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ABSTRACT
We show that extreme value statistics are useful for studying the largest structures in the
Universe by using them to assess the significance of two of the most dramatic structures in
the local Universe – the Shapley supercluster and the Sloan Great Wall. If we assume that
the Shapley concentration (volume ≈1.2 × 105 h−3 Mpc3) evolved from an overdense region
in the initial Gaussian fluctuation field, with currently popular choices for the background
cosmological model and the shape and amplitude σ 8 of the initial power spectrum, we estimate
that the total mass of the system is within 20 per cent of 1.8 × 1016 h−1 M�. Extreme value
statistics show that the existence of this massive concentration is not unexpected if the initial
fluctuation field was Gaussian, provided there are no other similar objects within a sphere of
radius 200 h−1 Mpc centred on our Galaxy. However, a similar analysis of the Sloan Great
Wall, a more distant (z ∼ 0.08) and extended concentration of structures (volume ≈7.2 ×
105 h−3 Mpc3), suggests that it is more unusual. We estimate its total mass to be within
20 per cent of 1.2 × 1017 h−1 M� and we find that even if it is the densest such object of its
volume within z = 0.2, its existence is difficult to reconcile with the assumption of Gaussian
initial conditions if σ 8 was less than 0.9. This tension can be alleviated if this structure is
the densest within the Hubble volume. Finally, we show how extreme value statistics can be
used to address the question of how likely it is that an object like the Shapley supercluster
exists in the same volume which contains the Sloan Great Wall, finding, again, that Shapley is
not particularly unusual. Since it is straightforward to incorporate other models of the initial
fluctuation field into our formalism, we expect our approach will allow observations of the
largest structures – clusters, superclusters and voids – to provide relevant constraints on the
nature of the primordial fluctuation field.

Key words: methods: analytical – galaxies: clusters: general – dark matter – large-scale
structure of Universe.

1 IN T RO D U C T I O N

Since its discovery (Shapley 1930), the Shapley supercluster has
been the object of considerable interest because it potentially con-
tributes significantly to the velocity field in the local Universe (e.g.
Scaramella et al. 1989; Raychaudhury et al. 1991) and because the
existence of extremely massive objects such as Shapley constrains
the amplitude of the initial fluctuation field, and possibly the hy-
pothesis that this field was Gaussian.

Recent studies suggest that the Shapley supercluster contains a
few times 1016 h−1 M�, is overdense by a factor of the order of 2

�E-mail: shethrk@physics.upenn.edu (RKS); diaferio@ph.unito.it (AD)

and is receding from us at about 15 000 km s−1. These conclusions
are based on studies of the motions of galaxies (Bardelli et al. 2000;
Quintana, Carrasco & Reisenegger 2000; Reisenegger et al. 2000;
Proust et al. 2006; Ragone et al. 2006) and estimates of the masses
of X-ray clusters in this region (Reiprich & Böhringer 2002; de
Filippis, Schindler & Erben 2005). In addition, the fact that this
region is overabundant in rich clusters also allows an estimate of
its mass (Muñoz & Loeb 2008), not all of which may actually be
bound to the system (Dünner et al. 2007; Araya-Melo et al. 2008).
Whereas the other methods are observationally grounded, the mass
estimate from this last method (i.e. from the overabundance of rich
clusters) follows from the assumption that the initial fluctuation
field was Gaussian. Here, we refine this estimate of the total mass
of Shapley and compare it with the answer to the question: what is
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the probability distribution of the mass of the most massive object,
having the volume of Shapley, if it formed from Gaussian initial
conditions? We use extreme value statistics to address this question.
Although we do not explore this here, we note that our methods are
easily extended to incorporate non-Gaussian initial conditions.

Section 2 summarizes a number of properties of the Shapley
supercluster. Sections 3 and 4 describe our methods based on the
excursion set approach and extreme value statistics, and what they
imply for objects like Shapley, for which accurate estimates of the
masses of the constituent clusters are available. Section 5 shows
how to extend these approaches to study the Sloan Great Wall (Gott
et al. 2005), for which accurate mass estimates of the components
are not available. This requires combining a halo model (e.g. Cooray
& Sheth 2002) analysis of the galaxy population with a catalogue
of groups identified in this distribution. For the Sloan Digital Sky
Survey (SDSS), we use the clustering and group analyses of Zehavi
et al. (2005) and Berlind et al. (2006), respectively.

A final section summarizes our results, shows how extreme value
statistics can be used to answer the question of how unusual it
is that an object like the Shapley supercluster exists in the same
volume which contains the Sloan Great Wall, and discusses how
our methods allow observations of the largest structures – clusters,
superclusters and voids – to place interesting constraints on the
nature of the initial fluctuation field. Where necessary we assume
a flat � cold dark matter (�CDM) model with (�0,�b, h, σ8) =
(0.27, 0.046, 0.72, 0.8), but we also explore other choices of σ 8.

2 THE SHAPLEY SUPERCLUSTER

The largest redshift survey which includes the Shapley supercluster
suggests that it contains 8632 galaxies (Proust et al. 2006). These
have been grouped into 122 systems of galaxies with four or more
members (Ragone et al. 2006). We run a percolation algorithm on
this catalogue to identify the largest supercluster in this region. To
do so, we neglect the peculiar velocity of the clusters: i.e. each clus-
ter is assigned coordinates x1 = r cos δ cos α, x2 = r cos δ sin α and
x3 = r sin δ, where (α, δ) are its celestial coordinates and r = cz/H0.
Fig. 1 shows the pie diagram of these systems. Solid dots show the
40 systems belonging to the Shapley supercluster when we use a
linking length of 8 h−1 Mpc. According to the virial masses com-
puted by Ragone et al., 15 of these 40 clusters have masses larger
than 1014 h−1 M�. Summing the masses of these 40 clusters yields
5.42 × 1015 h−1 M�. The total mass is expected to be considerably
larger than this, because lower mass groups and galaxies are ex-
pected to contribute significantly to the total. Ragone et al. (2006)
use mock catalogues, based on the Very Large Simulation (VLS) of
Yoshida, Sheth & Diaferio (2001), to account for this missing mass,
and conclude that the total mass of Shapley is likely to be about
1.6 × 1016 h−1 M�.

To quantify the shape of the Shapley supercluster, we compute
the eigenvalues of the inertia tensor

Iij =
∑

k mkxkixkj∑
k mk

where i, j = 1, 2, 3, (1)

where mk is the mass of each cluster, the coordinates x are cen-
tred on A3558 and the sum is only over the cluster members. We
find the three eigenvalues 8.30, 5.48 and 2.73 h−1 Mpc. The eigen-
vectors are (−0.35, 0.04, 0.94), (−0.72, 0.63, −0.29) and (−0.60,
−0.78, −0.19). In this reference frame, the direction to the ob-
server is (−0.008, −0.85, 0.52): clearly, neither the shape nor the
eigenvectors are strongly distorted by redshift-space effects.

Figure 1. Systems of galaxies of the Ragone et al. (2006) sample in redshift
space. Solid dots are the clusters belonging to the Shapley supercluster
according to a percolation analysis with percolation length 8 h−1 Mpc.

