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ABSTRACT. Climate change presents unprecedented challenges for biological conservation. Agencies
are increasingly looking to modeled projections of species’ distributions under future climates to inform
management strategies. As government scientists with a responsibility to communicate the best available
science to our policy colleagues, we question whether current modeling approaches and outputs are
practically useful. Here, we synthesize conceptual problems with species distribution models (SDMs)
associated with interspecific interactions, dispersal, ecological equilibria and time lags, evolution, and the
sampling of niche space. Although projected SDMs have undoubtedly been critical in alerting us to the
magnitude of climate change impacts, we conclude that until they offer insights that are more precise than
what we can derive from basic ecological theory, we question their utility in deciding how to allocate scarce
funds to large-scale conservation projects.
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INTRODUCTION

Ecological systems face significant threats from
climate change, and the need for effective responses
is becoming a public policy imperative in many
jurisdictions (Hannah et al. 2002, Stern 2006). There
has long been agreement that climate change will
force some species to shift their geographic ranges,
or face extinction (Parmesan 1996, 2006, Massot et
al. 2008, Vos et al. 2008). Proactive responses to
ameliorate such impacts have been proposed. These
include species translocation (Hoegh-Gulberg et al.
2008) and construction of dispersal routes to assist
species to track shifting climates (Phillips et al.
2008). Such bold thinking is welcome, but how do
we decide when and where to best implement these
strategies? Which species will be under most threat,
and where must they move in order to avoid
extinction?

Species distribution models (SDMs) that
incorporate future climate predictions are one
popular way to address these questions (and a range
of other questions discussed below). These models
are a prominent fixture in the scientific, policy, and
public literature around the potential impacts of

climate change. Particularly wide attention was
given to the work of Thomas et al. (2004; see Ladle
et al. 2004, Hannah and Phillips 2004, Lewis 2006).

Given the potential of SDMs to influence policy and
management, we believe it is timely to critically
appraise how they are interpreted and used in this
context. As government scientists, we endeavor to
develop and communicate the best available science
to colleagues charged with management and policy
decisions. From this viewpoint, we question how
helpful SDMs are for critical decisions when
formulating policies or guiding governmental
investments. We review the pitfalls and hidden
assumptions in the most common modeling
techniques from an ecological science perspective.
Our discussion differs from other review articles on
this topic (e.g., Davis et al. 1998a, b, Pearson and
Dawson 2003, Hampe 2004, Guisan and Tuiller
2005, Hulme 2005, Hijmans and Graham 2006,
Dormann, 2007) in its broad ecological scope, its
attempt to distinguish systematic tendencies to over-
or under-predict caused by inherent aspects of the
models, and in its perspective from the science–
policy interface.
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SDMs: DEFINITION AND SCOPE OF OUR
DISCUSSION

Species distribution models may be constructed in
a variety of ways and result in a range of outputs.
Most attempt to predict species’ geographic ranges
from occurrence (presence; or presence/absence)
records (dependent variable) and environmental
data from the same sites (independent variables).
Two types of output are common: binary
classifications of sites as being within or outside the
distribution, and continuous or probabilistic results.
The parameters may be projected using future
climate scenarios to develop maps of predicted
future distributions. Our discussion of SDMs is
focused on this use as predictive tools under climate
change, and most references to SDMs should be
considered in the context of this “special case.”

Species distribution models of different levels of
complexity fit within this basic framework (e.g.,
those that use only climate as independent variables
vs. those that also use biophysical variables). Less
common are species–climate models not driven by
distributional data at all (not considered here), such
as those constructed from physiological measurements
of organisms (e.g., Kearney et al. 2008). Species
distribution models can be developed using a variety
of algorithms, including heuristic models (e.g.,
BIOCLIM—Beaumont and Hughes 2002), statistical
models (e.g., GAMs—Jensen et al. 2008),
combinatorial optimization (e.g., GARP—Fitzpatrick
et al. 2007) and machine learning (e.g., ANN—
Ostendorf et al. 2001, Berry et al. 2002, Harrison et
al. 2006; MAXENT—Phillips et al. 2006). Some
studies have pooled multiple models or applied
other principles (notably species–area relationships)
to extrapolate global extinction rates from climate
change (Thomas et al. 2004). Each modeling
approach has important strengths and weaknesses.
Performance is generally assessed using a test or
validation data set (Elith et al. 2006, Hijmans and
Graham 2006).

