
How Useful Is Relevance?

Rich Caruana
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
caruana@cs.cmu.edu

Dayne Freitag
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
dayne@cs.cmu.edu

Abstract

Eliminating irrelevant attributes prior to induc-
tion boosts the performance of many learning al-
gorithms. Relevance, however, is no guarantee of
usefulness to a particular learner. We test two
methods of finding relevant attributes, FOCUS
and RELIEF, to see how the attributes they se-
lect perform with ID3/C4.5 on two learning prob-
lems from a calendar scheduling domain. A more
direct attribute selection procedure, hillclimbing
in attribute space, finds superior attribute sets.

1 INTRODUCTION

An attribute that is irrelevant is not useful for induc-
tion. But not all attributes that are relevant are nec-
essarily useful for induction either. Several methods
for estimating attribute relevance have been devised.
Are the attributes selected by these methods good at-
tributes to use for learning?

Let ‘4 be the set of attributes potentially available
to a learner L trying to learn problem P given typical
training sets. Imagine that the learner is given only
the attributes in A C ,4. We call a E .4 - A USEFUL
to P for L using A if it improves L’s performance on
P on average over typical training sets with attributes
A. For example, an attribute would be useful to P for
ID3/C4.5 if, along with the other attributes already
in the training set, it improves the accuracy of the
ID3/C4.5 induced tree on P. We call a set of attributes
A MAXIMALLY USEFUL if there does not exist some
other set A~ C .4 for which the performance of L on P
with typical training sets is better.

We call an attribute RELEVANT to P if there ex-
ists any learner LI using any set of attributes AI and
any distribution of typical training sets for which it
is useful. Note that usefulness is measured with re-
spect to a particular learner using a particular set of
attributes given a particular distribution of training
patterns, whereas relevance just depends on the exis-
tence of such a learner, attribute set, and pattern dis-
tribution. All useful attributes are relevant, but not
all relevant attributes are necessarily useful; useful at-
tributes are often a small subset of relevant attributes.

Proving that an attribute is irrelevant is difficult:
it requires showing that no P, A, and distribution
of training sets exists for which the attribute is use-
ful. To show that an attribute is relevant, however,
one need only demonstrate that some learner bene-
fits from it. Demonstrating that an attribute is useful
to P for L using A with typical training sets is usu-
ally not too hard: measuring the performance of the
learner with and without the attribute suffices. Unfor-
tunately, what we really want is the maximally useful
set of attributes, not properties of single attributes.
But, because attributes often interact, finding this set
directly is usually prohibitive. Can relevance be used
as an efficient proxy for usefulness?

We have run experiments on two calendar schedul-
ing problems using FOCUS and RELIEF to select at-
tributes for ID3/C4.5. Depending on the ID3/C4.5
options used, the performance using the attributes se-
lected by FOCUS and RELIEF ranges from poor to
good. But, for each set of ID3/C4.5 options, hillclimb-
ing is able to find attribute sets that perform better.
If the attribute set to use depends on the learning pro-
cedure, it is unlikely that algorithm independent mea-
sures such as attribute relevance often will yield opti-
mal performance.

2 THE CALENDAR APPRENTICE

The Calendar Apprentice (CAP) (4)(9)(13) is 
prentice system that learns to schedule meetings by
watching users’ daily scheduling. CAP uses features
such as the meeting attendees, the type of meeting,
and the current state of the user’s calendar to predict
the meeting’s location, day-of-week, staxt-time,
and durat±on. CAP uses ID3/C4.5 (15) run on an ac-
cumulating database of previously scheduled meetings
to predict these values for new meetings.

Scheduling is a rich and dynamic domain: new at-
tendees appear frequently, scheduling during the sum-
mer is different from scheduling during the fall or at
holidays, user habits change frequently, and there is a
rich hierarchy of meeting types (e.g., advisor-advisee
meeting or faculty meeting), a variety of temporal reg-
ularities (e.g., twice-a-week to once-in-a-lifetime occur-

21

From: AAAI Technical Report FS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



rences), and a broad range of attendee statuses (e.g.,
graduate student or university president). Because of
this, there are many attributes potentially available
from which to learn. Of these, CAP currently con-
siders 32 attributes for predicting day-of-week and
start-time. If, however, all 32 of these attributes are
given to ID3/C4.5 for learning, generalization is often
poor on these tasks.

