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How two-dimensional bending can 
extraordinarily stiffen thin sheets
V. pini*, J. J. Ruz*, p. M. Kosaka, o. Malvar, M. Calleja & J. tamayo

Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. 
Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of 
its bending state for small deflections. This assumption, however, goes against intuition. Simple 
experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases 
with small amounts of transversal curvature. We here demonstrate by using simple geometric 
arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. 
The coupling between the internal stresses and the bending moments can increase the stiffness of the 
plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple 
equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental 
results with a macroscopic cantilever sheet as well as numerical simulations by the finite element 
method. The results shed new light on plant and insect wing biomechanics and provide an easy route 
to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness 
tunability.

Small amounts of in-plane stress in thin elastic sheets give rise to a host of different and complex patterns1–5. 
Whereas the role of internal stress in the three dimensional configurations of thin sheets is starting to be under-
stood, the reverse effect has received little attention. In fact, it is generally assumed that the deflection of thin 
sheets does not affect their stiffness within the framework of linear elasticity6,7. Under this prism, the stiffness of 
a thin sheet not subjected to stress is determined by its mechanical properties and its dimensions. We show here 
simple experiments with a cantilever made of a paper sheet that question this widely accepted assumption and 
reveal new fundamental properties of thin sheets. Our paper sheet is 297 mm long, 210 mm wide and 340 µ m thick 
(Fig. 1). It is important to remark that the problem is scalable and the same phenomena can, for instance, be found 
in a microfabricated thin plate 297 µ m long, 210 µ m wide and 340 nm thick. The paper cantilever is obtained by 
fixing one of the ends of the sheet to a desk. The cantilever largely bends downwards due to gravity (Fig. 1a). If we 
add a small transversal curvature of 0.0035 mm−1 with positive sign (against gravity) to the clamped cantilever 
end, the sheet gets almost straight (Fig. 1b). This experiment reveals a first property: the stiffness of cantilever sheets 
significantly increases with the transversal curvature. We now rotate 180 degrees the transversally curved cantilever. 
The cantilever deflects downwards due to the gravity, more than before rotation, but substantially less than in 
the flat configuration (Fig. 1c). This experiment shows a second property referred to as bending asymmetry: the 
upward and downward bending stiffness of a cantilever sheet is different when the cantilever is transversally curved.

To understand why the paper cantilever stiffens when it is transversally curved, we make a second experiment 
with the paper sheet. We observe that whereas the sheet can be easily bent in one direction within the elastic 
regime (Fig. 2a,b), biaxial bending is not so straightforward (Fig. 2c). Far from achieving a parabolic-like surface8, 
our sheet exhibits a characteristic wrinkle pattern that impedes biaxial bending. This experiment reveals a third 
property: in-plane stresses are necessarily developed when the sheet is subject to biaxial bending. We will show that 
this property is the origin of the stiffening of the paper cantilever when it is transversally bent. First, we mathe-
matically demonstrate by appealing to simple geometry arguments this third property. We start with a thin sheet 
with length, width and thickness referred to as L, b and h, respectively, (Fig. 3). The structure is unrestrained at 
the edges and it is only subject to bending moments. The original flat structure must then transform into a struc-
ture with out-of-plane displacement ws(x, y) that obeys the following three topological constraints; the volume, 
contour length and contour width must remain constant. These constraints are consequence of that no in-plane 
stresses are applied to the sheet. For small displacements (ws(x, y) ≪  L, b), the constraints are mathematically 
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expressed by applying Pythagorean theorem to infinitesimal lengths in the chosen Cartesian coordinate system 
(Fig. 3),
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Figure 1. Stiffening of a paper sheet induced by transversal bending. (a) Photographs of a A4 paper 
cantilever sheet subject to gravity force when the transversal curvature is zero (a), positive (b) and negative (c).

Figure 2. Wrinkling of a paper sheet subject to biaxial bending. Photographs of a A4 paper sheet manually 
subject to uniaxial bending in the transversal (a) and longitudinal (b) directions; and to biaxial bending (c).

Figure 3. Schematic of the bending of an unrestrained thin sheet. The sheet in the flat state has length, width 
and thickness given by L, b and h respectively. Biaxial bending induces out-of-plane displacement (z direction) 
given by ws(x, y). The projections of the length and the width of the deformed sheet onto the x- and y- axes are 
given by Lx and by, respectively. The origin of the x-axis is at the left free edge of the undeformed plate, and the 
origins of the y- and z- axis are at the middle of the undeformed plate.
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where Lx and by are the projections of the length and the width of the deformed sheet onto the x- and y- axes, 
respectively; and hz is the thickness along the z- axis given by,
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Since there are more equations than unknowns, Lx and by, the system of equations, Eqns (1–3), is overdeter-
mined and it is, in general, inconsistent. This is revealed by substituting Eqs (2), (3) and (4) into Eq. (1) which 
results in the paradoxical equation,

− − =( )L L b b( ) 0 (5)x y

Since Lx ≤  L and by ≤  b, equation (5) can only be satisfied if the sheet is bent in one direction, as the length of 
the sheet in the orthogonal direction remains constant. Equation (5) is not satisfied in the case of biaxial bending, 
which implies that strains are necessarily generated, modifying the contour length of the sheet and thus violating 
Eqns (2) and (3).

