clistiurr 

par rems at step b of the algorithm and note that ).\'y ) < J p k J  for el-en k 2 O. Tliits 

.lak corresponds to and P* corresponcls to d. 

To avoid the calcularion of patterns hefore every sorting. states can be r ~ p r r -  

sentetl 131- state structarea: the state st ructure of a state p consists of rhe currenr 



rianie 3: of p. the nen- name -.:+'. and the transition list of p. The rransition 

iïsr of ewq- state is implemented b?* pointers such that the pointer for pri; in t i i ~  

state structure of p points to the state structure of the state pai. Thus a list of statr 

srniettires contains the information about the names of states and the patterns. The 

m e n t  names of states are used to calculate patterns. The new names of states 

are calcidated at step k of the algorithm but they are uçed in the constrt~ction of 

patterns at L- + 1 step of the algorithm. 

hft er sort ing. the list of s tate stnwtures is orderecl in sorne predefined n-ac \VP 

nill c d  rhis sortecl list StateStructu~es. Xow the algorithm can be presentecl. I b  

assume that all states are reachable. 

Algorithm 5.1.1 

Input: -1 complete DF-4 nith set of states Q. al1 states reachable. set of input 

s y d o l s  S. transitions cl&necl for all states and inputs. srart state -5. and r i w  

partition of states B. 

Ontprr t :  -4 minimal DFA JI' equident to the DFA JI. 

1Method: 

Csing the fimetion Get'iewXame associate the nanie nith every I h - k  

Bi. So if p E Bi then = -.VBt. Let XI,, be the last nanie calcidated 1,:- 

Get SewSame. 

Sort patterns. 

WasRenamed := False. /* initidy no s tates were renruned */ 

Rename,-UI(StateStru~tures.\~~asRenhmed.~~-~~). 

If an>- state mas renamed ( WasRenamed = True) then repeat fkom step ( 2 

else terminate the algorithm ancl construct the minimal automaton hy parti- 

tioning the states according to their names. 



Ft~nction Get SewSame(-Vk, ) 

/ * Given the nanie A' t his huiction calculates and ret urns a new name .Snc,,-. If -1- 

ancl d other names currently used in the main progam mere cdculared using this 

fimction. d these names including Xne, are distinct. It is assumecl chat is t lie 

last name calculatecl preiiousl>- using this fimction. One possible function f n-Lch 

can be usecl is ( assuming that .V is an integer): f ( -.J) = -1- + 1. */ 

end 

Procech~re Rename;\ll( States tructures. WasRenamecI. ..-l,, ) 

/+ Given the sorted list of patterns. encoded in the hst of state structures. t l G  

procecl~tre renames appropriate states in such a nia>- that n-henel-er stares h a r ~  

cliffesent pattems they have different nunes. ancl whenever t h e  have the sania 

pat tems the- have the sarne names. It is assiuneci that the last n m  calcidatecl 

by GetSemSame n-as -\i,,. IVasRenamed is set to true if GetSen-Sanie is callecl ar 

least once. */ 

begin 

-1- := q, 
p + 1  := -1- 

P l  

for ewq- i E {2.3.. . . . IQ I }  do 



The h c t i o n  GetXew'Tame returns a -new" name (that means a nanie n-hich ia not 

current1)- used by an>- state). To accomplish that we use the fimction Get Sen-Sanie 

el-en- time a nen- name has to be introclitcecl. and n7e pass to this fimction the 

.. 
*-lasr name ( ..l*Ist) it has calculated. The name -.*& can be iniridy set to O 

and GetSewSame can use consecutive b b i q -  numbers for names. Thtis. if n-e use 

Ger SewSame at step 1 of the algorithm. anci as a result n-e have three blocks of 

States ncuiiecl 0- 1. anci 01. GetYernXame(O1) ntill retiun 10 (01 + 1 = 10)- -4s t h  

iuasimitm niunber of distinct names recpürecl in this a l g o ~ t h m  is I I .  the lorigwr 

hinaq- numher usecl to represent the nanies has the length at most 10% n. 

Initially n-e have 1.l- 1 classes. where (.\= 1 = 1 B 1. At e v e -  step k of the al@tliui 

nen- eqtuvalence classes are formed ôncl compared to the classes formecl at s t ep 1. - 1. 

Renaming is done in the follow5ng na': S~~ppose that at step - 1 of the algori tluii. 

states p and q are in the same class and thus the>- ha\-e the same name. If at the nesr 

step the states p and q have different patterns. they shoulci he clistingiishecl and so  

at least one state: p or q should get a new name at this step. If at step k al1 States 

fiom some dass ha\-e the same pattern. there is no need to change their names. The 

proceclure RenameAll accomplishes that. tVhenever the procecl~we Get Sen-Same is 

callecl at least once. that means some st ates w r e  renamecl and in the algorit hm n-t- 

reprat steps ( 2  ). Totice that the list of states structures passed to tliis prowdttrc 



is sorrecl b -  pat tems. As patterns are constnicted £rom the names of stares and 

the first eIement in the given pattern is the name of the state. the n~unes of states 

are &O sorted. 'iotice that in the procedure RenameM by renaming states n-e are 

changing the patterns. But the information about old patterns shodd be axdah le  

until the end of this procedure. One way to handle that is to keep tn-O names in r h ~  

state stnictiue. The first one should represent -1: anci shoulcl be used ex-en- t h e  

the pat rem is calc~datecl. The second one should represent a new nanie -'-Fi'. 
Sest n7e see an esample. Then n-e d prove that this algorithm aln-a-s t~rnri- 

nates ancl that the automaton constructed u s h g  this a lgor i th  is minimal. 