If we neglect the fact that the 40 cluster members have masses
in the range [0.008, 6.717] × 1014 h−1 M�, and set mk = 1 for
all ks, the eigenvalues of the tensor of inertia are 7.69, 6.02 and
3.42 h−1 Mpc, i.e. they are not substantially different from the pre-
vious values. The associated eigenvectors become (−0.38, −0.08,
0.92), (0.78, −0.56, 0.28) and (−0.50, −0.83, −0.27). The first and
third vectors are essentially unchanged, whereas the middle eigen-
vector now points in the opposite direction. The change of direction
of this eigenvector is due to the combination of the spatial distri-
bution of clusters and their mass: the clusters with negative xs and
positive ys are more massive but less numerous than in the opposite
direction.

As a check, we have also applied our percolation analysis to an
X-ray survey of this region, which shows 41 extended sources (de
Filippis et al. 2005). A link-length of 8 h−1 Mpc links eight clusters,
and returns a total mass in X-ray clusters of 1.65 × 1015 h−1 M�,
where we estimated the mass of each cluster as follows:

M200

h−1
50 M�

=
(

Lbol

10A+40h−2
50 erg s−1

)1/α

, (2)

where A = −22.1 ± 1.3 and α = 1.807 ± 0.084 (Reiprich &
Böhringer 2002).1 With this recipe, only five out of the eight mem-
bers have masses larger than 1014 h−1 M�. It is reassuring that these
numbers are smaller than those of Ragone et al. (2006), because this
sample of X-ray clusters with known redshifts is clearly incomplete
(de Filippis et al. 2005). Therefore, in what follows, we use the
cluster catalogue from Ragone et al. (2006), rather than from the
X-ray data.

3 TH E E X C U R S I O N SE T A P P ROAC H

The previous section suggests that the total mass of the Shapley
supercluster is at least 5 × 1015 h−1 M�. In this section, we make

1 This differs slightly from Muñoz & Loeb (2008), who assume that M200 ∝
L1/1.6.
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a rather different estimate of the total mass. According to Ragone
et al. (2006), the inner 31 h−1 Mpc of Shapley centred on A3558
contains 58 galaxy systems: 19 of these have mass greater than
1014 h−1 M�. For such high masses, it is reasonable to equate each
cluster with a single halo. Integrating the halo mass function (Sheth
& Tormen 1999) from this lower limit to infinity shows that the
expected number in randomly placed spheres of this radius is only
2.67. This number depends on σ 8: reducing σ 8 to 0.7 changes
the expected count to 1.77; increasing to 0.9 makes the count 3.5.
Neither of these numbers is close to that observed.

However, if Shapley is an overdense region, then the relevant
comparison is not with the expected counts in a region of average
density, but one which is overdense (Muñoz & Loeb 2008). In
theories of structure formation from Gaussian initial conditions,
massive haloes are expected to be more abundant in dense regions,
and the mix of haloes is expected to also be different. In dense
regions, the halo mass function is expected to be top-heavy (Frenk
et al. 1988; Mo & White 1996; Sheth & Tormen 2002), so this is
an immediate signal that Shapley must be overdense in dark matter
(Muñoz & Loeb 2008). Measurements in the SDSS indicate that
the halo mass function in regions which are overdense in galaxies is
indeed top-heavy (Skibba et al. 2006; Abbas & Sheth 2007), so it is
interesting to ask if this effect is sufficient to explain the existence
of a region like Shapley.

To make this estimate, we will make the crude assumption that
Shapley is spherical, despite the fact that it is not, as we have shown
in the previous section. However, by considering the most massive
19 clusters within a distance of 31 h−1 Mpc from A3558, rather
than the system identified with the percolation analysis, we expect
to make this assumption more reasonable. We will return to the
issue of triaxiality in the final ‘Discussion’ section.

Let N̄δ denote the mean number of haloes with mass above thresh-
old Mmin in a region which has volume V and contains mass M (so
the mass overdensity is 1 + δ = M/ρ̄V ). Then

N̄δ =
∫ M

Mmin

dmN (m, δc|M,V ). (3)

In our analysis of Shapely, we will set Mmin = 1014 h−1 M� to
match Ragone et al.’s assertion that Shapley has 19 members more
massive than this. This number increases as M increases; the pre-
cise dependence can be computed following arguments in Sheth &
Tormen (2002), which build on the work of Mo & White (1996), and
are within the framework of the excursion set approach (Bond et al.
1991; Lacey & Cole 1993).2 This approach requires an estimate of
the relation between the overdensity in linear theory, δL, and the
actual non-linear overdensity 1 + δ. We use the spherical model to
do this:

1 + δ ≈
(

1 − δL

δsc

)−δsc

, (4)

where δsc ≈ 1.675.
Let p(M|V) denote the probability that a randomly placed cell of

size V contains mass M. If we assume that halo counts in cells of
mass M follow a Poisson distribution with mean N̄δ (see Sheth &
Lemson 1999, for why this is only accurate for large cells), then

2 Note that the procedure followed by Muñoz & Loeb (2008) for estimating
N̄δ will yield large-scale halo bias factors which are the same as those of
Mo & White (1996); these are known to be inaccurate (Sheth & Tormen
1999). Our procedure produces bias factors which are in better agreement
with simulations.

the probability that a cell of size V , in which there are N clusters,
contains mass M is

p(M|N,V ) = p(N |M,V ) p(M|V )

p(N |V )
, (5)

where

p(N |V ) ≡
∫

dM p(N |M,V ) p(M|V ), (6)

and the Poisson assumption means

p(N |M,V ) ≡ N̄N
δ

N !
exp(−N̄δ). (7)

To proceed, we require a model for the probability p(M|V) that a
randomly placed cell of size V contains mass M. Now, p(M|V) can
be estimated using the same excursion set framework as is used in
the calculation of N̄δ (Sheth 1998). Alternatively, on large scales,
it could also be estimated using perturbation theory (Bernardeau
et al. 2002). On these large scales, these two approaches are in good
agreement: the shape of p(M|V) whose results are reasonably well
approximated by a Lognormal (Lam & Sheth 2008):

p(M|V ) dM ≈ exp
(−y2/2σ 2

L

)
σL

√
2π

dM

M
, (8)

where y = ln (1 + δ) + σ 2
L/2, and σ 2

L is the variance in linear theory
on scale V . For σ 8 = (0.7, 0.8, 0.9) and V = (4π/3)(31 h−1 Mpc)3

our linear power spectrum yields σ L = (0.23, 0.26, 0.29).
Fig. 2 shows how N̄δ , computed following Sheth & Tormen

(2002), increases with total mass M for our three choices of σ 8.
This, with N = 19 in equation (5), allows us to constrain the ex-
pected values of M. The solid curve in Fig. 3 shows p(M|N, V)
when σ 8 = 0.8. Fig. 4 shows p(M|N, V) for σ 8 = 0.7 (top) and
σ 8 = 0.9 (bottom). In effect, these are estimates of the total mass,
and hence overdensity, of Shapley. Notice that these distributions
shift slightly with σ 8. The sense of the trend is easily understood:
when σ 8 is small then massive haloes are rare, so the environment
must be that much more extreme to produce the observed number
of clusters. At the peak values log (M/h−1 M�) = (16.28, 16.26,

Figure 2. Expected number of clusters with masses greater than
1014 h−1 M� as a function of the total mass of the supercluster. The ex-
pected number increases as σ 8 increases.