Fielding and Bell (1997) distinguish between errors
resulting from the statistical limitations of models
(“algorithmic”) and errors resulting from (mis-)
understandings of the biological system (“biotic”).
Our focus here is on the biotic errors. We do not
consider algorithmic errors, given the numerous
modeling approaches available, and the positive
progress being made in this area (Elith et al. 2006).
We also ignore several biological issues
conceptually trivial in our context (e.g., taxonomic

problems), but nonetheless influential. Some of the
principles we discuss in relation to future climate
models are applicable elsewhere, for example in
predicting the ranges of introduced species
(Fitzpatrick et al. 2007). Here, we use “biodiversity”
in a narrow sense to mean “species diversity” while
acknowledging that in the wider public debate, the
term may refer to diversity at other levels (genetic,
ecosystem, etc.). Although we acknowledge the
central importance of atmospheric or climate
change models for projected SDMs, their substance
is beyond our scope.

FACTORS IMPACTING THE DESIGN AND
UTILITY OF SPECIES–CLIMATE MODELS

Basic ecological assumptions—both reasonable
and problematic—underpin most SDMs. Some
relate to inherent ecological processes that
determine species’ distributions and abundances,
whereas others are methodological and concern the
way data are used in SDMs. Although we have
attempted to disaggregate these for the sake of
clarity, we recognize that many of these factors are
deeply interrelated.

Biological Factors

Interspecific interactions

Virtually all SDMs implicitly accept the classical
niche concept: that the distributions of species are
constrained by interactions with other organisms
such as competition and predation (i.e., realized vs.
fundamental niche; Hutchinson 1957). This idea has
a long history and has been experimentally
demonstrated in numerous systems (Connell 1961,
Crain et al. 2004). We accept this useful view of
niche as it relates to species’ distributions, but it
presents a constraint on the interpretation of SDMs.

Despite the recognition of interspecific interactions,
and their likelihood of changing with an altering
climate, SDMs almost never account for this. Most
authors ignore interspecific interactions, whereas
some assume they are of some importance (Erasmus
et al. 2002, Midgeley et al. 2002). Others
acknowledge the limitations these interactions place
on their models and assume that these effects will
be unpredictable under climate change and
“idiosyncratic” (Lewis 2006). We suggest that there
are logical reasons why the effects of these
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interactions will regularly lead to underestimates of
future species’ ranges (Table 1).

Observations of organisms in nature will be by
definition within the realized niche. When a model
is developed using these records, all interspecific
interactions are implicit within the model (Davis et
al. 1998b). When the SDM is projected from the
current to a future climate scenario, these effects
and constraints are ignored. It is wrongly assumed
that all other species interacting with the target
species do so with unmodified amplitude within
future climate scenarios. Provided negative
interactions (competition, predation, etc.) outweigh
positive interactions (mutualism, synergism, etc.)
almost all target species are at an inherent (and
illusory) disadvantage caused by the modeling
approach. One of many practical examples that
illustrate this is reported by Fitzpatrick et al. (2007),
who show that when distributional data from the
native range of a fire ant (South America) were used
to predict the species’ range in a new habitat (North
America), the model dramatically under-predicted
the actual introduced range of the species. They
concluded that this was due, at least in part, to altered
interspecific interactions. This concurs with the
niche shift observed during a biological invasion of
spotted knapweed (Centaurea maculosa; Broennimann
et al. 2007). Other studies have used “theoretical
species” to show that interspecific interactions
impact on the ability of a species to survive
simulated climate change (Brooker et al. 2007, Best
et al. 2007). An elegant experimental study also
addressed similar concerns. Davis et al. (1998b)
used captive fruit-flies (Drosophila melanogaster)
to show that temperature changes strongly
interacted with competition, leading these authors
to conclude that “predicting changes in distribution
and abundance under global warming by
extrapolation of the climate envelope may lead to
serious errors.”

Some SDMs have successfully incorporated
interactions between species (Leathwick and Austin
2001, Leathwick 2002; Heikkinen et al. 2007,
Rödder et al. 2008), and a small number have also
included climate change (Araújo and Luoto 2007).
Others have suggested biotic interactions will be
best accounted for through models with mechanistic
elements, rather than SDMs using correlation alone
(Sutherst et al. 2007, Keith et al. 2008). Such studies
have confirmed the importance of interspecific
interactions and shown it is feasible to include them
in models. However, such models require a priori

recognition of important interactions, and
substantial preliminary thought and work is
essential before such interactions can be
incorporated. As the important competitive
interactions for many species are unknown or
unsupported by spatial data (Sutherst et al. 2007),
it seems unlikely that SDMs incorporating
interspecific interactions could be routinely
produced for most species soon.