Table 5.1.1. 

Example 5.1.1 FI-e illustrate the algorithm applied to the automaton -IIl in Fi=- 

iue 5-1.1. This is a minimal automaton d the esample shows that the algorithii 

can v e r i -  this facr. In this esample w e  are not follotving direct- the procecliir~ RP- 

narnehll. When the block of st ates is dividecl into k blocks. proceclitre RenaiiieAll 

rcwames ody !-. - 1 hlocks not changing the name of one block. In t Lis esaniplr al1 

siicli ldocks nill be renamecl. 



Table 5 J 2 .  

Table 5.1.3. 

Thus n-e are gken a DFA Ml nith the partition of States of this automaton 

B = ( B I .  B2. B3) = ( {d}. (-4. B. C}. {-Y. l-- 2)) .  Since B is a partition. each stare 

p is in esactly one block B,. W e  as si.^ the initial name .IV; to each state p E Q in 



Table 5,1.4, 

Table 5.1.5. 

the folloning ma)-: 



This giws the follom-ing initial names to e r e -  state: 

l é  use the tabular method to compute G" fkom " - '  using sorting. \Ve illustrate 

the state stnicture using the following format: 

where p. po. and pb denote pointers . and -.V:- '..Y:a. and -Y,"b clenote the rurrent 

names of the states p. pa. and pb. Remember that the numben before bracker:, 

( pointers) and the brackets are not needed for sorting purposes l l so  notice thar 

the cornparisons are macle be t~een  elements -\; vphich are inclucled in the pattern. 

ancl not betn-een other elements. So eveq- 3:; in the pattern is treated as one 

&nient. not as a secpence of s~mbols or letters. It slioidd he renieniberrd tliiir 

indivitlual .\-*: have different lengths because of the renaming. 

The inirial situation is shom in Table 3.1.1. After sorting  th^ names of the 

s t a  tes. n-e have od5- 3 ecpivalence classes. But n-hen n-e sort the patterns. n * ~  see 

that {x} and {x. z} should be ciistin~ushed. So the class 3 slioiild be cLi~-icled iuto 

cn-O classes. and the names of the states shoidd be changed to 31 ancl 3-2 to ger E'. 

We n-rite a shorter ho&ontd line to clenote that at the nest step of the a lgor i th .  

the class shoidd be cliviclecl. and so states in this class shoidcl be renarnecl. The 

resiilts of the next sorting steps are s h o ~ n  in Table 5-12. Table 5.1.3. Table 5.1.4. 

ancl Table 3.1.3. Finally we see that &=r5 ( 1.C" 1 = 1 PVil ) and n-e cannot cornhine 

a -  states (no tn-O states are equident)  and so the automaton Ml is minimal. 



Theorem 5.1.1 Let -11 = (Q.S.6.s. B). Algori thm 5.1.1 teminates in at rnwt  

12 - 'L stepü. where n = (QI. 

Proof The algorithm terminates mhen E" = for some k 2 1. First we have 

to pro\-e that whenet-er =' = =*+l. - then =' = zkfi. for au i 2 0. If & = - .  

rhen p G"' q implies that P; = P," and so pa G'" qa for eveq- a E S. But this iniplie?; 

that p ="? q .  By induction &+'. for all i 2 0. 

If I.\lI = 1. then the algorithm terminates 115th = =O. having one ecpi~denre 

çlass conrainine; a.U states. In this case ail states are indistinpishable. Othenrise 

/.\? 1 2 9. a n c l  2 5 I.t"l 5 n. At eveq  step of the algorithm we have at leasr one 

aclcli tional class. Thiis the main Ioop in the algorit hm is callecl at mosr ri - 2 tinics. 

Corollary 5.1.1 Let -11 = (Q.E.6.s.B) be a complete DFA haain.g only reach- 

able states and JI' = ( Q'. 5.6;'. sf y B') be the corre~pondzng DFA c o n s t n ~ c t e d  w i n g  

Algon'thm 5.1.1. Then .Ilf is a minimal  cornplete DFA eqrriualent to -11. 

Theorem 5.1.2 The r u n t i m e  of Algon'thm 5.1.1 is bounded from abme  bg  O( 11' log 1 )  1. 

Proof: The algofi th  terminates in at most n - 2 steps where n = IQI. A t  ewrr 

step one sorting procedure is perforrned. It requires at most n log n comparisons. 

This gives the recpirecl npper boimd O( n' log n ). 

This al~orithm is based on sorting of states. At every step of the algorirhni 

names of st ates are sorted once. Thtis the minimal time for t Le algxithm can not 

he less than the time reqiureci to sort the Est of pat tems once ( to check if = E' 1. 