C© 2011 The Authors, MNRAS 417, 2938–2949
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Shapley and the Sloan Great Wall 2941

Figure 3. Comparison of the excursion set estimate of the mass of the
Shapley supercluster (solid) with the expected mass of the densest of N =
(200/31)3 and the sixth densest of N = (575/31)3 randomly placed cells
having the same volume as Shapley (dashed and dotted), when σ 8 = 0.8.

16.25), the associated overdensities are (1 + δ) = (2.07, 1.99, 1.93)
so the linear theory overdensities are δL = (0.60, 0.56, 0.54), mak-
ing (δL/σ L) = (2.60, 2.15, 1.86). These indicate that Shapley is not
particularly unusual.3 We argue in Section 4.1 that to estimate the
initial ‘peak height’, it may be more appropriate to use σ L(M) rather
than σL(ρ̄V ). This yields higher values: δL/σ L = (3.35, 2.75, 2.33).
All these results are summarized in Table 1. It is remarkable that
our analytic estimate of the total mass is so similar to that derived
by Ragone et al. (2006) using mock catalogues: for σ 8 = 0.9 (the
value in their mocks), our estimate is only 10 per cent larger than
theirs, which is itself in good agreement with earlier work (Bardelli
et al. 2000).

Upon evaluating an integral that is very similar to the one which
defines N̄δ , the excursion set approach also yields estimates of the
typical mass fractions in such clusters. If we use f δ to denote this
fraction, then

f̄δ =
∫ M

Mmin

dmN (m, δc|M,V ) (m/M). (9)

At the peak values shown in the figures, f̄δ = (0.14, 0.18, 0.22)
for σ 8 = (0.7, 0.8, 0.9). Since the total observed mass in these
19 clusters is 5.27 × 1015 h−1 M�, these mass fractions suggest
total Shapley masses of log (M/h−1 M�) = (16.57, 16.47, 16.38).
These values are larger than the peak values from the excursion set
approach, because the expression above assumes that the observed
number of clusters is equal to N̄δ , whereas it is actually larger by a
factor of (1.7, 1.6, 1.5). Increasing f̄δ by these factors reduces the
estimated total Shapley mass to log (M/h−1 M�) = (16.34, 16.26,
16.20). These values are in excellent agreement with our estimate
above, which was based on the fact that 19 clusters more massive
than 1014 h−1 M� were observed, but no other information about
their masses was used, though the agreement is best for σ 8 = 0.8.

3 For σ 8 = 0.8, our estimate of δL/σL is close to that of Muñoz & Loeb
(2008); our estimates of the total mass differ because they used a substan-
tially larger volume estimate than do we.

Figure 4. Dependence of the estimated mass of the Shapley supercluster
(solid) and of the densest of (200/31)3 randomly placed Shapley-sized cells
(dashed) on σ 8.

Table 1. Estimated initial fluctuation height and mass of the
Shapley supercluster. The values listed in Columns 2 and 3
show that this large concentration of galaxies is not unlikely.

Excursion Extremes
σ 8 δL/σL δL/σL(M) log10Mh/M� log10Mh/M�
0.7 2.60 3.35 16.28 16.22
0.8 2.15 2.75 16.26 16.25
0.9 1.86 2.33 16.25 16.29

4 EXTREME VA LUE STATI STI CS

It is interesting to compare the mass estimates derived above with
the mass associated with the densest of N randomly placed cells,
where N is the ratio of Shapley’s volume to that in which it was
found. If the masses agree, then this would suggest that although
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Shapley is extreme, it is not unusually so. Note that, despite the
similarity, this is a different question from the one which is more
often asked: is the region containing Shapley the densest of its size
in the entire sphere centred on our galaxy which contains Shapley?

Given a total survey volume, the mass of the densest of N cells
placed randomly in this volume (i.e. large compared to the cells) –
which we will estimate below – is certainly smaller than the mass
associated with the question that is more usually asked. This is
because one might think of this densest region as a particularly
carefully placed cell. In particular, one would have to throw a large
number of cells (compared to N) before one lands in just the right po-
sition to find this densest region. We discuss the difference between
these two extreme value estimates in Section 4.3. Of course, both
require an assumption about the volume within which Shapley was
found. We will assume that this is a sphere with radius 200 h−1 Mpc,
and will discuss how our results depend on this choice shortly (e.g.
following equation 12).

If P1(< M|V) denotes the probability that the most massive of
the N = (200/31)3 regions of volume V = VShapley that are within
200 h−1 Mpc is less massive than M, then P1(< M|V) must equal
the probability that each of the N ≈ 270 cells is less massive than
M. Thus

P1(< M|V ) =
∫ M

0
dM p1(M|V ) ≈ p(< M|V )N, (10)

and, by taking the derivative,

p1(M|V ) ≈ N p(M|V ) p(< M|V )N−1. (11)

Appendix A discusses this approximation further.
Before we use this expression, notice that if M1/2 denotes the me-

dian value of the expected mass, i.e. that at which P1(< M1/2|V) =
1/2, then

− ln(2)

N
≈ ln[1 − p(> M1/2|V )] ≈ −p(> M1/2|V ), (12)

where we have assumed that p(> M|V) 	 1 in the tail of the
distribution. This shows that the mass returned by our approach
is approximately the same as that given by setting Np(> M|V) =
1 (because ln 2 is of the order of unity), which makes intuitive
sense. It also illustrates that the mass estimate depends on N: if the
large M tail falls exponentially, then M1/2 ∝ ln (N/ln (2)). That is, the
expected mass increases approximately as ln (N), so the dependence
on N, and hence on our assumption that V is the comoving volume
within 200 h−1 Mpc, is weak.

This means that one can devise a test which asks if the survey
volume which is required to make a certain mass object the densest
of its type does indeed contain only one such object. Alternatively, if
the survey volume is known but the mass is not, then the assumption
that the object is the most massive actually yields an estimate of its
mass. We will show below that Shapley passes either of these tests
for currently acceptable values of σ 8.

Finally, we note that the mass estimate can be rather precise. If we
use M0.84 to denote the value of the mass below which 84 per cent
of the probability lies, namely the value at +1σ , then, for an expo-
nentially falling distribution in M, M0.84 ∝ ln (N/ln (1/0.84)), so

M0.84

M1/2
= 1 + ln(ln(2)/ ln(1/0.84))

ln(N/ ln(2))
= 1 + 1.38

ln(N/ ln(2))
. (13)

For N = 1000 the fractional error on M1/2 is 0.19, and it decreases
as ln (N) increases.