 The appearance of unprecedented environmental
domains

As climates change new combinations of climate
and other environmental parameters may appear
that did not previously exist (Walker and Steffen
1997). For example, higher rainfall may begin to
fall on a soil type that has not previously experienced
this regime. The more climatic parameters that are
included in a model, the more likely it is that novel
combinations will occur in future scenarios. To
predict a species’ likely occurrence in these
unprecedented spaces, models must make
predictions outside the scope of their input data (i.
e., they must extrapolate where they have no
knowledge). Given that the relationship between a
species’ occurrence and environmental variables is
typically non linear, projecting likely distributions
into novel climate space is problematic. Depending
on the modeling algorithm used, distributions may
be over- or under-predicted in novel environmental
space (Table 1).

 Equilibria: time lags and historic accidents

It is often assumed that organisms are found in the
environmental space that best suits their
requirements, and they are in equilibrium with their
environment. This assumption is implicit when
observed occurrences are used to model species’
distributions. In reality, it is likely that the realized
niche of a species will be in a state of flux naturally.
However, this dynamism is not captured in most
data sets available for SDM development. In many
cases, a species may not occur at a location with
potentially suitable habitat because it physically
cannot disperse there or is yet to arrive there. Fickle
accidents of history are likely to explain a great deal
about species’ distributions (e.g., space pre-
emption: Poloczanska et al. 2008, Britton-Simons
2006). Other species occur in areas to which they
are not well suited (Fitzpatrick et al. 2007): in long-
lived species, adults may persist in areas even when
conditions are no longer suitable for the
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Table 1. Factors likely to cause over- or under-estimation of the extent
of species’ distributions, with the application of SDMs to future
climate scenarios. These conclusions assume that a basic SDM
approach (i.e., correlation of distribution data with environmental
data) has been applied, and no special efforts have been made to
counter these factors. See text for an explanation of the reasoning.

Systematic under-estimation of distribution (“false pessimism”):

Interspecific interactions

Incomplete sampling of niche

Adaptation and evolution

Systematic over-estimation of distribution (“false optimism”):

Non-inclusion of mobility data

Non-systematic errors:

Lack of equilibria

Unprecedented environments

Scale mismatch

Non-inclusion of land-use change

Failure to distinguish cause and correlation

establishment of young (Woodward 1990). Other
species will persist in habitat fragments that are too
small or degraded to maintain viable populations in
the long term. Over time, they are likely to disappear
(“relaxation”—Diamond 1972; “extinction debt”—
Tilman et al. 2002).

The implications of these combined influences on
SDMs projected into future climate scenarios are
complex (Table 1). The incomplete occupation of
suitable niche space means that models built using
observed presences cannot account for the species’
latent but unachieved ability to survive in other areas
(i.e., under-prediction). The presence of species in
areas to which they are unsuited can also cause
models to over-predict species’ ranges: unsuitable
habitat is incorporated into the envelope, and the
current “debt” is hidden in future habitat
projections. Many apparent predictions of species
extinction are in fact predictions of species

“committed to extinction” (Lewis 2006), a
commitment that may take decades or centuries to
fulfil. Such issues are only sometimes acknowledged
in discussions of the impact of climate change on
species’ distributions (e.g., Harrison et al. 2006,
Lewis 2006).

 Species mobility

Some species move seasonally and do not
experience the climate within their range for all of
the year. Many birds, for example, adjust their
locations and behaviors to follow seasonal resources
on a range of geographic scales (e.g., Griffioen and
Clarke 2002). For seasonally mobile species, some
parts of the range may temporarily experience
climatic conditions beyond the tolerance of the
organism. If records are used within such areas to
define the species’ distribution, the model will
assume the species can tolerate these conditions on
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a permanent (i.e., non-seasonal) basis. In fact, the
species can accommodate the existence of such
conditions within its range only if alternatives are
available. We anticipate that SDMs for species that
move seasonally within their ranges will frequently
over-predict distribution extent (Table 1), but that
this effect may not be noticed until there is a sudden
collapse in actual range, due to the loss of accessible
seasonal refugia. To our knowledge, no one has
systematically considered this complex problem,
although Heikkenen et al. (2006) showed that
current species–climate models could be improved
if they were manipulated to account for migratory
bird species’ local arrival and departure times.