It ni11 he O( n log T I . )  if and on.- if ail patterns are distinct. Othernise it clepenclr on 

t lie numher of clistinct patterns. hsstune that let7 1 # 1 as the case of I.\*' 1 is tri\-ial. 

Consider the esample n-hen B = {BI. * }  ancl the block Bi contains O -  one ?;t atr. 

St ippme that in the minimal automaton n-P have jiist 2 states. This corrc.ipon& i<i 



kanng i l  dements to sort. where only one is different fYom nlI otliers. This iniplirs 

t hat par tems are soaecl jtist once. Lsing mergesort when TV-e merje an>- -2 list s n-e 

can combine the -same- elements. so the maximum nimber of elements in the List5 

to be mergecl is 2 and the maximum number of cornparisons is n + log n. This 

implies that the best case for this algorithm has t h e  complexït~ O( n ). 

It is cl. iEartt  to clescribe preciselv which automaton d represent the n-orst rase 

as. the more cornparisons are made at every step of the algorithm (cltiring sortina ). 

r he fen-er potential steps can be done in this algorithm. hlso. cliuing consrctiriw 

steps of the algorithm the list of states is more -in orcler". JO ferver comparisonl- 

need to be usecl to sort it. Consider the example n~hen. usinj mergsort. I I  log 11 

cornparisons are macle at the fist step of the algorithm. Thar implies that all sr ares 

are cListingushable ancl so the main loop of the algonthm can be esecutecl at w s r  

once more, 

5.2, Second Version 

n*oocl*s alsorithm cloes not check eveq- pair of states at eveq- step of t lie algorit hni. 

Onl- the pairs of states n-hich are inclisting~üshable at the &-en step inclistingiusli- 

able are clieckecl to clecicle if the. can be distinguishecl. Similarly ..Ale; 015th 3.1. l 

can he impro\-eci b ~ -  recpiring t hat ? at eveq- step k of the algorit h. s t at es haring r lie 

sanie names are sortecl separatel- ( these are the classes of ( - 1 )-inclistinguishahle 

states). Thus patterns of states belonging to the same block .litl are sortecl sep- 

aratel-. BJ- S t a t e ~ t ~ u e t ~ ~ ~ r e s ( . \ ~ ~ ~ )  denote the set of state structures of the stntee 

helonging to the same block .\;:, of.\" at step k of the algorithm. 

Algorithm 5.2.1 

Inprrt: h complete DF.4 nith set of states Q. ail states reachahie. set of inpiir 

syml>ols Z. transitions clefined for all states and inputs. start state A. and tlw 

partition d stntes B. 



O.utput: A minimal DFA SI' equivalent to the DFA W. 

,iMe thod: 

1- Lsing the fimction GetXewXame assotiate the name -8. ~ 5 t h  eveq- biock 

Bi. SO if p € Bi then -\: = XBt - Let -Vlat be the last name calculateci bj- 

Get XewXame. 

3. l\ksRenamecl:= False. /* initia&- no stat es are renarned */ 

3. For eveq* block of states A;:, do 

begin 

sort patterns 

RenameBlock( s tates tructures(.\N ) .TVa~Renamed.~l~~~~ ) 

end- 

4 - If =in>- s t at e was renamecl ( if UasRenameci = Tme ) t hen repea t h m  s tep ( 2 ) 

else terminate the algorithm anci constn~ct the minimal automaton h -  parti- 

tioning the states accorcling to their names. 

/ * This procedure is gix-en the sorted Est of patterns of states encociecl in the list 

of statc structures. These states have the same name -Y:l. The procecliwe renames 

appropriate states in such a n-ay that whenever states have clifferent patterns the>- 

get clifferent names. and vhenever the>- have the same patterns the'- get the sanie 

names. It is assumeci that the 1 s t  name ret~unecl b -  Get XewSame is -y,, . Uas- 

Renamed is set to tme vrhen the fimction GetXewXame is calleci ac least once. 

"/ 

begin 

3- := s;, 

-Y;,+[ := -1- 

for ewq- i E 12.3 .  . . . -1.t ;:, i } do 



Rencuning is clone in a n7ay similar to the general version of the algorithni- The 

proceclure RenameBlock is different £rom Rename-U only because. to the proca- 

cliue RenanieBlock. the information about state structures of o d y  one hlock .\;!, 
is passecl ( not the information about state stnictiires of ail states 1. Thits. init iall-. 

the names of the states are the same but. because patterns can ditfer. the procetliu-F. 

RenanieBlock can a s s i p  cLifferenc names to some states. 

Theorein 5.2.1 The runtime of Algorithm 5.2.1 i u  Et(n2). 