3 SELECTING ATTRIBUTES
We test three approaches to attribute selection. Two
of these use relevance to estimate attribute usefulness.
The other uses the learning algorithm itself to estimate
the usefulness of attribute sets. Our training data is
recent scheduling events. Attribute selection finds the
attribute set that would have performed best histor-
ically, which CAP then uses for future learning. In
domains lacking this temporal character, a single set
of data is used for both feature selection and the final
induction. Cross-validation is one good way to do this
(14)(8)(2).

FOCUS

FOCUS (1) searches for the minimum-size attribute
subset that maintains consistency on the training data.
There are two difficulties applying FOCUS in CAP.
First, the CAP database is not consistent even when
all attributes are present. FOCUS will fail to find a
consistent attribute set if run on a large enough sam-
ple. We generalize FOCUS as follows: if the original
sample contains K inconsistencies with all attributes,
our FOCUS returns the smallest subset of attributes
that yields exactly K inconsistencies.

The second difficulty is that FOCUS exhaustively
searches all possible subsets of a given size before go-
ing on to the next size. We’ve enhanced FOCUS
to improve its average case performance. We run
two FOCUS-like algorithms at the same time. One
searches the smallest subsets first, exactly as in (1).
The other uses depth-first search starting with the
largest subset. If a small subset yields consistency, the
first FOCUS will find it efficiently, but if a large subset
is necessary, the second FOCUS will find it efficiently.
(The worst case occurs when both methods find the
same subset at the same time, but this only doubles
the total cost.) Using the two also has the advantage
that at any point the first FOCUS provides a lower
bound on the number of attributes required while the
second FOCUS provides an upper bound.

RELIEF
RELIEF (6) is an attribute relevance estimation algo-
rithm inspired by instance-based learning techniques.
RELIEF associates with each attribute a weight indi-
cating the relative relevance of that attribute to mak-
ing class distinctions. It is attractive for three reasons.
First, it is computationally efficient. Second, it can
detect feature relevance when features interact. Third,

the relevance weights give a degree of relevance allow-
ing attributes to be ranked by relevance.

The main difficulty in applying RELIEF to CAP
is that RELIEF is designed for boolean classification
tasks; the CAP problems have more than two classes.
It is not obvious how best to modify RELIEF to han-
dle non-boolean classification. Kononenko (7) tests
two extensions to RELIEF, RELIEF-E and RELIEF-
F, to solve this problem and reports that RELIEF-F
outperforms RELIEF-E on test problems. We tried
both. RELIEF-F made it difficult to determine where
to draw the line between what attributes to include
and exclude. We tried several thresholds and report
here on the best found for RELIEF-F.

ATTRIBUTE HILLCLIMBING

In contrast to FOCUS and RELIEF, hillclimbing uses
the learner to search for useful attributes. John et
al. (8) refer to this as the wrapper model for feature
selection. The attribute selection procedure is wrapped
around the induction algorithm. The training data
is broken into an induction set that is given to the
learner (here ID3/C4.5) and a hillclimbing test set that
is used to measure the generalization performance of
what is learned. Events before an arbitrarily chosen
date become the induction set, those after become the
hillclimbing test set. Hillclimbing uses the performance
on the test set to evaluate neighboring points.

Hillclimblng Methods We test five hillclimbing
methods. Four of these are similar to variable selec-
tion methods used commonly in statistics (5). They
proceed by either adding or deleting an attribute to
the current set at each step in the search. They differ
from each other only in the starting point and in what
kinds of moves (addition and/or deletion) are permit-
ted. All four greedily make the move which yields the
best performance. Forward selection (FS), starts with
the empty set and adds attributes until all have been
added. Backward elimination (BE), begins with all at-
tributes and removes them one by one until all have
been removed. The other two perform bidirectional
search and can either add or remove an attribute at any
point. They differ only in their starting point. Forward
stepwise selection (FSS) begins with the empty set,
while backward stepwise elimination starts with the
full set. ("Selection" and "elimination" are misnomers
in FSS and BSE; both can add or delete attributes at
any step of their search other than the first.)

