
STATISTICS IN MEDICINE
Statist. Med. 2005; 24:2401–2428

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2112

How vague is vague? A simulation study of the impact of the
use of vague prior distributions in MCMC using WinBUGS

Paul C. Lambert∗;†, Alex J. Sutton, Paul R. Burton, Keith R. Abrams
and David R. Jones

Centre for Biostatistics and Genetic Epidemiology; Department of Health Sciences;

University of Leicester, U.K.

SUMMARY

There has been a recent growth in the use of Bayesian methods in medical research. The main reasons
for this are the development of computer intensive simulation based methods such as Markov chain
Monte Carlo (MCMC), increases in computing power and the introduction of powerful software such as
WinBUGS. This has enabled increasingly complex models to be �tted. The ability to �t these complex
models has led to MCMC methods being used as a convenient tool by frequentists, who may have no
desire to be fully Bayesian.
Often researchers want ‘the data to dominate’ when there is no prior information and thus attempt

to use vague prior distributions. However, with small amounts of data the use of vague priors can be
problematic. The results are potentially sensitive to the choice of prior distribution. In general there
are fewer problems with location parameters. The main problem is with scale parameters. With scale
parameters, not only does one have to decide the distributional form of the prior distribution, but also
whether to put the prior distribution on the variance, standard deviation or precision.
We have conducted a simulation study comparing the e�ects of 13 di�erent prior distributions for

the scale parameter on simulated random e�ects meta-analysis data. We varied the number of studies
(5; 10 and 30) and compared three di�erent between-study variances to give nine di�erent simulation
scenarios. One thousand data sets were generated for each scenario and each data set was analysed using
the 13 di�erent prior distributions. The frequentist properties of bias and coverage were investigated for
the between-study variance and the e�ect size.
The choice of prior distribution was crucial when there were just �ve studies. There was a large

variation in the estimates of the between-study variance for the 13 di�erent prior distributions. With a
large number of studies the choice of prior distribution was less important. The e�ect size estimated was
not biased, but the precision with which it was estimated varied with the choice of prior distribution
leading to varying coverage intervals and, potentially, to di�erent statistical inferences. Again there was
less of a problem with a larger number of studies. There is a particular problem if the between-study
variance is close to the boundary at zero, as MCMC results tend to produce upwardly biased estimates
of the between-study variance, particularly if inferences are based on the posterior mean.
The choice of ‘vague’ prior distribution can lead to a marked variation in results, particularly in

small studies. Sensitivity to the choice of prior distribution should always be assessed. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There has been a recent growth in the use of Bayesian methods in medical research and other
areas [1–3]. Within a Bayesian analysis prior distributions for the unknown parameters need
to be speci�ed. In many situations vague prior distributions are chosen with the intention that
they should have little or no impact in the inferences. However, na��ve use of vague prior
distributions may lead to them having an inuence on any inference made. Here we assess
the choice of prior distribution for the between-unit variance in a random e�ects meta-analysis
using a simulation study. Although we consider one of the simplest random e�ects models,
our �ndings are generalizable to more complex cases where random e�ects models are �tted.
One of the main reasons for the growth in Bayesian methods is the increase in computing

power and the development of simulation based approaches such as Markov chain Monte Carlo
(MCMC) methods [4]. This has led to specialist software being developed, in particular the
BUGS software and the Windows implementation WinBUGS [5, 6]. In addition to the philo-
sophical advantages of the Bayesian approach, the use of these methods has led to increasingly
complex, but realistic, models being �tted [7]. Many of these models include hierarchical data
structures where between-unit variation is modelled using random e�ects. Examples can be
found in meta-analysis and generalized synthesis models [8], cluster randomized trials [9, 10],
genetic epidemiology [11], institutional ranking [12] and subgroup analysis [13]. The use of
hierarchical models is not unique to medicine and they are often applied in other areas such as
education [14]. An advantage of the Bayesian approach is that the uncertainty in all parameter
estimates is taken into account. This is particularly important if data are sparse.
When analysing data from a Bayesian perspective it is necessary to specify prior distribu-