Theory of the Stiffness of Curved Thin Sheets
In thin sheets, the energy cost of in-plane straining is very high, ∼ h

L
, in comparison with the bending energy  

∼ ( )h

L

3
. The most obvious manifestation of this effect is that small in-plane stresses in thin sheet give rise to for-

mation of three dimensional configurations such as buckling or wrinkling-like instabilities1,2,5. We demonstrate 
the opposite phenomena; three dimensional configurations in thin sheets give rise to internal strain configura-
tions. The curvature-induced in-plane strain significantly increases the elastic energy of the sheet, leading to large 
stiffening. The resolution of the strains that minimize the elastic energy cost in thin sheets poses a formidable 
theoretical challenge. We circumvent the enormous difficulty of the problem by starting with the thin sheet 
already deformed and calculating the energy cost associated to an additional small deformation. The initial defor-
mation is referred to as static deformation and it may be plastic or/and elastic. The associated strains may also 
include geometric nonlinearities9. The second deformation is referred to as dynamic deformation and it must be 
elastic and sufficiently small to be described by linear strain-displacement relations. The out-of-plane displace-
ments of the static and dynamic deformations are respectively given by ws(X, Y) and ∆ w(X, Y), where =X

x

L
 and 
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b
. Our proposed functions for the in-plane x and y displacements associated to the dynamic deformation are 

given by,
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where β ≡ b

L
. The first summand in Eqs (6) and (7) represent the in-plane displacement of the mid surface and 

the second summand the bending displacement. The proposed displacement field departs with respect to classical 
Kirchhoff-Love plate theory7 in the following: i) the neutral plane is substituted by the curved surface, ws(X, Y) of 
the bent sheet and ii) the in-plane displacement of the mid surface is nonzero, albeit in-plane stresses are not 
exerted on the plate. The strain tensor induced by the dynamic deformation is given by,
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We calculate the elastic energy of the system by using,
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where Cijkl is the elastic tensor and Einstein summation convention is used. The unknown displacement functions, 
f and g, are obtained by solving the Euler-Lagrange equations corresponding to the elastic energy of the system. 
To find analytical solutions to the problem, the following assumptions must be adopted: i) the deformation of the 
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plate is symmetric about the y-axis of the thin plate and ii) the y-curvatures of the static and dynamic z displace-
ments are independent of the y-coordinate. We refer the x- and y- directions to the longitudinal and transversal 
directions of the plate. For the sake of simplicity, we also assume that the plate is an isotropic material. The ana-
lytic solution of the problem is detailed in the Supplementary Materials (Sect. S1). We here provide the resulting 
potential energy that takes the form, U =  Ub +  Us, where Ub is the bending energy and Us is the in-plane straining 
energy. The bending energy is given by,
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where η = h

L
, E is the Young modulus, and ν is the Poisson’s ratio; ∆ κx is the dynamic x- curvature at the longi-

tudinal axis of the plate and ∆ κy is the dynamic y- curvature. Importantly, the bending energy cost due to the 
dynamic deformation is independent of the previous static deformation of the plate.

The straining energy reads as,
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where κx(X) is the static x-curvature at the longitudinal axis of the plate and κy(X) is the static y- curvature. 
Interestingly, the straining energy depends on the orthogonal coupling between the static and dynamic cur-
vatures. The straining energy is zero when the sheet is only bent in one direction (e.g. ∆ κy =  κy =  0). This is in 
consistency with the topological constraints described above; uniaxial bending is compatible with zero straining 
of the neutral surface. However, in-plane stresses necessarily come up when the sheet, for instance, is initially 
bent in the transversal direction and then it is longitudinally bent. The in-plane stresses that act as a pulling force 
against the longitudinal bending.

We analyze the practical case, in which i) the initial static curvatures are constants and ii) the curved sheet is 
subject to longitudinal bending moment, so ∆ κy(X) ≈  − ν∆ κx(X). The relative change of stiffness in this case is 
independent on how the load is distributed along the plate in the dynamic deformation step,
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Equation (12) was compared with numerical results by the finite element method (FEM), showing an error 
below 10% for free plates with β <  0.4 (Supplementary Sect. S2). A glance at equation (12) allows direct under-

standing of the basic mechanisms of plate stiffening due to curvature. The increase of the stiffness scales like β

η
~

4

2
. 