Proof: The length of the Lists of patterns which are merged ditring mergesort cari 

not be more than the number of distinct classes in the giwn set of patterns n-hidi 

has to be sorted. If w e  assume that the number of distinct patterns is y. the Lists 

to be mergecl c m  not be longer than g. So the number of comparisons recluirecl 

to merge two lists is no more than '2g - 1. As the Lists are mergecl at most n 

t imes cliuing mergesort . the total number of comparisons requirecl bj- rnergesort is 

l~oiuclecl bj- (?y - 1)n.  The nimber of comparisons is the highest n-hen at each strp 

of the algorit lun only one adclitional class is formecl. So afrer sorting an>- rlass IW 



hm-e at mosr y = 2 distinct dasses. As in this version of the a l~on thm we sort dasr; 

by class. at  each step of the algorithm we have at least 1 merge less to do. So the 

masimum number of comparisons is: 

11-here 9 = 2. Thlis the upper bound is O( n 2 ) .  

To show that 8 ( n 2 )  is the time complexïty for this algorithm. consider the 

automaton 14.01,,,, = (Q. 5.6. S. B) where Q = {pi-pz. . . . .p ,  }. s = p i .  5 = {«. h ) .  

B = { { l > i - ~ ? -  - - - -p,t-i}- {pn}} .  and 

I n  esample of such automaton for n = 6 is shonn in Figwe 52.1- This represerm 

[lie case n-hen B = {Bi. B2}. and od>- Z is in B2. To minimize tliis automaton. or 

rather to use the algorithm to verify chat the atitomaton is minimal. the patterns 

have to be sorted n - '2 times (compare Table 52.1 u i c l  Table 5 . 2 2  ). Considerin.; 

the automaton at step k of the algorithm we have P singleton classes and 

one class .\;:, containing n - b elements. It is possible to eliminate the sorting of the 

singleton classes. but all elements in the class *th n - L elements shoiild be cheskerl 

ar the given step of the algorithm. Thus me need at least n - 1. n - 2. n - 3. n -4. . . . 

comparisons. This means that the algorithm has time cornplexit- il( n 2  ) and so i t  

lias tirne cornplexity 8(n2). 

The besr case is the same as in the general version of the algorithm. Tliis is tlir 

case n-hen in the minimal aiitomaton there are only two states. This corresponds ro 

having n element s to sort. m-here only one is different from al1 ot hers. Thus par terris 

are sortet1 jiist once and the m a s h u m  niiniber of con~parisons is i, i log 18. Tlii'r 



iniplies rhat the beçt case for this algorithm has time complesity O( 11 ) siruilarly r o  

the senerd version of the minimization algorithni. 

Figure 5.3.1. Deterministic finite automaton JI4 
for which it takes Q ( n 2 )  comparisons CO verify that 

it is minimal using the second or the thircl versions 

of the algorithnit The States in this automaton are 
partitioned into two blocks Bi = (-4. B. C. D. E )  
and B2 = (2). 

Table 5.3.1. 



Table 5.3.3. 

Table 5.2.4. 

5.3. Third Version 

In the seconci version of the algorithm the states are sorted class bv class. It ran 

h a p p a  thar n-e sort a class in which all states have the same pattern. Tlirrp i i  

no rie~cl to sort sticli classes. Thus. siniilad- to the algorithm due rn Hopcroft m r l  



Table 5.3.5. 

Table 5.3.2. 

C h a n .  n-e nïmt to deal only with the states which have to be disringuished. Lrt 

Ii- and L he the lists of classes of the states to be sorted. Thiis ar step k of the 

L" } n-here t < 1.\*" 5 IQI. In the alg-uritluii. classrs a lg~nt lun  L = {.\&A&. . . .. ( t l  

from the List L are sorted b -  patterns t&ng one class at a t h e .  and at rlw sanie 



tirne the nen- Est S is b d t .  Ody initia&- can it happen that n-e sort classes in 

n-hich aU patterns are the same. Then mie sort onl>- classes in which some stares 

have ctifferent patterns. 

Algorit hm 5.3.1 

Input: -1 cornpletc DFA -5th set of states Q. al l  states reachable. set of input 

s'mbols T. transitions defined for aIl states and inputs. start state S.  ancl rhe 

partition of states B. 

Oatp-trt: h minimal DF-4 .\J' ecpident ta the DFA -11. 

,!f e thotl: 

1. L-sing the fimction Calc~lateNe~Yame associate the name n-ith el-rr>- 

hlock Bi. So if p E B; then -12 = ..YB,. Let -Y,,, be the last name cakida r 4 

by CaJcdateSen-';me. 

2. Let K := L := 0. /* initia&- the lists Ii a n c l  L are empty +/ 

3. Put all classes A:-, on the List CO sort L. 

4. For eveq- class of states £iom the List to sort L do 

begin 

sort patterns 

Totall~-RenameBlock(StateStri~ctt~es(.\~~~,).-\~~~~) /+renamesrates*/. 

CpclateListToSortI<(StateStnict~wes. ClassStriict(.\~~, ).I< ) 

end. 

.j. Let L := I ï  and Ii- := n ull .  

6. If L # 0 then repeat from step (4) 

else terminate the algorithm and constriict the minimal automaton b -  parti- 

tioning the states according to their names. 