tions for all unknown parameters. This can be a potential advantage, but in many situations
there is a desire for the ‘data to dominate’ when no prior information is available (or when
MCMC methods are being used for computational convenience and the researcher does not
want to include prior information), which has led to the use of vague or reference priors [15].
We do not advocate the use of the term non-informative prior distribution as we consider
all priors to contribute some information [16–18]. If data is sparse then even prior distribu-
tions that are intended to be vague may exert an unintentionally large degree of inuence on
any inferences. This may be a particular problem in random e�ects models as even though
the total amount of data may be large, the number of units contributing to the estimation
of the between-unit variation may be small. Therefore, with random e�ects models there is
usually more concern regarding the inuence of prior distributions on scale parameters rather
than location parameters. In fact when the number of units contributing to the estimation
of the between-unit variation is small it could be argued informative prior distributions are
necessary.
The purpose of a reference prior is to be uniform over the range of interest and thus consid-

ers the possible values of the unknown parameters to be equally likely. However, a problem
with the use of such prior distributions is the fact that uniformity is sensitive to transformation
[19]. For example a prior distribution that is uniform on the variance scale will not be uniform
on the standard deviation, precision or log variance scales. When using a reference prior one
would hope that any parameter estimate would be unbiased and that the credible intervals
would have coverage close to the nominal level. Although these are frequentist properties,
their investigation is important as there is increasing use of MCMC methods as a convenient
tool for �tting complex models rather than a desire to be fully Bayesian.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2401–2428
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Previous work has shown that with a small number of units contributing to the estimation of
the between-unit variation, inferences may be sensitive to the choice of prior distribution for
this parameter [9, 10]. Browne and Draper [20] have recently investigated the use of two prior
distributions for use in hierarchical models, namely a Gamma distribution on the precision
and a uniform distribution on the variance. These two prior distributions are implemented in
the hierarchical modelling software MLWin [21]. They found that when the number of units
was small, the use of either of these prior distributions could lead to substantial bias and poor
coverage. The same authors also found problems with a small number of units when using a
Wishart prior distribution for correlated random e�ects [22].
The WinBUGS software has enabled complex models, that would be di�cult or impossible

to �t classically, to be �tted relatively straightforwardly using MCMC methods. With many
of these models WinBUGS is used as a tool for �tting the models rather than for the desire
to use informative prior distributions, so vague priors distributions are generally used in these
situations. In addition to the problem of using vague prior distributions when using MCMC,
there is the problem of whether the chains have converged. This can be di�cult to assess in
complex models.
In this paper we assess the performance of various prior distributions as implemented in the

WinBUGS software [6] and thus our results may be sensitive to how this software implements
the MCMC methods. We �rst consider a simple example of a random e�ects meta-analysis
from the Cochrane Library, comparing the results of using di�erent prior distributions. We then
consider simulated data sets in the context of a random e�ects meta-analysis. We investigate
the sensitivity of inferences to the choice of vague prior distribution for the between-study
standard deviation by simulating meta-analysis data sets for nine di�erent scenarios where the
number of studies and size of the between-study standard deviation are varied.
In Section 2 we illustrate the sensitivity to the choice of prior distribution using an example

from the Cochrane Library. In Section 3 we outline the procedure used to simulate the data for
the nine scenarios. Section 4 presents the results of the simulations and Section 5 highlights
the main �ndings and discusses issues for future research.

2. DEMONSTRATION OF PROBLEMS

Table I shows the odds ratios from a meta-analysis of short course (less than 7 days) vs long
course (greater than 7 days) antibiotics for treatment of acute otitis media obtained from the
Cochrane Library [23]. The outcome is treatment failure at 8–19 days. The original meta-
analysis used a �xed-e�ects model even though there was strong evidence of heterogeneity
of study e�ects using Cochran’s test [24].

Table I. Odds ratios from �ve studies comparing the e�ects of short course (less than 7 days) vs long
course (¿7 days) antibiotics for acute otitis media.

Study OR 95 per cent CI Log(OR) (SE)

1 0.95 (0.39,2.28) −0.05 (0.45)
2 0.80 (0.46,1.41) −0.22 (0.29)
3 2.76 (1.00,7.63) 1.02 (0.52)
4 2.61 (1.54,4.43) 0.96 (0.27)
5 1.52 (0.95,2.42) 0.42 (0.24)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2401–2428
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2.1. Bayesian hierarchical model

A Bayesian random e�ects model was �tted to the data presented in Table I. This is the
same model that is explored further in the simulation study outlined in Section 3. Let yi be
the log-odds ratio in the ith study and si its associated standard error. A simple two-level
hierarchical model can be �tted [25].

yi ∼ N(�i; s
2
i )

�i ∼ N(�; �
2)

(1)

This formulation of the model makes use of hierarchical centring, which can improve con-
vergence [26]. Prior distributions need to be speci�ed for the unknown parameters, i.e. the
pooled log-odds ratio, �, and the between-study standard deviation �. For the pooled odds
ratio, �, a di�use Normal distribution was used, i.e.