 Evolution and adaptation

Some species may be able to evolve fast enough to
alter their environmental requirements as the
climate changes, particularly those with short
generation times and diverse gene pools (Pearson
and Dawson 2003, Räsänen et al. 2003, Harte et al.
2004, Lewis 2006, Skelly et al. 2007). Furthermore,
species are made up of local populations that may
be locally adapted to different portions of their
range, and individuals in one part may have a
different genetic constitution to those in another
part. Currently, we are unable to predict a species’
capacity to evolve. Species distribution models
using current distributional data to predict the future
are thus unlikely to incorporate evolutionary
change, leading to under-prediction (Table 1).

 Capacity to emigrate

As suitable ranges shift under altered climates, the
ability of species to exploit new suitable habitat will
depend on the dispersal of individuals or
propagules. This has been a central concern of many
commentators on the likely impacts of climate
change on biodiversity (Hoegh-Guldberg et al.
2008). Some organisms are highly constrained in
their ability to move across the landscape. Midgley
et al. (2002) described proteaceous plant species in
the South African fynbos that require occasional
catastrophic fires to release seeds and provide
germination opportunity. Seeds are typically
dispersed by ants, which can only move short
distances. This combination means such species
will be unable to “track” any rapid climate shifts.

Most models do not take these considerations into
account, and those that do have used simple
assumptions (no migration, full migration; Thomas

et al. 2004). Ideally, we require detailed
understanding of dispersability, including distances
that organisms can disperse, modes and frequency
of dispersal, and how this relates to population
characteristics. These parameters are only known
for a tiny fraction of species (e.g., Fitzpatrick et al.
2008).

 Land-use change

Humans are rarely included in models of biological
systems, despite being one of the most important
elements influencing contemporary biological
processes. Most SDMs predicting future climate
scenarios make bold (but seldom stated)
assumptions about trends in human demography
and land use. Accounting for future clearing,
agricultural or urban intensification, or restoration
work is obviously difficult (see Rouget et al. 2003,
Leemans and Serneels 2004). We suggest, as have
others (e.g., Jetz et al. 2007), that changed patterns
of habitat fragmentation and connection are likely
to have at least as large an impact as climate change
in the medium term, both as problems and solutions
(i.e., both over- and under-prediction of range).

Methodological Problems

Incomplete sampling of niche space

Distributional data for SDM development are
frequently distributed unevenly across a species’
range with respect to space, time, and environment
(Thuiller et al. 2004, Phillips et al. 2009). Recurring
spatial biases are characteristic of many biological
survey data sets (see Frietag et al. 1998, Schulman
et al. 2007), such as a tendency for higher sampling
rates at accessible locations. If unrepresentative
samples are used, significant areas suitable for
occupancy may be omitted or not recognized in
current SDMs and those projected into future
climate scenarios (i.e., under-prediction, Table 1).
Although some studies suffer from this problem (e.
g., Erasmus et al. 2002), others limit its impact by
selecting species that are restricted to a study area
(e.g., Harrison et al. 2006). However, if species with
narrow ranges are preferentially chosen for most
modeling studies, the collective results may be
biased (Lewis 2006). Recent studies have begun to
describe methods to mitigate the impact of sampling
biases on prediction (e.g., Schulman et al. 2007,
Phillips et al. 2009).
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 Cause and correlation

Strong correlation does not imply causation (Austin
2002). Climate data can be associated with many
ecological phenomena for reasons other than
causality (e.g., spatial proximity and mutual
correlation with other variables). Strong correlations
may allow climate data to predict species
occurrences, even if climate has little to do with a
species’ distribution (Lozier et al. 2009). For
instance, consider a species once widespread but
now restricted to a single island as a consequence
of predation. This species’ distribution is not now
strongly limited by climate, however, climate
variables may very accurately predict its
distribution in a model, as would latitude and
longitude. The relative influence of current climate
in the distribution of many species is unknown.

 Scale mismatch

Most models that predict species’ ranges under
future climates require modeled climate scenarios
as inputs (although some apply a uniform change;
Brereton et al. 1995). Climate scenarios are derived
from complex mathematical models. Some
elements of climate are more tightly parameterized
(e.g., temperature, ocean acidification) than others
(e.g., precipitation patterns), and their accuracy and
resolution have important ramifications for species–
climate predictions (Beaumont and Hughes 2002,
Watson 2008).