4.1 Extremes in the initial conditions

To illustrate the approach, suppose that the probability distribution
function (PDF) associated with scale V is a Gaussian with variance
σ L. Then the extreme-value mass and survey volume are related,
through equation (12), by

erfc

(
δL

σL

√
2

)
= 2 ln(2)

VSurvey/V
, (14)

where δL is related to M/V by equation (4). The previous section
argued that, if σ 8 = 0.8, then, for an object like Shapley, σ L = 0.26
and δL/σ L = 2.15. These values in equation (14) imply VSurvey/V ≈
44. Since this is substantially smaller than 270, there should be at
least six other Shapley-like objects within 200 h−1 Mpc of us. This
is unlikely. Alternatively, requiring VSurvey/V = 270 means δL/σ L =
2.8. For σ L = 0.26, the associated non-linear overdensity is 1 +
δ = 2.6 making the estimated mass 1016.42 h−1 M�. This is about
0.18 dex larger than that from the excursion set approach, indicating
that although Shapley is a rich concentration, it is not more extreme
than one would expect on the basis of random statistics. Therefore,
it would not be unexpected to find an even more extreme object of
its volume in the local universe.

One can improve on these estimates by noting that if one is using
the linear PDF, then the appropriate smoothing scale is not V but
the associated initial scale M/ρ̄, and σ L should also be computed
on the scale M/ρ̄ rather than V (e.g. Lam & Sheth 2008). Since σ L

is smaller than before, δL/σ L will be larger, and we now require

erfc

(
δL

σL(M)
√

2

)
= 2 ln(2)

VSurvey/V (1 + δ)
. (15)

The result is that VSurvey/V ≈ 232(1 + δ) = 464. Thus, Shapley is
consistent with being the densest of (200/31)3 cells, so we should
not be surprised if we find another comparable or even more massive
object in a survey that is only slightly deeper. Alternatively, if we
set VSurvey/V = 270, then equation (15) requires Shapley’s mass to
be 1016.245 h−1 M�, which is in good agreement with the excursion
set analysis.

4.2 Extremes in the non-linear field

It is interesting to contrast this treatment, which uses extreme value
statistics of the initial PDF, with an analysis based on the non-linear
PDF. In the previous section, we used the fact that the Lognormal
distribution (equation 8) is a reasonably accurate model. In this
case, the distribution of ln (M) is Gaussian, so the previous analysis
goes through except that now

erfc

(
ln(M/ρ̄V ) + σ 2

L/2

σL

√
2

)
= 2 ln(2)

VSurvey/V
. (16)

The associated estimate for VSurvey/V = N given the excursion set
mass of 1016.26 h−1 M� and σ L = 0.26 is 270. The small differences
compared to the previous estimates can be understood as deriving
from the fact that the term in brackets in the erfc above effectively
makes Shapley a fluctuation of height 2.79 (for σ 8 = 0.8).

In fact, the distribution of the expected mass is skewed. Hence,
to provide a more direct comparison with the mass estimates from
the previous section, which we also expressed as distributions, the
dashed curves in Figs 3 and 4 show equation (11) for the same
lognormal distributions of p(M|V) that we used in the excursion
set calculation. The overlap between the solid and dashed curves is
remarkable, given how very different these two methods are. For
example, for this calculation, the most probable mass M decreases
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as σ 8 decreases (dashed curves in Fig. 4), because small values
of σ 8 mean that large deviations from the mean value are rarer;
this trend is opposite to that for the excursion set approach, where
small values of σ 8 mean massive haloes are rarer, so the total mass
M from which to obtain the observed number of massive haloes
must be larger. So it is interesting that the match between these
two approaches is slightly better for σ 8 = 0.8 than for the other
two cases. When σ 8 = 0.8, then Shapley is consistent with being
the most massive of a random set of regions of volume VShapley in
the local Universe; if σ 8 = 0.9, then Shapley lies at the low-end
of the expected extreme-mass distribution; if σ 8 = 0.7, then it lies
at the high-mass end.

These curves show that, if it is the most extreme object within
200 h−1 Mpc, then the existence of Shapley is easily accommodated
in models with high σ 8; even σ 8 = 0.7 is not problematic. On the
other hand, if σ 8 = 0.9, then, we will not have to increase the
survey volume much before we see another object that is more
extreme than Shapley. However, if σ 8 = 0.7, then Shapley should
be the most extreme object even in a volume that is larger by a
factor of 2. It happens that there is indeed a very large structure in
the volume which lies just beyond Shapley. The next section studies
this structure in more detail.

But before we do, it is worth noting that our extreme value mass
estimate is rather precise: the widths of the dashed curves in Figs 3
and 4 are typically less than 0.1 dex. While this level of precision
may be surprising, we note that its origin is understood: setting N =
270 in equation (13) yields a fractional uncertainty of 0.23, which
corresponds to 0.1 dex.

4.3 Peaks and extremes

So far, the extremes we have been considering are associated with
the statistics of randomly placed cells. However, we noted that we
are often more interested in ascertaining whether or not a particular
object is an extreme outlier – since we have determined the location
and size of the object a priori, treating it as a randomly placed
cell is no longer appropriate. At least for sufficiently overdense
extremes, there is a relatively straightforward way to account for
this difference. This is because sufficiently overdense objects in the
non-linear density field typically correspond to large fluctuations in
the initial field: i.e. νL ≡ δL/σ L 
 1. For such objects, it should
be a good approximation to assume they formed from high peaks
in the initial field (also see discussion in Colombi et al. 2011). The
expected number density of peaks above some ν t (which we would
like to estimate) is related to the probability that a randomly placed
cell lies above this same threshold as follows. Typically, one can
move the cell which defined the peak around a little bit without
significantly changing the height of the fluctuation in it. If we think
of this as defining a volume around each peak, then

P (≥ νt) = erfc(νt/
√

2)

2
= vol(≥ νt) npk(≥ νt). (17)

If the peak was associated with smoothing scale RM , then this vol-
ume satisfies

vol(> νt) = (2π)3/2R3
M

(γRM/R∗)3
(
ν3

t − νt

) as νt → ∞ (18)

(Bardeen et al. 1986). This shows that the volume scales approx-
imately as ν−3

t , with prefactors that can be understood as follows.
The volume of a Gaussian smoothing filter is (2π)3/2 R3

f , so the
numerator is the moral equivalent of what we have been calling
the volume of the randomly placed cell in the initial conditions:

V(1 + δ). This means that

VSurvey

V (1 + δ)
P (≥ νt) = npk(≥ νt) VSurvey

(γRM/R∗)3
(
ν3

t − νt

) . (19)

If we now replace the requirement that [VSurvey/V(1 + δ)] P(≥ ν t) =
1 with the requirement that npk(≥ ν t) VSurvey = 1 (see equation 12
and below), then this means that we now want

VSurvey

V (1 + δ)
P (≥ νt) = 1

(γRM/R∗)3
(
ν3

t − νt

) . (20)

Comparison with equation (15) shows that the required VSurvey is
reduced by a factor proportional to (ν3

t − ν t). For scale-free spectra,
(γ RM/R∗)3 = [(n + 3)/6]3/2, and, for the large smoothing scales of
interest here (∼30 h−1 Mpc), we can think of a �CDM model as
having n between 0 and −1. This makes the required VSurvey smaller
by a factor of approximately 23/2/ν3

t or 33/2/ν3
t . Alternatively, if

VSurvey/V is fixed, then the associated value of ν t, and hence the
associated mass estimate, will be larger than before. Although the
relation between the value from the peaks calculation and that for
random cells depends on ν t, at ν t ∼ 5 (the high peaks of most interest
here), the peaks calculation returns approximately 1 plus the value
from the random cells calculation.