� ∼ N(0; 10000):

2.2. Prior distributions for variance components

For the between-study standard deviation �; 13 di�erent prior distributions were speci�ed
either for � or some function of �. However, it should be realized that speci�cation of a
prior distribution on, for example, the standard deviation scale, implies a distribution on the
variance and precision scales. This is discussed with examples given below. The parameteri-
sations for the di�erent prior distributions are the same as those described in the WinBUGS
manual [6]. The 13 prior distributions are as follows:
Prior 1

1

�2
∼ Gamma(0:001; 0:001)

This is probably the most common used prior distribution for variance parameters, not least
because it is used in many of the examples provided with the WinBUGS software [27, 28]
This prior distribution is approximately uniform for most of the range, but has a ‘spike’ of
probability mass close to zero.
Prior 2

1

�2
∼ Gamma(0:1; 0:1)

This is of the same distributional form as prior 1, but with the two parameters set to 0.1, and
thus provides a simple assessment of the sensitivity to the choice of these parameter values.
Prior 3

log(�2) ∼ Uniform(−10; 10)

This prior distribution is uniform on the log variance scale between two speci�ed parameters.
This has been used by Spiegelhalter [10] in the analysis of cluster randomized trials.
Prior 4

log(�2) ∼ Uniform(−10; 1:386)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2401–2428
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As above, but only goes up to maximum of 1.386, the log of 4.0. This is because it seems
implausible that the between-study variance could be larger than four (or equivalently the
standard deviation to be greater than 2.0). In fact this value is probably still conservative, but
it will demonstrate how estimates change when implausibly large values cannot be sampled.
This is the �rst of a number of weakly informative prior distributions as it gives zero density
to implausibly large values. The choice of what the upper bound should be is somewhat
subjective and will vary between analysis situations.
Prior 5

�2 ∼ Uniform(1=1000; 1000)

Spiegelhalter [10] investigates uniform prior distributions on the variance. This is an option
for specifying prior distributions for between level random e�ect variances in the MLWin
software [21].
Prior 6

�2 ∼ Uniform(1=1000; 4)

This is the weakly informative version of prior 5. As for prior 4, the maximum value the
between-study variance can be is 4.
Prior 7

1

�2
∼ Pareto(1; 0:001)

For a Pareto distribution with parameters � and c a uniform prior distribution for �k on
the range (0; r) can be expressed by setting � = k=2 and c = r−2=k [5]. Hence values of
k = 2; 1 and −2 give uniform prior distributions on the variance, standard deviation and
precision scales respectively. Prior 7 is equivalent to a uniform distribution (0,1000) on the
variance scale. These prior distributions have been used for variance components in genetic
epidemiology models [11, 29].
Prior 8

1

�2
∼ Pareto(1; 0:25)

This is the weakly informative version of prior 7 and is equivalent to a uniform prior distri-
bution for the variance in the range (0; 4).
Prior 9

� ∼ Uniform(0; 100)

This is a uniform prior distribution on the standard deviation scale in the range (0,100) and
is a prior distribution recommended by Spiegelhalter et al. in a recent book [30].
Prior 10

� ∼ Uniform(0; 2)

This is the weakly informative version of prior 9 and is thus is a uniform distribution on the
standard deviation in the range (0,2).

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2401–2428
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Prior 11

� ∼ N(0; 100) for � ¿ 0

Prior 11 speci�es a half normal distribution truncated at zero placed on the standard deviation
scale. Such a distribution has been used previously in meta-analysis applications [31].
Prior 12

� ∼ N(0; 1) for � ¿ 0

This is the weakly informative version of prior 11, giving a smaller variance and thus giving
a low probability to values greater than 4 for the between-study variance.
Prior 13