Many species require specific small-scale habitat
attributes that are likely to be overlooked by SDMs.
Topographic, geomorphic, or edaphic features (e.
g., rocky cliffs, seepage areas) and the distributions
of other species (e.g., as required hosts) will be
crucial for many species. Most SDMs use relatively
large grid cells to represent climate scenarios, often
tens or even hundreds of kilometers across (e.g.,
Erasmus et al. 2002). Few are capable of
representing small-scale features, or difficult-to-
capture features such as those noted above
(Williams et al. 2003). Other critical environmental
variables are frequently unavailable in spatial
format (e.g., groundwater resources). There are
similar problems relating to temporal habitat
elements. Relevant climatic events such as storms
and droughts are hard to predict or represent
spatially, as are seasonal biotic factors (e.g.,
pollinator visits; Hannah et al. 2002). The
consequences of scale for SDM interpretation are

complex and introduce high levels of uncertainties.
We suggest these effects could cause both over- or
under-prediction (Table 1).

BEYOND SCIENCE: USING SDMs UNDER
FUTURE CLIMATES TO MAKE
DECISIONS

In his report to the Australian Government, Garnaut
(2008) described climate policy as a “diabolical
problem.” We cannot afford inaction or
prevarication on climate change mitigation,
adaptation, or policy. We believe the technical and
conceptual problems facing SDMs are just as
devilish, given the factors we have discussed above.
But is solving these modeling problems necessary
for biodiversity management in the face of climate
change? How essential are SDMs for making the
right decisions? We argue below that (1) SDMs have
already achieved much of their potential in the
climate debate, (2) that SDMs are fundamentally
limited in their ability to inform decision making,
(3) that some improvements may nonetheless be
helpful to biodiversity managers, but (4) ultimately
managers must make decisions without them.

What Have SDMs Achieved So Far?

Despite the inherent limitations on SDMs, they have
clearly achieved a great deal in the climate change
debate. Perhaps more than anything, SDMs have
promoted ecological theory and biodiversity
conservation into the non-scientific arena. They
have provided clear and concise warnings, allowing
biodiversity issues to permeate broader discussions
of climate change. Species’ extinction risk formed
a key part of Stern’s review of climate change
impacts for the British government (2006), and
numerous SDM studies were cited (e.g., Pearson
and Dawson 2003, Thuiller et al. 2004, Thomas et
al. 2004, McClean et al. 2005, Pearson et al. 2006).

Beyond the current climate change debate, when
applied to current or past climates (avoiding some
of the limitations noted above), SDMs have
undoubtedly been very useful. They have helped
map the distributions of cryptically similar species,
revealed biogeographic patterns, contributed to our
understanding of niche, suggested places to search
for undetected new populations of modeled species,
and helped find suitable sites for reintroduction of
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threatened species (e.g., Leathwick and Austin
2001, Leathwick 2002, Lindsay and Bayoh 2004,
Broennimann et al. 2007).

Pitfalls in the Use of SDMs in the Climate
Debate: Perception and Precision

The rise in prominence of SDMs has been
accompanied by the rise of geographical
information systems (GIS mapping software).
Complex models that were once expressed as
equations can readily be displayed as maps having
a more immediate and striking impact to most
people. Unfortunately, our ability to present error
and uncertainty spatially has not kept pace
(Gahegan and Ehlers 2000, MacEachren et al.
2005). We believe that maps produced by a GIS
often appear misleadingly precise. There is a real
risk that GIS-supported SDMs will be interpreted
poorly by policy makers (among others), and that
they will be given undeserved prominence in the
decision-making process because of this apparent
precision.

As highlighted here, some of the inherent limitations
in SDMs may cause not only “noise,” but systematic
over- or under-estimates of future range sizes. This
may translate into unjustified optimism or
pessimism in the non-scientific debate. It is
impossible to quantify these effects overall, but our
discussion suggests that, in general, models tend to
under-predict a species’ range (Table 1), presenting
a picture that is perhaps unduly bleak. This may be
amplified or misrepresented by the popular media.
When Thomas et al. (2004) reported that a large
percentage of species may be “committed to
extinction” within 50 years, many news agencies
misreported that over a quarter of all life forms
would “be extinct” by this time (Ladle et al. 2004).
Over-prediction of future range (undue optimism)
may also be misinterpreted in a similar way.