We can combine extreme value and peak statistics to make a
slightly more detailed statement. Namely, for a given ratio of survey
to peak volume, what is the expected distribution of the height of
the highest peak? The same logic which led to equations (10) and
(11) implies that

p1pk(ν) ≈ npk(ν) VSurvey exp[−npk(> ν)VSurvey]. (21)

(The Appendix discusses how one might go beyond the Poisson/
independent cells assumption.) Fig. 5 shows this distribution for a
number of choices of

Neff ≡ (γRpk/R∗)3 VSurvey

(2π)3/2R3
pk

. (22)

To make the plot, we have used the ν 
 1 approximation (4.14) of
Bardeen et al. (1986) rather than the full expression for npk(ν), since
we only expect this analysis to be valid for ν 
 1. But this does not
affect the main point we wish to make: that the height of the highest

Figure 5. Dependence of the extreme value estimate of the height of the
highest peak on the ratio of survey to peak volumes.
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peak is only a weak function of Neff . This is the analogue of the
statement we made previously about the weak dependence of M1/2

on N. The lesson is that very large survey volumes are required to
reach large values of ν.

Note in particular that this analysis is only valid for ν larger than
the one given by the excursion set analysis of Shapley, so we will
not make numerical estimates of these effects here. However, in the
next section, we will be interested in larger ν, and this analysis will
then be useful.

5 THE SDSS GREAT WALL

A dramatic structure at z ∼ 0.08 is seen in the 2dF and SDSS galaxy
surveys. Now known as the Sloan Great Wall (Gott et al. 2005), it is,
like Shapley, a region containing an overabundance of rich clusters.
We would like to perform a similar exercise to determine if it too
can be easily accommodated in Gaussian theories. However, in this
case, we do not yet have mass estimates of its members, and the
appropriate lower limit in equation (3) is unknown. Therefore, we
have extended our approach as follows.

5.1 Percolation estimates of Wall volume

We begin with the SDSS percolation catalogue of groups in the
SDSS (Berlind et al. 2006). This provides a list of about 4100
groups having three or more members brighter than Mr = −19.9.
We perform our own percolation analysis on this group catalogue
to identify the members of the Great Wall. The size of the Wall
depends on the parameters of our percolation analysis; we have
found that a link-length of 8 h−1 Mpc returns a catalogue that closely
corresponds to the contiguous structure picked out by eye. This is
approximately given by 0.07 ≤ z ≤ 0.092 and 0 ≤ Dec. ≤ 6 if 185 ≤
RA ≤ 210 and 0.07 ≤ z ≤ 0.080 and 0 ≤ Dec. ≤ 6 if 166 ≤ RA ≤
185. The underlying group catalogue and the Great Wall members
identified by our analysis are shown as dots and filled circles in
Fig. 6. The Wall defined in this way contains 2180 galaxies in 335
groups. It has a volume of approximately 2.3 × 105 h−3 Mpc3, so
its effective radius is about 38 h−1 Mpc; σ L = 0.212 (σ 8/0.8) on this

scale. We note that the Wall appears to extend beyond the SDSS
footprint towards negative declination. Because this cut reduces
our estimates of both the number of group members and the total
volume, neither our excursion set nor our extreme value analyses
are strongly affected by this cut.

However, the structure is highly triaxial, with its second principal
axis rather well-aligned with the line of sight. The eigenvalues of
the inertia tensor scale as 11:2.5:1. The associated eigenvectors
are (0.99, −0.12, 0.13), (−0.14, −0.95, 0.29) and (−0.09, 0.30,
0.95), in a coordinate system where the direction to the observer
is (−0.01, −1.00, −0.09). This means that redshift-space effects
are most pronounced on our estimate of the length of the second
axis. For a structure as large as this, the redshift-space volume is
smaller than the real-space volume. Fig. 6 suggests that, along the
line of sight, the structure varies from about 5000 km s−1 to about
2000 km s−1. If we assume that line-of-sight velocities are unlikely
to exceed 1000 km s−1, then the true structure may be larger in the
redshift direction by a factor of between 1.2 and 1.5. Hence, we
may have underestimated the true volume of the Wall by this same
factor. In Section 5.3, we will show that although our estimate of
the mass of the wall is approximately proportional to this correction
factor, our conclusions about whether or not the Wall is unexpected
are not very sensitive to this uncertainty.

Our choice of link-length makes the Wall significantly smaller in
extent than claimed by Gott et al. Indeed, our estimate of the Wall’s
volume makes it only (38/31)3 = 1.8 times larger than Shapley.
A link-length of about 12 h−1 Mpc is required to get something
approaching their definition (open circles). In this case, the total
volume is about 7.2 × 105 h−3 Mpc3 (effective radius 55 h−1 Mpc),
σ L = 0.139 (σ 8/0.8), and the structure contains 3663 galaxies in 645
groups. Again, varying the total volume by ∼30 per cent makes little
difference to the nature of our conclusions below. More importantly,
we will show that although our estimates of the mass in the Wall
do depend strongly on the link-length used to define the Wall (the
longer link-length yields a Wall with three times the volume, so one
naively expects the mass to be about three times larger as well), our
conclusions about how unusual the Wall is do not depend strongly
on this choice.

Figure 6. The Great Wall in the SDSS (filled circles), identified by a percolation analysis of the SDSS percolation group catalogue (dots). Open circles show
the additional members which are included if the percolation link-length is increased from 8 h−1 Mpc to 12 h−1 Mpc.
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5.2 A halo model-excursion set estimate of the Wall mass

A halo model analysis of the underlying galaxy catalogue (i.e. SDSS
galaxies with Mr < −19.9) suggests that only haloes above Mmin =
1012 M� host such galaxies. In haloes of mass m which host such
galaxies, the probability of hosting Ns additional galaxies (with
Mr < −19.9) is given by a Poisson distribution with mean

〈Ns |m〉 =
(

m

23 Mmin

)1.16

(23)

(Zehavi et al. 2005). To an excellent approximation, this relation
between the galaxy population and halo mass is independent of
environment (Abbas & Sheth 2007). This is a key point, because it
means that the relation above is expected to be as accurate for the
haloes in the Sloan Great Wall as elsewhere. Moreover, this assump-
tion has also been shown to accurately reproduce the properties of
the galaxies in the percolation group catalogue we are using here
(Skibba, Sheth & Martino 2007).

In the present context, the accuracy of the halo model decom-
position, and of the Poisson distribution of Ns in particular, means
that we expect the fraction of haloes of mass m which host three or
more galaxies to be

f3(m) = 1 − e−〈Ns |m〉(1 + 〈Ns |m〉). (24)

Similar expressions for fn(m) can be defined for arbitrary n. Hence,
the expected number of haloes containing n or more galaxies
brighter than Mr = −19.9 that are in cells of volume V containing
total mass M is

N̄δ =
∫ M

Mmin

dmN (m, δc|M,V ) fn(m), (25)

where Mmin = 1012 h−1 M� and N(m, δc|M, V) is the same quantity
as before (cf. equation 3), but with the new value of V . Indeed, the
only significant difference from equation (3) is that we have now
included a factor of fn(m) to account for the fact that only a fraction
of haloes of mass m are expected to be in the group catalogue. Note
that this factor does not depend on M or V , because the large-scale
environment does not affect equation (23).