We test one more form of hillclimbing, BSE-SLASH,
which is based on the observation that when there are
many attributes, some learning procedures frequently
do not use most of them. BSE-SLASH starts with
the full attribute set (like BSE), but, after taking 
step, eliminates (slashes) any attributes not used in
what was learned. BSE-SLASH does this at every step
during search. This allows BSE-SLASH to jump to
regions of the search space where all the attributes in

22



the active subset are playing a role in what is learned.
The three bidirectional hillclimbing methods, FSS,

BSE, and BSE-SLASH, step to the best neighboring
point even if this is poorer than the current point. This
allows them to escape local maxima but makes looping
a problem. We use a simple cycle detection scheme
that forces the search to consider only unvisited points
in the space. This means the bidirectional hillclimbers
will not usually terminate on large spaces. We stop
them after some arbitrary amount of computation, at
which point they report the best performing attribute
subset found so far.

Caching to Speed Search When the training sam-
ple is small, decision trees grown from large sets of at-
tributes often do not use all the attributes. Where this
is the case, if decision trees repeatedly will be grown
from similar sets of attributes, it is possible to cache
results to reduce the cost of growing subsequent trees.
For example, if ID3 is given attributes {A,B,C,D,E}
but does not use attributes D and E in the decision
tree it generates, then it is not necessary later to grow
decision trees given attributes {A,B,C}, {A,B,C,D},
or {A,B,C,E}--ID3, a deterministic algorithm, will ig-
nore attributes D and E if either is given with {A,B,C}
and will generate identical trees. If we cache decision
trees, recording both the attributes given to ID3 and
the attributes used in the learned decision tree, rapid
lookup can be used before new decision trees are grown
to see if the outcome is determinable from prior expe-
rience. See (3) for more details of this caching scheme.

Tables 1 and 2 show the kind of speedup possi-
ble. With caching, and using C4.5, the bidirectional
hillclimbers take roughly a day to consider 100,000-
1,000,000 trees (but only growing about 5,000-20,000
trees). 1 Cache lookup time is negligible even after
caching thousands of decision trees despite the fact
that the cache code is Lisp and the tree induction code
is C. Without caching it would take months to evaluate
a million trees. Note that while most progress occurs
early in the bidirectional searches, some improvements
do occur late in the searches so it is desirable to extend
the searches as far as possible.

4 EMPIRICAL ANALYSIS
Figure 1 presents the performance as a function of com-
putational cost of each of the five algorithms on the two
test problems using information gain. The generaliza-
tion performance at each point is the performance of
the attribute set that would be returned by the search
if it were halted at that point and the best attribute set
found so far reported. This is the performance mea-
sured on the test set used for hillclimbing, thus it is an
optimistic measure of the generalization performance
one would expect using that attribute set for unseen

1 On a Spare ELC with 32 attributes and induction sets
containing 100 instances.

instances. See Table 4 for the performance on unseen
instances.

Search Trees Trees Caching
Method Considered Grown Speedup

FS 528 513 1.03
BE 528 133 3.97
FSS 100,000 3686 27.13
BSE 100,000 2,545 39.29
BSE 600,000 4,541 132.13

BSE-SLASH 100,000 12,435 8.04

Table 1: Speedup Due to Caching for Day of Week

Search Trees Trees Caching
Method Considered Grown Speedup

FS 528 528 1.00
BE 528 162 3.26
FSS 100,000 14,536 6.88
BSE 100,000 5,147 19.43
BSE 600,000 20,122 29.82

BSE-SLASH 100,000 15,418 6.49

Table 2: Speedup Due to Caching for Start Time

The graphs in Figure 1 measure cost in terms of
the number of times an instance’s attribute value is
queried. This is a more accurate estimate of cost than
counting the number of decision trees grown because
it is usually more costly to grow decision trees if there
are many attributes than if there are only a few. Note
that the graphs show the complete searches of the non-
bidirectional methods (FS and BE), but only the very
early part of the bidirectional searches.

The graphs suggest five things.

1. There is no clear winner. BSE yields the best perfor-
mance on Day of Week, but BSE-SLASH does best
on Start Time.

2. There are clear losers--at least on these problems;
the three bidirectional methods outperform both FS
and BE in most regions of the graphs. Even if com-
putational cost is an issue, there appears to be little
advantage to using the naturally terminating meth-
ods FS and BE.