Improving SDMs

Given the pitfalls and limitations outlined in this
report, is it reasonable to continue using SDMs for
climate policy development? We believe that the
answer is “Yes, sometimes.” For some species,
SDMs may offer good opportunities for prediction
and planning. Species with generalist requirements
are good candidates for using an SDM approach,
including those with distributions closely tied to

climate, where mobility is well understood, and
where good supporting data sets exist. Some of the
more thoughtful past SDM applications give hope
that even complex multi-species climate change
problems may be tackled using SDMs (e.g.,
Leathwick and Austin 2001, Leathwick 2002). We
suggest the following basic rules of thumb for the
development and use of SDMs:
 

● Continue basic biological and ecological
research. It is important to determine the
relative influences of climatic factors.
Physiological constraints to growth and
reproduction are known only for a small
number of species (Hijmans and Graham
2006). When sound knowledge of the target
species’ ecology is known and thoughtfully
catered for, the power of SDMs is impressive
(examples cited above).
 

● Improve modeling algorithms. Where SDMs
are deemed useful, it is important to use the
best available methods.
 

● Systematically collect distribution records.
The collection of absences is valuable,
because many modeling routines require both
absences and presences (Elith et al. 2006).
New studies should be systematically
planned so that geographic and environmental
spaces are well sampled, and survey effort
should be recorded.
 

● Monitor trends over time and validate
projected SDMs using emerging data. For
species that are amenable to SDM, models
could be verified over time as future data
become available. This is being done with the
monitoring of European birds, where
sufficient climate and distribution data are
able to reveal temporal trends (Araújo et al.
2005, Gregory et al. 2009).
 

● Address uncertainties explicitly. When
SDMs are built using modeled inputs (such
as climate scenarios), uncertainty is
propagated through the models. The degree
of uncertainty must be communicated in a
meaningful way to managers and policy
makers who hope to use SDMs to make
decisions.
 

● Be careful with maps. Most SDMs are
presented as maps with “predicted future”
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distributions juxtaposed with “current”
distributions (e.g., Midgley et al. 2002, Berry
et al. 2002, Beaumont and Hughes 2002,
Williams et al. 2003, Harrison et al. 2006,
Jensen et al. 2008). They often imply local
extinctions or contractions by a certain date,
and these may be very misleading if they fail
to portray differences between “actual
extinction” and “committed extinction”
(Lewis 2006). Simple changes in the
presentation of data could be of great benefit.
Rather than showing current and future
distributions, many SDMs may be better
expressed as areas where species’ ranges
“may expand,” and where they are likely to
become “marginal” in future. We also suggest
using a black-and-white scale in figures,
which is less open to subjective interpretation
than the variety of color scales available.
 

What Should We Do Beyond Reliance on
SDMs?

Climate change is acting in an environment already
threatened by other processes (Thomas et al. 2004,
Lewis 2006). For decades conservationists and
managers have dealt with habitat fragmentation and
degradation, introduced species and pathogens,
hunting pressures, and toxins. These issues remain
and many will interact and be compounded by
climate change. Our climate response must be
formulated with the complexity and synergism of
these processes in mind. Species distribution
models have put biodiversity on the climate agenda,
but they need not drive our decision making at the
expense of other considerations.

Acting upon these “traditional” conservation
problems may often be the best and only available
defence against climate change. If the effects of
climate change on species include physiological
stress, changing niche space, and a compulsion to
move across a fragmented or hostile environment,
then we can soften the impact by addressing the
fundamental issues of habitat quality and habitat
connectivity. These are the things that land
managers are already endeavoring to achieve.

Many of the innovations honed by the use of SDMs
(GIS, spatial modeling algorithms) may be used to
help managers solve the traditional conservation

problems noted above. Coupled with spatial
modeling, GIS may help us answer a number of
important questions such as the consequences of
habitat fragmentation (for example, exploring how
permeable the landscape currently is, and how
different species “see” connectivity (McRae and
Beier 2007))

CONCLUSIONS

It is important to remember that the basic problems
faced by biodiversity under climate change
(changing niche space, changing interactions,
compulsion to move across a fragmented
environment) have long been recognized in
ecological theory and may be readily predicted by
basic ecological principles without SDMs (e.g.,
Peters and Darling 1985). We must also remember
that most of the things we know we can do to protect
biodiversity from climate impacts are the same
things currently implemented against other threats
(Dale et al. 2000, Hulme 2005).

We have relied on some general ecological
principles to explore the limitations of SDMs. We
acknowledge that these principles themselves may
change over time, and do not suggest that SDMs
should be judged against a pure and perfect
theoretical understanding of the biological world.
Indeed, we see as one of the strengths of SDMs their
ability to highlight theoretical problems and
influence the theoretical landscape in which they
are embedded (e.g. Broennimann et al. 2007). We
doubt, however, that SDMs can advance our on-
ground conservation efforts far beyond where we
are at present.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol15/iss1/art8/responses/
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