In t LJ algont hm rhe follon-ing stmctiues mcl procediires are iised: 



Structure StateStmct(q) 

/* The structure for a state q holds the following information: 

1. The resdt of applying a single input sqmbol to the state p. This informariou 

is contained in the transition list n-hich is a list of pointers to appropriate sr are 

structures. It is assumed that S = { a l .  al.  . . . . n, }. where input s~mbols are 

orclered in arbitraq- but &ed way 

2. The information about eveq- predecessor state p. This information is con- 

tained in the connection set wLch contains the pointers to the appropriate 

state structures. 

3. The pointer to the structure. CIassStnictx(.\~~,) n-hich contains inforniarion 

abolit the class to which the state q belongs at the !$\-en step of rlie 

algorithni. */ 

transition List= (S t a t eS t ru~ t= (~n~  ). ~~~~~~~~~~~~~~~). . . .. StareStnictS(qcc,, 1 )  

connection set= { (Statestmct'(p).a) I p  E Q. a E 5 . p ~  = q ) 

ClassStnict-( .\El ) 

/ * The stnictiire for a dass .l'& holcls the folloning information: 

1. Same of the class .\;:', (used to calculate the pattern at step A . ) .  

2 Same of the class .\ET1 (used to calculate the pattern at step X- + 1). 

3. The information abolit ail states belonging to the class .\;:, . This information 

is contained in the set of states. The set of states contains the pointers ro the 

state structures of appropriate states. 

4. The information about the curent names of successor states of the States 

belonging to the class A;::, (If names of successors states are different for sonie 

input symbol ni. that means that patterns are Werent and so the class 

shoiilcl he clivicled). It is assimecl that 5 = { u I .  ( 1 2 . .  . . . r i , }  n-here inpiit 



spnbols are orclered in arbitrary but fked rra- */ 

\ /* name of a class and so name of all states belonging to t his class * / - ( i l  

-\-'.fL 
( J I  

/* ne%- name of this class */ 

set of states = { StateStruct'(=) 1 z E A:.;::, } 

marking list = (rna.rk(al ). mark(a2). . . . . mark(a, ) ) 

/ ' Given the names -SIat and -V,,,. this function calculates and retiirns a nen nôme 

The name is the last name calculatecl itsing this function. T h  nanie 

.\',,,, is the c'tment name of the state/class for which the nen name is to l x  calcii- 

latecl. If -1- and all other names currently usecl in the main program a-ere calctdared 

iising tkis fimction. all these names incliicling -.7n\-.,,L. are distinct. The function f 

end 

Procedure Tot d5-RenameBlock( S t ateS t ruc t~res ( . \ .~~~ ) .-l-i%t ) 

/ * This procedure is given the sorted list of patterns of st ates encodecl in the list of 

state stntctures- These states have the same name -Y$,. The proceclwe renames al1 

states in such a way that whenever states have clifferent patterns the>- get clifferent 

names. ancl n-henel-er they have the same patterns they get the sanie nanies. It is 

assiunecl that the last name returnecl by CalcdateYewSuiie is . */ 
begin 

-1- := CalcidateScwSanie( Si,, . iv:l ) /* constnict a nen- ClassStnict * 

- j -k+I  := -\- 
i' 1 



end 

/ *  Given the information about the class in which the states have been just re- 

namecl this procedure updates the Est to sort K. If it detects that patterns of 

states in some class .\;"; become clistinct (becaiise of the renaming of States h m  

the block .\il, ). it puts this class at the list to sort IC. StateStnictures is a pointer 

ro the Linkecl list containing information about all state stnictures and r1as.i srnic- 

rires (StatcStntct and ClassStruct). ClassStnict(.\;~,) is a pointer to a stnictiire 

containing: the information about the class n-hich has been jtist renamecl. */ 

for ex-en- StareStnict(q) fiom the set of states in ClassStnict(.\;$) 

!* Thus q E A;:,. -issume q E */ 
begin 

for eveq- (StateStruct(p),a) fkom the connection set in StateStnict(q) 

/* .isstunep E .\;;,. mhere r = k or r = k + i  */ 

if A;, @ L 

begin 

if in StateSti-it~t(.\;;~) mark(a)= S and S f -S;;' and g ( S )  = g(.\:t' 1 



end 

end 

In Algorithm 5.3.1 initidy ail patterns are sorted. but then we want to make SLLW 

that at the nelq step n-e sort O* the classes of states with distinct names ancl 

50 the classes which WU be chided. One way to iniplement this is to introcluce 

rn-O s t i ~ i c t ~ ~ r e s :  the state stmcture and the clavs structure. The? nill be ctenoted 

1 1 -  StateStntct(q) ancl ClassStruct(.C$,). By StateStnictn(q) ctenote the poinr~r r o  

the state stnicriwe of q and b -  ClassStrtict-(A;:,) denote the pointer to the class 

strtlrture of the class .lit,. 
Soticc that to the procedure TotallyRenameBlock we pass the iisr of state irnic-- 

tures and to t he procecl~ire CpdateList ToSort I i  we pass the information almut one 

class stnicture. In Loth procecliires we have to access information about stare srnic- 

tures of the same states. But in the procedure TotdyRenameBlock this Iisr of s tare 

structures should be in sortecl order. 