3. The method that is leading changes frequently, and
apparently unpredictably, as the searches progress;
it would be risky to assume that because one method
has an early lead that it will perform best in the long
run. The safest bet may be to run all three hill-
climbing strategies interleaved. (Note that different
methods can share one cache.)

4. The bidirectional methods allow a tradeoff between
the quality of the result and computational cost:
they are easy to stop and restart and, given more
cycles, may continue to find better answers.

5. Perhaps most importantly, all the methods find at-
tribute subsets that yield substantial increases in

23



4o
o

35

30

25

.~ 20

-,.t

® 5
m 0

Day of Week

FS -e--
BE -~---

FSS -8--
BSE -K---’

BSE-SLASH -~--

I I I

500000 Ie+06 1.5e+06 2e+06
Number of Attribute Value Lookups

26

o 24

22

20

12

Start Time
i i i

,A
/

A"I

/ poo-o-~o-o--D
/ -

...~: :
~--+x~$’

/ //
N Fs

’ / BE -~--
’// FSS -S--

==~/ BSE --M-..."
BSE- SLASH~--

i I I

500000 ie+06 i. 5e+06 2e+06
Number of Attribute Value Lookups

Figure h Generalization Performance of Attribute Sets vs. Computational Cost

generalization performance. Clearly some form of
attribute selection is useful.

The data in Figure 1 are collected with a locally
developed version of ID3/C4.5 that uses information
gain. Inspection of the attribute sets explored by
these methods shows that all the selection procedures
quickly eliminate the high arity attributes information
gain is biased to prefer. What advantage, if any, would
attribute selection confer to a "smarter" induction al-
gorithm that did not have this bias? To answer this,
we ran similar experiments using the default settings
of Quinlan’s C4.5 program, most notably gain ratio.

Table 3 compares the generalization performance of
the best performing attribute sets found with the five
greedy hillclimbing strategies with the performance of
FOCUS and RELIEF using ID3 with information gain
and C4.5 with gain ratio. FOCUS and RELIEF were
allowed to use the entire training set for relevance de-
termination; unlike the hillclimbing methods, they do
not require that a subset of the training data be re-
served as a hillclimbing test set. The entries in the
table are the performances when tested on new, i.e.,
previously unseen, instances.

As expected, gain ratio was better than information
gain at ignoring high arity attributes. But the per-
formance with all attributes using gain ratio was not
as good as the performance of information gain com-
bined with attribute selection. Thus attribute selection
mitigated the attribute arity problem of information
gain and also conferred additional benefit. Surpris-
ingly, the performance after attribute selection with
information gain and with gain ratio was similar. For
these test problems at least, it appears that most of
the advantage of using gain ratio could be acquired
by using information gain and carefully selecting at-
tributes. This suggests that a tradeoff exists between
effort spent crafting the bias of the learning procedure
and effort spent selecting attributes. Some of the poor

Search Method I Day of Week I Start Time I
I RI

ALL ATTRIBUTES 4 23 8 4
FS 23 14
BE 32 14
FSS 27 29 7 8
BSE 34 34 11 11

BSE-SLASH 14 32 11 13

I Focus I 4 I 25 I 7 I 4 I
RELIEF-E
RELIEF-F

Table 3: Percent Accuracy on Unseen Instances using
Information Gain (IG) and Gain Ratio (GR)

biases of the learning procedure can, in some domains,
be successfully mitigated by careful attribute selection.

The data in Table 3 suggest that the greedy meth-
ods find attribute sets that perform better than FO-
CUS and RELIEF on these problems. The poor per-
formance of FOCUS and RELIEF could be due to the
inappropriateness to these tasks of their bias for small
attribute sets. 2 Table 4 compares the number of at-
tributes returned by the different methods. All the
methods return comparably sized attribute sets, ex-
cept for forward selection, which seems to need more.
Thus the problem FOCUS and RELIEF have in this
domain is not due to the inappropriateness of the bias
for few features--there are small attribute sets that
generalize well on these tasks.

The problem, then, must be the emphasis of FO-
CUS and RELIEF on consistency. FOCUS searches
for the smallest attribute set that yields consistency

2The only size bias of the hillclimbing methods is to pre-
fer the smallest attribute set when attribute sets of different
size have equal performance.