Thus, in the limit of very thin plates η ≪  1, the stiffness may be dominated by the initial curvatures of the plate. 
The quartic dependence on β indicates that this is a purely plate effect; the stiffening goes to zero in the limit of 
narrow beams (β ≪  1). The effect of longitudinal curvature goes as ~ν2, being significantly smaller than the effect 
of transversal curvature. Transversal curving seems to be the most economical way to stiffen a thin plate structure. 
This may be the case of plant leaves. It is well-known the leaf-shapes have been optimized during evolution to 
absorb sufficient light and facilitate gas exchange10. From this point of view, leaves must be as wide, flat and thin 
as possible. However, leaf shape must also be optimized from the mechanical point of view; the leaf must support 
its own weight and external dynamic forces such as the pressure of winds11. Leaf curvature is genetically con-
trolled and it can be modified at wish in some species by gene mutation12. The large influence of curvature on the 
stiffness of thin and wide sheets suggests that leaf curvature has been targeted by evolution for optimization of 
their biological and structural functions. The effect of bending asymmetry observed with the paper sheet (Fig. 1) 
can be explained by the coupling term in Eq. (12), ~− νκxκy. The bending stiffness of a thin plate with x- and- y- 
curvatures of opposite sign is higher than in the case of x- and y- curvatures with the same sign. Bending asym-
metry plays a key role in the flight of insects. Detailed FEM simulations of insect wings have shown that chordwise 
camber of the insect wings induces significant wing stiffening and the coupling between chordwise and spanwise 
camber is the origin of the dorsal-ventral bending asymmetry13. Here, we provide simple analytical equations that 
enable an intuitive understanding of this phenomenon.

Equation (12) was deduced for plates with free edges. However, it is common in nature and engineering to find 
these structures with one of the edges clamped. In these cases, the transversal curvature is zero at the clamping 
end and it exponentially increases in the x direction with a characteristic length given by the cantilever’s width, 
tending to reach the asymptotic value (κy)

14. We accordingly modify equation (12) to include the clamping effect,
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The constant c depends on the shape of the dynamic deformation and must be computed by fitting Eq. (13) 
to FEM simulations. For the case of flexural bending in the fundamental vibration mode, c ≈  3.095. The error of 
Eq. (13) is below 5% when compared with FEM simulations for β <  0.4 (Supplementary Sect. S3).

Comparison of the Theory with a Experiment Based on a Macroscopic Cantilever Plate
We performed an easy experiment with a homebuilt macroscopic aluminum cantilever plate to validate our the-
oretical predictions (Fig. 4a). A step force was manually applied to the cantilever free end and the transient vibra-
tion was recorded by a smartphone camera (Fig. 4b) (Suppl. Sect. S4). The resonant frequency of a plate is related 
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to the spring constant, k, by the harmonic oscillator equation ω = k m/o  where m is the mass of the plate. 
Figure 4c summarizes the values of the resonance frequency for different curvature configurations. The flat can-
tilever plate at vertical orientation shows the lowest resonance frequency of about 4.4 Hz. When the cantilever is 
horizontally oriented, gravity induces longitudinal bending and the resonance frequency slightly increases to 
4.9 Hz. The aluminum sheet was then transversally bent with very small curvature (κy =  1.15 m−1, see inset in 
Fig. 4a) and then clamped. At the vertical orientation, the resonance frequency of the transversally curved canti-
lever largely increased to 8.4 Hz that is equivalent to an increase of the stiffness of 3.6 times. This proves the fun-
damental role of the transversal curvature in the stiffness of thin plates. To observe the bending asymmetry effect, 
the transversally curved cantilever was horizontally oriented with the transversal curvature inwards and outwards 
gravity. In consistency with our theory, in the first case, the resonance frequency decreases 0.7 Hz, with respect to 
the transversally bent cantilever at the vertical position, whereas, in the second case the resonance frequency 
increases 0.3 Hz. In order to quantitatively compare these results with the theory, we must extend our theoretical 
model to the case in which the static curvatures are not uniform as it is the case of gravity-induced bending 
(Suppl. Sect. S4). The comparison between theory and experiment shows a very good agreement (Fig. 4d).

Conclusions
Here, we demonstrate that small amounts of two-dimensional bending of thin plates lead to the development of 
in-plane stresses, and thus bending is not in general so energetically cheap as believed hitherto. Biaxial curving 
of thin sheets is perhaps the most efficient way to reinforce the mechanical stability of thin sheets. This ancient 
mechanism found in nature and in man-made structures has remained unexplained in physics. The theoretical 
model and simple equations provided here solve this long-standing problem shedding light in our understanding 
of thin sheet mechanics and bringing new and useful mathematical tools to a wide variety of fields such as natural 
science15, mechanical engineering and micro/nanotechnology16–20.
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