A t  step 1 of the algorithm. the Est L corresponds to the List of the classes sortecl 

at step 1 of the third version of the minimization algorithm. S tartina; from t hc 

step 2 n-e make sure that me do not sort classes rrhich contain the sanie pat term. 

At el-eq- step k of the algorithm n-e constnict the new list L. B5- -1-j n-e denote 

the ith name of some state p. mhere P 2 i. We should make sure that this name 

contains information abolit the (i - l)th name of the state p. Thus renaming of 

States shoulcl be done in siich a wq-  that the nen- name of a state p. S:. contains 

an information about -\-id'. that means the previoits name of p. The nen- name for 

an>- class of states shoulcl he calcidatecl using the h c t i o n  f n-liich Lias the follon-in? 



property: f calculares a ne= name and there exists an inverse fimct ion for f. n-hidi 

can caladate the previous name of q- state. 

El-ev class structure contains the m e n t  name of a class ancl the marking set. 

The name X[) and the m a t k g  set represent the pattern of eveq- state belouejng 

to the class .\:, at step P of the algorithm. M e r  renaming. in the proceclire ITp- 

dateListToSort6 nie are tq-ing to update appropriate pat tems. If patterns c m o t  

be upclared uniquely. this means that patterns are clistinct ancl the class shoiiicl I)e 

cti~iclecl. 

Example 5.3.1 Consicler the automaton -\I? fiom Figitre J.l.1. We nill shon- lion- 

to apply the thircl version of the algorithm to this automaton. 0111- the first srep 

d l  be esqdainecl. 

Suppose that after the initial partition. the classes .\:l,. .\&. ancl ,\'& are $!-en 

the narnes 1. '1 ancl 3 and they are put on the list to sort L. After sorting the 

patterns of the class .lYlI the states in this class get the name 1. 

Xotice that in this esample we do not follom- the proceclure Totc&:-RenameBlork 

n-hch recpires that the block of states gets a different name el-ery c i n i e  tiiis pro- 

cedtire is callecl. But in i t idc  when the classes of O-indistinguishahie states artx 

sortecl. it can just \*enfi- that the>- are 1-inclistinguishable also ancl so t h e  is uot 

neecl to change their n~unes. At the nest steps of the algor i th .  the classes of 

cList inguisliable states are sorted ancl so n-e sho~dd m&e sure t hat t lie:- all nill ;et 

rien- names. Then the procecltwe CpclateListToSortI< is callecl. Xotire that only the 

niarking set in ClassStnict(.t~, ,) is updatecl b -  this procedure. as .\:,, is the «nl- 

class nor containecl in the list to sort L. Thus after esecution of this proceclilre n-e 

have the following class structures (notice that some elements in the marking sets 

Liaw not heen calculatecl yet mhich we kill clenote b -  X ). 



1 

1 

set of states = {c.} 

marking Est = (1.1) 

CIassStruct (A&) 

X 

3 
d 

/* the previous name of this class * / 

/* the eurrent name of this class */ 

set of states = {A. B. c 1 

/* no pre~ious name for this class */ 

/* the current name of this class */ 
n'l 

markïng lis t = ( X. X ) 

X /* no prenons name for this class '/ 

3 /* the ciment name of tliis class */ 

set of stares = (S. - .  2 )  

marking List = ( X. X ) 

Then the class .\& is sortecl and it gets the name 2. dfter the eueciition of r i w  

proceclttre CpdateListToSortI<. the marbing Est of ClassStnict (.\;\, ) is upclatetl and 

the class struct tires look as follows: 

ClassS tnict(.\: ,) 

1 /* the previous name of this class * / 

1 /* the current name of this class */ 

set of states = {s} 

rnarking list = ( 1.1 ) 

ClassS tnict(.\& ) 

/* the prex-ious name of this class */ 

/* the ciment name of rhis class */ 



set of states = {1. B. C} 

markhg list = (3. A )  

ClassS tntct(.\$,) 

X 

3 

set of states = {d} 

marking list = ( A. X ) 

/' no previous name for this class */ 

/* the m e n t  name of this class */ 

Then n-e sort .\:3, ancl tve have to renune states. The state y %dl jet the name 3 1- 

and the st ares and Z n a  get the name 32. At the same tirne two new classes are 

creared (.\SI and A;?,,). The states x. - andz  have the folloning stare stnictures: 

Sta teStn~ct tx)  

transition k t  (StateStnict'(u). S t a t e s t r u c t x ( ~ )  

connection set { (StateStruct'(-4). b )  ) 

ClassStruct '(.\;?,, ) 

StateStruct(Z'-) 

transition Est (StateStnict'(C). StateStructs(d ) ) 

connection set { (StateStruct'(B). b ) .  (StaceStnictœ(\-). b )  ) 

ClassStnict=(.\& ) 

StateStmct(Z) 

transition Est (StateStruct'( B). StateStnictœ(d) ) 

connection set ( (StateStruct'(C'). b)  ) 

ClassS tnict (A;?,, ) 

Consider the state E e\l;,. -4s (StateStmct'(d). b )  is in the comection set of &. 

and -4 is in the class .\3>,. in class structure of .\& we set niark(b) = = .l--i-. - 

Tliiis non- the class .\;:, has the following class structure 



ClassStruct(.\& ) 

9 - /* the previous name of this class */ 

9 - /* the m e n t  name of this class */ 

set of states = {d} 

m a r b g  list = (2.31) 

Srate has two elements in the connection set. Consider StateStriict*(B.b). -4s 

B E A;$. in the class stnicture of .G& n e  should set mark( b )=-Y;$ = -Y;-- - Bur 

aheacly n-e have mark(b)=.Y&. Note that -Y& f Ji\, (31 f 32). hiit at step 1 

of the dgorithm states belonging to these classes have the same name (namely 3 ). 