With this expression for N̄δ in hand, we can now use equation (5)
along with the observed number N of groups having n or more
galaxies, and our estimate of the total volume V of the Great Wall
to estimate its mass M. For σ 8 = 0.8, the rms fluctuation on scale V
in linear theory is σ L = 0.142. As before (equation 7), we assume a
Poisson distribution for the number of groups, but now with mean
given by equation (25).4 An important check on our approach is to
perform this analysis for a range of values of n: the inferred mass
distribution should not be sensitive to this choice. For n = (3, 4, 5,
6, 7, 8, 9, 10) the observed number of groups is Ngroups = (335, 199,
132, 96, 75, 68, 60, 49) when the link-length is 8 h−1 Mpc. For the
longer link-length 12 h−1 Mpc, Ngroups =(645, 361, 219, 155, 117,
96, 84, 69).

The curves in the top panel of Fig. 7 show a number of estimates
of the mass of the Great Wall, when the link-length is 8 h−1 Mpc
and σ 8 = 0.8. The dotted curve, which is shifted towards larger
masses than any of the other curves, is for n = 3. This offset may
be due to the difficulties associated with identifying small groups.
For n > 5, the distributions overlap: we have shown n = 6, 7 and 8.

4 This follows from the Poisson assumption for halo counts in cells (M, V),
the fact that a random subsample of a Poisson distribution is Poisson, and
because the distribution of the sum of Poisson distributed numbers is Poisson
with mean given by the sum of the means of the individual distributions.

Figure 7. Comparison of the excursion set estimate of the mass of the Sloan
Great Wall (solid) with the expected mass returned from the extreme value
statistics approach (dashed) if σ 8 = 0.8. Top and bottom panels show results
when the Wall and its members are defined using link-lengths of 8 h−1 Mpc
and 12 h−1 Mpc, respectively. Different solid curves in each panel show the
excursion set results for groups having more than n = 6, 7 and 8 members;
the dotted curve is for n = 3. The excursion set mass estimate shifts to
lower masses as n increases, although it is quite stable around n = 7; it is
significantly larger than the estimate from extreme value statistics.

This is a non-trivial self-consistency test of our method. However,
at n > 10 (not shown) the distributions shift further towards smaller
masses; it may be that here we are in the regime of small number
statistics, where the number of groups contributing to the estimate
has dropped below 50, so that Poisson errors on Ngroup are more
than 10 per cent of Ngroup.

These curves suggest that the total mass in the Wall is about
1016.77 h−1 M�, meaning that the structure is about 3.55 times
denser than the background. This in equation (4) gives the asso-
ciated linear theory density δL. In terms of the linear theory rms on
this scale, we find δL/σ L = 4.2. Using σ L(M) instead makes this
6.6. The overdensity in haloes depends on n; it has 10 times the
expected number of haloes when n = 9, but nine times the expected
mean number when n = 7. This is consistent with the fact that dense

C© 2011 The Authors, MNRAS 417, 2938–2949
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2946 R. K. Sheth and A. Diaferio

regions are expected to be overabundant in massive haloes, and in-
creasing n removes lower mass haloes. The associated mass fraction
in the observed groups (equation 9) varies from about 40 per cent
for n = 4 to about 30 per cent for n = 9.

The corresponding results when the Wall is defined by the longer
link-length are shown in the bottom panel. In this case, the total mass
in the Wall is M = 1017.1 h−1 M�, so it is 2.25 times the background
mass density, making δL/σ L = 4.6; using σ L(M) instead makes this
6.3. The overdensity in haloes is about 5, and the observed groups
account for about 20 per cent of the total mass. This smaller mass
fraction is a direct consequence of defining the Wall as a looser
structure.

5.3 Extreme value statistics

The dashed curves in the two panels show the estimate of the mass
associated with the extreme value statistics argument of Section 4.
This estimate requires as input the total survey volume, which we
have set equal to the total comoving volume within z = 0.2, making
VSurvey/VWall = 3456 and 1100 for the two (short and long) linking
lengths. In contrast to when we performed this analysis for the
Shapley supercluster, the dashed curve now lies to the left of the
solid curves: the excursion set estimates of the mass significantly
exceed those expected based on extreme value statistics. This means
that if the excursion set estimates are reliable, then the existence of
the Wall is difficult to reconcile with the standard model.

Increasing σ 8 alleviates the discrepancy slightly, as Fig. 8 illus-
trates (solid and long-dashed curves). If σ 8 = 0.9 and n = 7, then
the excursion set analysis of the structure defined by the 8 h−1 Mpc
link-length estimates a mass overdensity of 3.7, a halo overdensity
of 7.7, δL/σ L = 3.8 and δL/σ L(M) = 6.2. These numbers are 2.2,
4, 4.04 and 5.5 when the link-length is 12 h−1 Mpc (Table 2). For

Figure 8. Similar to the previous figure, but now σ 8 = 0.9. The left-most
long-dashed curve shows the extreme value result for the shorter (8 h−1 Mpc)
link-length; the short-dashed curve just to the right of it shows the result of
increasing VWall by 30 per cent, to approximately account for z-space effects.
The solid and dotted curves to the right of this curve show the corresponding
excursion set estimates (we only show the n = 7 result). The next set of long-
and short-dashed, solid and dotted curves show these same quantities when
the Wall is defined by the longer (12 h−1 Mpc) link-length.

either structure, these are significantly larger than the extreme value
estimate of the expected mass of the densest object.

The second set of curves associated with each estimate (short-
dashed and dotted lines) shows the result of accounting crudely for
redshift-space effects by increasing the Wall volume by 30 per cent.
To the first order, increasing the volume increases all the mass es-
timates, but does not change the discrepancy between the extreme
value and excursion set estimates. This is the basis for our claim
earlier that accounting for z-space distortions does not change our
conclusions. A more careful look shows that the extreme value and
excursion set mass estimates shift upwards by slightly different
amounts: about 0.1 and 0.05 dex, respectively. As a result, although
the peaks are still quite well-separated, the tails of the mass esti-
mates overlap slightly more. This means that the tension between
excursion set and extreme value masses is alleviated somewhat,
particularly for the 12 h−1 Mpc link-length.

Thus, however we define it, the Wall is substantially more mas-
sive compared to the expected mass of the densest of VSurvey/VWall

randomly placed cells. This can be appreciated directly from the
fact that the excursion set analyses returned estimates of δL/σ L ≈
4 for the Wall, compared to ≈2 for Shapley (for σ 8 = 0.8), even
though VSurvey/VWall is not much larger than (200/31)3.