24



Search Method I Day of Week l Start Time [
IG GR IG GR

ALL ATTRIBUTES I 32 I 32 I 32 I 32 I
FS 12 14
BE 4 4
FSS 5 4 5 5
BSE 7 5 6 6

BSE-SLASH 5 5 6 7

Table 4: Number of Attributes Used by Each Method

on the training set. RELIEF, which searches for rel-
evant attributes, defines relevance in terms of consis-
tency. It searches for the subset of attributes that are
most strongly positively correlated with consistency
and most strongly negatively correlated with incon-
sistency in neighborhoods of the training set. This
emphasis on consistency causes both FOCUS and RE-
LIEF to select some attributes that, while relevant,
are not useful for generalization, and to ignore other
attributes that, while less relevant than those selected,
would be more useful to learning.

Hillclimbing seems to be capable of reasonable at-
tribute selection. Given that the efficiency of hillclimb-
ing can be increased for some learners, it is not clear
that one needs to resort to proxy measures like rele-
vance to perform attribute selection.

5 Acknowledgements

Thanks to David Zabowski, Tom Mitchell, Andrew
Moore, and Ron Kohavi for many useful comments and
suggestions.

Research sponsored by the Wright Laboratory, Aero-
nautical Systems Center and the Advanced Research
Projects Agency under grant F33615-93-1-1330, and
by a National Science Foundation Graduate Research
Fellowship.

References

[1] H. Almuallim and T.G. Dietterich, "Learning
With Many Irrelevant Features," AAAI-91 pro-
ceedings, 9th National Conference on Artificial In-
telligence, 1991.

[2] L. Breiman, J. Friedman, R. Olshen, and
C. Stone, Classification and Regression Trees,,
Wadsworth International Group, 1984.

[3] R. Caruana and D. Freitag, "Greedy Attribute Se-
lection," Proceedings of the Eleventh International
Conference on Machine Learning, 1994.

[4] L. Dent, J. Boticario, J. McDermott, T. Mitchell,
and D. Zabowski, "A Personal Learning Appren-
tice," Proceedings of 1992 National Conference on
Artificial Intelligence, Rutgers, NJ., July 1992.

[5] N. Draper and H. Smith, Applied Regression Anal-
ysis,, John Wiley & Sons, 2nd edition, 1981.

[6] K. Kira and L. Rendell, "The Feature Selection
Problem: Traditional Methods and a New Algo-
rithm," AAAI-92 proceedings, lOth International
Conference on Artificial Intelligence,, 1992.

[7] I. Kononenko, "Estimating Attributes: Analysis
and Extensions of Relief," Proceedings of the Eu-
ropean Conference on Machine Learning, 1994.

[8] G. John, R. Khavi, and K. Pfleger, "Irrelevant
Features and the Subset Selection Problem," The
Proceedings of the Eleventh International Confer-
ence on Machine Learning,, Rutgers, NJ., July
1994.

[9] J. Jourdan, L. Dent, J. McDermott, T.
Mitchell, and D. Zabowski, "Interfaces that
Learn: A Learning Apprentice for Calendar Man-
agement," CMU Technical Report CMU-CS-91-
135, Carnegie Mellon University, 1991.

[10] P. Langley, S. Sage, "Scaling to Domains with
Many Irrelevant Features," presented at the work-
shop on Computational Learning and Natural
Learning, 1993.

[11] P. Langley, S. Sage, "Oblivious Decision Trees
and Abstract Cases," to be presented at the
AAAI94 Workshop on Case-Based Reasoning,
Seattle, WA., 1994.

[12] N. Littlestone, "Learning quickly when irrelevant
attributes abound," Machine Learning, 2:4, pp.
285-318

[13] T. Mitchell, R. Caruana, D. Freitag, J. McDer-
mott, and D. Zabowski, "Experience With a Per-
sonal Learning Assistant," to appear in Commu-
nications of the ACM, 1994.

[14] A. Moore and M. Lee, "Efficient Algorithms
for Minimizing Cross Validation Error,", The
Eleventh International Conference on Machine
Learning, Rutgers, NJ., July, 1994.

[15] J.R. Quinlan, C~.5: Programs for Machine Learn-
ing, Morgan Kaufman, 1993.

[16] S. Salzberg, "Improving Classification Methods
via Feature Selection," John Hopkins TR, 1992.

25