Thus put A;;, on the Est to sort K. Then n-e have to consider (SrateStnict '(~). 6). 

Socire that hdongs to .\;?,, now ( h m  the classes .\;:) and .l;;, n-ere crear~cl 1. 

Tliiis n-e iipclate class stnrcture of A;?,, : 

ClassStruct( .\:, ) 

3 

31 

set of states = {x} 
marking list = ( A. 32 ) 

/ * the prerious nrime of t his class */ 

/ * the current name of this class */ 

Consiclering the state Z nnd (StateStmct(C).b) 5om the connection set Ive see thar 

C E .l& which is alreac- on the list to sort. Thus ai step 2 of the d ~ o r i t h n i  n-P 

have o d y  the class A;??) on the Est to sort L. 

Theorem 5.3.1 The rl~ntime of Algorithm 5.2.1 is @(n2). 

Proof: By Theorem 5.2.1 the upper bouc1 for this algorithm is 0 ( n 2 j  (-41~0- 

r i t h  5.3.1 m&es at most as many cornparisons as Algorithm 5.2.1 if constants 

arp ignorecl ). 



To show that 8( n' ) is the actual time complexity for this algorithm consicler tliï 

autoniaton definecl in Section 5.2. -An esample of siich automaton for n = 6 is 

shonn in Figure 5.2.1. To minimize this automaton. or rather to use the al~oritkni 

to ve* that the automaton is minimal. only initia& the n-hole list of patterns 

is sortecl ancl then n - 3 clifferent classes have to be sortecl by patterns (compare 

Table 5-21 and Table 5.22). n-hem n is the ntunber ofstates. Xotice that. ewn when 

only classes n-hich have ro be sorted are sortecl. ail states in these classes shoidcl h~ 

checkecl so at eack step of the algorithm we need at least n. n - 2. n - 3. 11 -4. ... 

comp~sons.  This means that the algorithm has time complesity 0( n' ). 

The hest case for this algorithm is the same as for the previous \-ersions of the 

minimization algorithm. It is the case xhen the minimal automaton has only 2 

states. 

This version of the minimization algont hm recluires t hat the names of s ta tes have 

a certain property. It is not enough to ensure that a new name introclticed during t lie 

algorithni is clistinct £rom ail other names cturently itsed. This name shoidcl conrain 

the information about the previous name of a class/state. One n7ay to accomplis11 

t hat . is to fincl a fiuiction f which can calciilate such a name. Another n-a- is ro tire 

the elcment fiom the structure ClassStnict. representing the preiious name of rhis 

srnictnrr ( but t hen the marking list sho~dd have t ~ o  fields for el-er- eveq- input 

spnbol). Such ui element is dso needed to keep the Information abolit the curent 

patterns for aff states ( so during renaming in the procedure TotaUj-RenameBloc-k 

the patterns are not cllangecl). Thus the nimber of distinct names neeciecl for t his 

version of the minimization algorithm is at most n. 



CHAPTER 6 

DIFFERESCE BETWEEX THE XLGORITH1IS 

Koocl-s algorithm [Tl can be improved by mabring bet ter use of transitix-ity. Given 

an aucomaton JI. for some states p. q and z of this automaton. suppose that ar step 

L. of rhe alsorithm n-e fincl out by checkkg the pairs ( p - y )  ancl ( q .  z ) .  that the stares 

iti tiiese pairs are k-inclis tinguishable. Bu transitivïtc rc-e can conclticle tkat the 

st ates ( p. z ) are also k-incListinguishable. So t here is no neecl to check t ke pair ( p. z ) 

separatel- One method that efficient. uses the notion of transitirity is sortina. 

Sorting procedures can also more eaiciently distinguish states. Iss~inie that ar 

step k of the algorithm. iinique names are associatecl nith states so that sorting- 

c m  be performecl. Suppose that for some states p. q and z .  the states in the pair 

(p. q ) ancl the states in the pair (q, z) are L-clistinguishable and as a residt of sorring 

n-e obtain the list (p.p.:). This don-s us to conclucle that the states from tlie 

pair (p. z )  are also L-distinguishable. This improvement applies not O -  to 1Yooc~'i 

algori th but also to Hopcroft ancl C b u i ' s  algonthm [A]. 

The new algorithms presented in this thesis are based on sorting. A U  versions of 

the nen algorithm are similar to Wood's algont hm as the- have the sanie partit ion of 

s t a tes at e v e q  step ( although the second version is the closest to lloocl's algori t lin1 ). 