It is interesting, therefore, to ask if its mass is also difficult to
reconcile with the peaks model of Section 4.3, which attempts to
account for the fact that the Wall is not just a randomly placed
cell. In this case, an object with the mass and volume of the Wall
would not be unusual only if it is the largest structure within a
few times 108 VWall, i.e. essentially within the Hubble volume.5

Expressed another way, if σ 8 = 0.8 then the expected mass of the
most extreme peak within z = 0.2 is 1016.57 or 1016.95 for our two
definitions of the Wall. Although these are slightly larger than the
randomly placed cells estimate, they are significantly smaller than
the excursion set estimate.

6 D I SCUSSI ON AND A N EXTENSI ON

We discussed a number of methods for estimating the masses of
extreme objects in the Universe, and applied them to two of the most
dramatic objects in the local Universe: the Shapley supercluster and
the Sloan Great Wall. We used a percolation analysis to define these
systems, and illustrated how our results depended on the link-length
(8 or 12 h−1 Mpc) used to define it.

In the case of Shapley, our estimate of the mass comes from com-
bining estimates of the masses of its constituents with an excursion
set analysis of the dependence of the halo mass function on the den-
sity of the local environment. Unfortunately, this was not possible in
the case of the Wall, since mass estimates of its constituents are not
available. In this case, we combined the excursion set analysis with
a Halo-Model interpretation of its constituent groups, themselves
identified from (optical) SDSS redshift survey data. Unfortunately,
this method cannot currently be applied to Shapley, since it lies
outside the SDSS footprint. This is also why we have not included
results from the recent analyses of the Wall by Einasto et al. (2010,
2011) – but we hope to do so soon.

We compared these mass estimates with that expected for the
densest object in an appropriately defined ‘local’ universe, and

5 We used δL/σL(M) ∼ 6.5 rather than δL/σL ∼ 4 to make this estimate. The
lognormal estimate of the effective peak height, 5.9, is not very different.
Fig. 5 shows that large Neff , and hence large volumes, are required to see
even one peak of this height.
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Table 2. Estimated initial fluctuation height, mass overdensity, galaxy overdensity and mass of the
SDSS Great Wall. The two upper rows refer to the 8 h−1 Mpc link-length and the two lower rows to
12 h−1 Mpc.

Excursion Extremes
V/105 h−3 Mpc3 σ 8 δL/σL δL/σL(M) 1 + δM 1 + δn log10Mh/M� log10Mh/M�

2.3 0.8 4.2 6.6 3.55 9 16.77 16.54
2.3 0.9 3.8 6.2 3.70 8 16.80 16.57
7.2 0.8 4.6 6.3 2.25 5 17.07 16.91
7.2 0.9 4.04 5.5 2.20 4 17.07 16.94

argued that the existence of Shapley is easily explained by cur-
rently popular models of structure formation (Figs 3 and 4); its mass
(1.82 × 1016 h−1 M�) is consistent with it being the most massive
object of its volume (1.25 × 105 h−3 Mpc3) within 200 h−1 Mpc.

On the other hand, the Sloan Great Wall (Fig. 6) is difficult to
explain, especially if the amplitude of the initial fluctuation field
was at the low end of currently accepted values (Figs 7 and 8). Its
mass (5.9, 12.6) × 1016 h−1 M�) is larger than expected for the
most massive object of its volume (2.3, 7.2) × 105 h−3 Mpc3 within
z = 0.2 (where the two numbers are for defining the Wall using
link-lengths of 8 or 12 h−1 Mpc, respectively). If σ 8 = 0.8, then in-
sertion of the excursion set estimate of its mass in our extreme value
statistics calculation suggests that it must be the densest object of
its volume within the Hubble volume. An analysis which combines
the excursion set estimate of the initial overdensity associated with
the Wall, δ/σ ≈ 6, with the assumption that this fluctuation was the
largest peak in the initial conditions, leads to a similar conclusion
(Fig. 5).

We are hesitant to make strong statements about whether this
makes the Great Wall inconsistent with Gaussian initial conditions
with acceptable values of σ 8, primarily because our current numbers
are based on assuming the Wall is spherically symmetric when it
clearly is not. For this reason, we are in the process of extending both
our methods – the excursion set and extreme value statistics analy-
ses – to account for this. Here, we are aided by the fact that the Wall
itself is not virialized. Hence, we can use the simple parametrization
of triaxial collapse from Lam & Sheth (2008) to generalize equa-
tion (4) for the mapping between non-linear and linear overdensity.
This can then be used in our excursion set analysis. With this esti-
mate of initial overdensity and shape in hand, we can modify our
extreme value statistics calculation by replacing the number density
of initial density of peaks of specified scale and height by adding
the constraint that comes from specifying the shape (e.g. Bardeen
et al. 1986). This is the subject of work in progress.

Our results suggest that the Sloan Great Wall is about five times
the volume and about the same factor times the mass of the Shapley
supercluster (we have used the larger mass and volume estimates of
the Wall). So one might wonder if Shapley is about the sixth most
extreme object of its volume within z = 0.2. It is straightforward
to extend our application of extreme value statistics to address this
question. In particular, the same logic which leads to equation (11)
implies that the expected distribution of the mass of the nth densest
region is

pn(M|V ) ≈
(

N

n

)
n p(M|V ) [1 − p(<M|V )]n−1

× p(<M|V )N−n (26)

(e.g. Gumbel 1966). The dotted curve in Fig. 3 shows this expres-
sion, evaluated with n = 6, N = 6375 and σ L = 0.24. This shows that

Shapley could easily be the sixth most massive object within z =
0.2 if σ 8 = 0.8. Thus, if objects such as the Horologium Reticulum
supercluster turn out to be comparable to Shapley, as some analy-
ses of the Local Group’s velocity dipole suggest (e.g. Kocevski &
Ebeling 2006), then their joint existence is not incompatible with
σ 8 = 0.8. (Also see Lavaux et al. 2010, for a list of other massive
objects which appear to affect local peculiar velocity flows.)

Of course, it is trivial to extend this sort of analysis to our ex-
treme value treatment of peaks: one simply replaces p(<M|V) →
exp(−npk(>ν) VSurvey). The Appendix discusses how to modify this
approach to account for the clustering of peaks. Similarly, one can
write down expressions for the joint probability distribution of the
masses of e.g. Shapley and the Great Wall, if we require one to be
the ith and the other the jth most extreme object of its type (recall
they may have different values of σ L) in the same survey volume –
although we have not reproduced them here.

One of the surprises of these analyses is, perhaps, the precision
of the mass estimates it returns: typically, these are of the order
of 15 per cent, for both the excursion set and the extreme value
statistics approaches. Although we provided some analysis for why
this is so (equation 13), it would have been nice to test our mass
estimates by combining the motions of the clusters in these systems
with an infall model. However, because the Shapley supercluster
and the Sloan Great Wall are both far from round (e.g. Section 2),
estimates based on the spherical collapse model are inappropriate.
Therefore, we are currently in the process of developing an infall
model based on the assumption of a triaxial collapse.