II-it h some moclifications. t his algorit hm can be implementecl sisiniilarly t u  Hopcrofr 

ancl Ullriian's alsoritlini ( t his is the thircl wrsion ). --ils0 rit the sanie tirne al1 vrrcioii.- 



of the nen- aljorithm are t o tdy  ditferent from the txo e'risting algonthms n-lich 

are basecl on the cornparisons between pairs of states- The algorithm presentecl in 

this thesis are not based on the cornparisons between pairs of states but on sortin-; 

t hem. W e  claini that it is more efficient a ~ d  me d try to explain dq-. 

The second \-ersion of the algorithm. similar&- to Wood's algorithni. n-hich kas 

time complesitp 0(n3). cloes subsequent rehement of dasses. At every step the 

partition $1-en by ll~oocl's algorithm is the same. and at every step both algoritlinis 

are checking the same states. At the same time the t h e  complesity is hetter. 

as it is O&- O( nL ). The reason for that is that. to jet the nesq refinenienr. the 

st ares are sorted while in WoodS algorithm the states are cornparecl paim-ise g<vïug 

e+dence dases. So in one step the maximtun number of comp~sons  for the 

nen- algorithm is n log n (and if this maumtun is reall- reached thar rueans that 

the process of mininiizarion is finished). and in Wood's algorithm it is a l n - y  11' 

intlepenclently of the automaton. 

It is easy to s h o ~  that the second version of the abonthm is aspprotirrilly 

faster than Wooclk algorithm. because of the difference in time cornplexity. It is 

not the case ~ 5 t h  the alsorithm due to Hopcroft and C h a n .  Time comp1cxit~- i': 

rhe sanie for hoth algorithms. 

I o  esqdain n-h- sorting in most cases shoulcl be hetter for the algorithru diie 

to Hopcroft and C h a n .  consider the esample n-here at some point -oti have rhat 

the followïng states (1.2.3.4- 5.6.7. S} are not clistingiiishecl pairnise. and ar wuie 

point clilring the dgonthm we find out that after the input symbol O n-e clistingttisli 

states { ~ ~ . Z C L . . ? C L . ~ ~ }  and {3a.6n.ïa.Sa). So accorcling to the algorithm due to 

Hopcroft ancl C b a n  n-e should distinguish the pain (1.5) .  (1.6). (1.7). ( 1. S 1. 

(2 .*5)-  (2.6). (2-7). (2.8)- (3.5)-  (3?6). (3.7)- ( 3 3 ) .  (4.5).  (4.6). (4.7). and (4 .S )  50 

n-e neecl 16 steps. If we haw more states. by dinding them into half n-e n-ill necrl 

i l  j% r,!2 = n'Id steps. Biir if n-e just rename states. n-e can sort them In of tlimi, 



in tirne n log rc mhich is a s y m p t o t i c ~ -  ber ter. 

There is O+- one case when the algorithm due to Hopcroft and Illman can be 

faster cloing the next refinement than dgorithms using sorting methocls. This is 

the case when a-e need to distinguish states {1} ancl {3.3.4.5.6. T S }  (SO or&- one 

element in the new ec~uivalence dass ). In that case the Hopcroft and Liman's al- 

gorit hm neecls n - 1 cornparisons wbile. for example mergesort neecls approximatel- 

n +- log n comparisons. 

Sotice also t hat the initial division of states. n-hen n-e are cloing t hat pair 1)'- 

pair. in Wood's and Hopcroft and L . a n ' s  algorithms takes n2 steps but n-lien 

RT just sort states (patterns associated wïth states) n-e need od5- 11 of theni as 

esqdainecl in Section 5. \%lenever this initial sorting procecltire is the last sorting 

qt caw procedure to c d  we have the best case for the new algorithni. So the be. 

for tLis algorithm has time complesity O( n ) versils O( n' ) for \Gocl's ancl Hoprrofr 

ancl L . . u i ' s  algori t hms . 

The lengt h of an>- name used in the nen- \-ersions of the minimization algori t lini 

can h e  at most log n . where n is the number of st ates. It can be arguecl t bat the t ime 

for each cornparison of any two names should be consiclerecl n-hen time coniplesiry 

is calculatecl. But if n-e do chat then also in Hopcroft and Clhan's algorithm the 

tinie recliiired to calcidate the address in the mat& should be consiclerecl. 



7.1. Sumrnary of Results 

Ln t his thesis the neni- algorithm for the minimization of a DFA is presentcd. The 

three versions of this algorit hm are discussed and compared to the esist ing algo- 

rit- for the minimization of a DF-4. It is explainecl N-hj- the methocl usecl in the 

nen- versions of the minimization algorithm should be more efficient than the nieth- 

ocls used in IioocI's algorithm and in the algoritlim due to Hopcroft ancl L k a n .  

The main resdts shonn in this thesis are 

O -1 nen- methocl which can be used in the minimization of a DFA. 

O The new algorithm can be used to minimize the automaton n-ith the parrion 

of states into more than two classes of states clirectly. 

O It is esplainecl n-hich kind of existing a l g o r i t h  can be improi-ed bj- usinq 

the sorting method presented in this thesis. 
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