The precision of the mass estimates derives from the fact that the
extreme fluctuations we are considering are from Gaussian random
fields, in which extreme fluctuations are rare, so the distribution of
events on the tail will be similar to one another. However, it is almost
certain that, at least for the extreme value statistics calculation, this
is more generic. This is because a large class of initial distributions
have, as their limiting extreme value statistic, a double-exponential
form (Fisher & Tippet 1928; Gumbel 1966). In the astrophysical
context, this Fisher–Tippet or Gumbel distribution, and the study
of extreme value statistics in general, has a long history in the
study of the brightest galaxies in clusters (Scott 1957; Bhavsar &
Barrow 1985). Our work suggests that extreme value statistics may
continue to provide insight into the study of the largest structures
in the Universe.

In particular, it would be interesting to use this approach to see
if the sizes of the largest voids, or the masses of the most massive
clusters or superclusters (e.g. Luparello et al. 2011; Schirmer et al.
2011; Yaryura, Baugh & Angulo 2011), are consistent with the
hypothesis that the initial fluctuation field was Gaussian. There is
already a considerable literature on using cluster abundances to
constrain primordial non-Gaussianity (e.g. Paranjape, Gordon &
Hotchkiss 2011, and references therein). In principle, our approach
allows one to use the abundances of superclusters and voids to
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provide complementary constraints. To do so, one must know how
the halo mass function depends on the large-scale environment and
one must have a model for the non-linear probability distribution
function. For non-Gaussian initial conditions of the local type, such
models have recently become available (Lam & Sheth 2009), so
this can now be addressed.

On the other hand, it is not obvious that extreme value statistics
will be so useful if it becomes necessary to go beyond the spherical
approximation. In particular, if triaxial evolution is important, then it
may well be that the peaks based approach, which naturally accounts
for correlations between an object’s shape and its surroundings, will
prove to be the better language for discussions of just how unusual
certain configurations within the cosmic web are.

There is another reason why the peaks based language is attrac-
tive. Namely, we have focused on the densest extremes in the local
Universe, but the least dense regions are also interesting, and po-
tentially provide valuable additional constraints (e.g. Colberg et al.
2005; Platen, van de Weygaert & Jones 2008; van de Weygaert &
Platen 2010; Pan et al. 2011). For example, the Tully and Böötes
voids are thought to be as important as the superclusters in shaping
the local velocity flows (e.g. Lavaux et al. 2010). Halo-model-based
analyses of the large-scale clustering of such least dense regions
suggests that they formed from minima rather than maxima in the
initial fluctuation field (e.g. Abbas & Sheth 2007), so a peaks based
approach is very well suited for using the joint existence of massive
compact superclusters and large empty voids in our local neigh-
bourhood to constrain the nature of the initial conditions.
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APPENDI X A : O N THE APPROX I MATI ON O F
I NDEPENDENT C ELLS WHEN CALCULATING
EXTREME VALUES O F SPATI AL STATI STICS

The calculation of extreme value statistics reduces to one of writing
the probability that, of n draws from a distribution, none is above a
certain value. This raises the question of whether or not the draws
can be assumed to be independent picks. For the spatial statistics
we are considering here, in which each cell represents a pick, and
the total volume is the sum of the cells, the answer is clearly ‘no’
because there are correlations between the cells. On the other hand,
since the correlations decrease with cell separation, most cells will
only be strongly correlated with a few nearby cells. Moreover, since
we will generally be interested in large cells, even nearby cells are
likely to be only weakly correlated. So the assumption of indepen-
dence may in fact be quite good. The question is: are extreme value
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statistics likely to be distorted by even these weak correlations? Af-
ter all, the whole point of such statistics is that they are sensitive to
the tails of the distribution, and these are where (fractional) changes
to the distribution will be largest. In what follows, we quantify this
effect.

To proceed, we need an expression for the joint distribution of
n-draws. We will first use a multivariate Gaussian to illustrate the
argument, and then discuss possible generalizations. If δi denotes
the value of the field at position i, then the multivariate Gaussian
distribution is specified by the covariance matrix C, the elements
of which are Cij = 〈δiδj〉 (we are assuming 〈δi〉 = 0 for all i). In our
case, Cij will be a function of the separation r between cells i and j.
Namely,

Cij ≡ σ 2
ij (r)

σii(0)σjj (0)
where

σ 2
ij (r) ≡

∫
dk

k

k3P (k)

2π2
W (kRi)W (kRj )

sin(kr)

kr
, (A1)

and we have allowed for the fact that the cells of interest at position
i may have a different size than those at position j. In the main text
we were primarily interested in the case Ri = Rj. If the Ri are large,
and/or the separation between cells is large, then C will be close to
diagonal, so the n-point distribution will be well-approximated by
the product of n one-point distribution functions. As a result,∫ δc

−∞
dδ1 · · ·

∫ δc

−∞
dδn p(δ1, . . . , δn) ≈

n∏
i

∫ δc

−∞
dδi p(δi). (A2)

This is the approximation used in equation (10) of the main text.
The leading order correction to this can be obtained by writing
this in terms of integrals above δc, and then using previous results
for high peaks or dense patches (Bardeen et al. 1986; Jensen &
Szalay 1986) to evaluate the result, which shows that the expression
gets a correction factor which, to the lowest order, depends on the
two-point correlation function of regions above δc.

In practice, the present-day one-point distribution function is
no longer Gaussian. However, on large scales, it may be a good
approximation to assume that there is a monotonic mapping between
the non-linear overdensity and the linear one. For example, the main

text assumes that this mapping is well approximated by a lognormal.
If one assumes that this is also true of the n-point distribution
function, then we have a fully specified model of the non-linear n-
point function, expressed in terms of the initial Gaussian covariance
matrix. Now, the extreme value statistics care about the cumulative
distribution: the monotonicity of the mapping means that the net
effect of non-linear evolution is simply to shift the threshold of the
corresponding multivariate (linear theory) Gaussian. Once this shift
has been applied, then the previous analysis of the Gaussian case
goes through in its entirety. This justifies our use of equation (10),
and also shows how it might be improved.

A1 Including the clustering of extrema

Equation (21) in the main text follows from the assumption that
peaks are uncorrelated, so the probability that there are no peaks
in Vsurvey is given by the Poisson expression exp(−npkVSurvey). This
can be derived from equation (A2), by taking the limit of infinite
sampling (in which n → ∞, so the typical spacing between the cells
is no longer of the order of their size). Going beyond the Poisson
model requires a calculation of the higher order correlation func-
tions (White 1979). These are only known approximately (appendix
F in Bardeen et al. 1986). On large scales where these are small, the
required replacement in equation (21) is

npk(≥ ν)VSurvey → npk(≥ ν)VSurvey − [npk(≥ ν)VSurvey]2 ξ̄pk

2
,

where, for high peaks on large scales,

[npk(≥ ν) VSurvey]2ξ̄pk ≈ [npk(≥ ν)bpk(≥ ν)VSurvey]2ξ̄

≈
[
Neff (ν4 + ν2 + 2)

exp(−ν2/2)√
2π

]2
σ 2

0 (RSurvey)

σ 2
0 (Rpk)

. (A3)

Including this extra term affects the distributions shown in Fig. 5
for Neff < 103 or so (the peak shifts to slightly larger ν) but matters
little for larger Neff .
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