1

�2
∼ Logistic(S0) S0 =

√

K
∑

s−2i
K is the number of studies

This prior distribution has been advocated by DuMouchel and Normand [32]. It is not strictly
a ‘vague’ prior as it uses the observed variation to estimate the parameters for the prior
distribution. It has a maximum at zero and is a decreasing function of �.
Figure 1 shows the densities for �ve of the prior distributions on the variance, standard

deviation and precision scales. It can be seen that both the choice of distribution and scale lead
to di�erent shaped distributions. For example, a prior that is uniform on the variance scale
(Figure 1(c)) gives a triangular distribution on the standard deviation scale and a distribution
with a spike near zero on the precision scale. This shows the importance of investigating the
shape of prior distributions on di�erent scales and demonstrates that the na��ve belief that a
‘at’ prior is uninformative is not necessarily correct.
The model (1) was �tted using WinBUGS using 5000 samples after a ‘burn-in’ of 1000

samples. Figure 2(a) shows the point estimates (medians) and 95 per cent credible intervals
for the estimates of the pooled log-odds ratio and the between-study standard deviation from
the meta-analysis of short versus long course antibiotic use for acute otitis media. It can be
seen that although the point estimate of the pooled log-odds ratio is similar for the thirteen
di�erent prior distributions, there is considerable variability in the width of the 95 per cent
credible interval. This is due to variability in both the point estimate and the width of the 95
per cent credible interval for the between-study standard deviation (Figure 2(b)).
The lack of the agreement in inferences when using the various prior distributions is wor-

rying. For this reason we have conducted a simulation study which explores the sensitivity
to the choice of prior distribution when varying the number of studies and the size of the
between-study standard deviation. This is outlined in the next section.

3. SIMULATION STUDY

In a random e�ects meta-analysis the precision of the estimated between-study standard
deviation depends upon the number of studies included in the meta-analysis and the actual
magnitude of the between-study standard deviation. Therefore, data representing meta-analyses
of size 5; 10 and 30 studies were generated. Each meta-analysis consisted of a number of hy-
pothetical clinical trials comparing a standard treatment with a new treatment. The number

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2401–2428
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Figure 1. Density plots for priors: (a)
1

�2
∼ Gamma(0:001; 0:001) (Prior 1);

(b) log(�2) ∼ Uniform(−10; 1:386) (Prior 4); (c) �2 ∼ Uniform(1=1000; 4) (Prior 6);
(d) � ∼ Uniform(0; 2) (Prior 10); and (e) � ∼ N(0; 1)I [0; ] (Prior 12).

of studies in a meta-analysis of randomized controlled trials in medicine tends to be small
and it is common to see meta-analysis performed on �ve or fewer studies. The outcome was
de�ned as a dichotomous variable indicating the occurrence or not of the event of interest.
Half of the patients on standard treatment had the event of interest. The underlying treatment
e�ect in each meta-analysis was assumed to be an odds-ratio of 1.38 as outlined in Table II.
Three di�erent between-study standard deviations were investigated. These were 0.001
(e�ectively zero), 0.3 and 0.8. This leads to a di�erent distribution of the underlying odds
ratio across studies. A standard deviation of 0.001 (e�ectively zero) would indicate that a
there is not true heterogeneity and a �xed e�ects model may be appropriate. For a standard
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Figure 2. Point estimates and 95 per cent credible intervals for: (a) the pooled log-odds ratio; and (b)
the between-study standard deviation from the meta-analysis of short vs long course antibiotic use for

acute otitis media.

Table II. Assumed event rates and corresponding odds ratio for comparison of
standard and new treatment groups.

Outcome
Treatment −ve +ve

Standard treatment 0.50 0.50
New treatment 0.42 0.58

True odds ratio is 1.381 (log-odds ratio 0.323).

deviation of 0.3 one would expect 95 per cent of the underlying treatment e�ects (odds ratios)
to vary between 0.75 and 2.52. For a between-study standard deviation 0.8 one would expect
95 per cent of the underlying treatment e�ects to vary between 0.28 and 6.84. Note that a
standard deviation of 0.8 may be unusual in the meta-analysis setting, but could be applicable
in other areas where hierarchical models are used.
In the meta-analyses of �ve trials, the number of subjects in the �ve individual trials were

100; 200; 300; 400 and 500. For the meta-analyses of 10 and 30 trials, the same range of study
sizes were simulated. There were two trials of each size in the 10 trial simulations and six
trials of each size in the 30 trial simulations. Each meta-analysis data set was generated by
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the following model:

�i ∼ N(0; �
2)

logit(p0i) = �

logit(p1i) = �+ �+ �i

r0i ∼ Binomial(n0i; p0i)
r1i ∼ Binomial(n1i; p1i)

where � is the between-study standard deviation (0:001; 0:3 or 0.8), � is the log-odds for the
standard therapy group (0), � is the underlying log-odds ratio (0.323), n0i; p0i and r0i are the
number of subjects, the probability of an event and the number of events in the ith study for
the standard treatment group respectively, with n1i; p1i and r1i being the corresponding values
for the new treatment group. For each of the nine scenarios, 1000 data sets were generated.
For each data set the log-odds ratio and its associated standard error were calculated.
The Bayesian hierarchical model (1) was �tted to each generated dataset using the 13

di�erent prior distributions. These models were �tted in WinBUGS 1.4. All 13000 models for a
particular scenario were �tted simultaneously by looping over data sets and prior distributions.
An example of the WinBugs code can be seen in Appendix I. For each dataset a burn-in of
1000 iterations was used, with sampling from a further 5000 iterations. In practice, when
using MCMC methods for a single model, more iterations would be preferable. However, for
the 117 000 models �tted in this paper it was not practical to run the chains for longer.
The 13 di�erent vague prior distributions for the nine scenarios are evaluated using the

frequentist criteria of bias and coverage under repeated sampling. With the increasing use of
MCMC methods as a tool for �tting complex models, it is desirable for a Bayesian analysis
with vague prior distributions to satisfy these frequentist criteria.

4. RESULTS

Figure 3 shows the point estimates (medians) and 95 per cent credible intervals for the �rst
eight simulated data sets for the three scenarios (5, 10 and 30 studies) when the between-
study standard deviation is 0.001 using each of the 13 prior distributions. Within each data set
the point estimates of the log-odds ratios are broadly similar. However, the credible intervals
vary and potentially could lead to di�erent inferences. For example, in the �rst data set when
there are �ve studies, four of the credible intervals exclude zero while the remaining nine
include zero. As expected the width of the credible intervals narrows as the number of studies
increases (note the three scenarios are plotted on di�erent scales). Generally, there is more
disagreement between the credible intervals when there are fewer studies included in the meta-
analysis. However, even with 30 studies there is still some disagreement in the width of the
credible interval.
Figures 4 and 5are in the same format as Figure 3 and show the point estimates (medi-

ans) and the 95 per cent credible intervals for the �rst eight simulated meta-analysis data
sets for 5; 10 and 30 studies when the underlying between-study standard deviation is 0.3
and 0.8, respectively. As expected, comparison of Figures 3–5 shows that the width of the
credible interval increases. With 10 or 30 studies agreement in both the point estimates and

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2401–2428
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Figure 3. Point estimates and 95 per cent credible intervals for �rst eight simulated data sets when
between-study S:D: = 0:001 for �ve studies, 10 studies and 30 studies.
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Figure 4. Point estimates and 95 per cent credible intervals for �rst eight simulated data sets when
between-study S:D: = 0:3 for �ve studies, 10 studies and 30 studies.
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Figure 5. Point estimates and 95 per cent credible intervals for �rst eight simulated data sets when
between-study S:D: = 0:8 for �ve studies, 10 studies and 30 studies.
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Figure 6. Posterior distributions for the between-study standard deviation for the �rst eight data sets
simulated with �ve studies and a between-study standard deviation of 0.3 (only prior distributions

1; 3; 5; 9 and 11 are shown).

credible intervals is high compared to when there are �ve studies. This indicates that the
prior distributions are exerting less inuence relative to the data compared to the �ve study
scenario.
Figure 6 shows the posterior densities for the �rst eight simulated data sets of the between-

study standard deviation for �ve selected prior distributions for meta-analyses with �ve studies
and a simulated between-study standard deviation of 0.3. These plots show how the di�erent
prior distributions result in considerably di�erent shaped posterior distributions for the same
data set.
Figure 7 shows for meta-analyses with �ve studies and a simulated between-study standard

deviation of 0.001: (a) scatter plots of the agreement between the point estimates (medians)
of the between-study standard deviations; and (b) scatter plots of the agreement between the
estimated standard deviations of the pooled treatment e�ect for �ve selected prior distributions.
It can be seen that there is disagreement between both the estimated between-study standard
deviation and the standard deviation of the pooled treatment e�ect when using the �ve di�erent
prior distributions. Prior 5 (uniform on the variance) appears particularly discordant with
the other prior distributions. Furthermore, in some instances a particular prior distribution
consistently gives higher estimates than other prior distributions, e.g. Prior 11 (Normal on the
standard deviation) gives higher estimates than Prior 1 (Gamma on the precision). In addition
the plots show the relationship between the point estimate of the between-study standard
deviation and the standard deviation of the pooled treatment e�ect, in that higher estimates
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between-study standard deviation of 0.001, displaying: (a) the between-study standard deviation

(median); and (b) the standard deviation of pooled log-odds ratio.
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of the between-study standard deviation lead to higher estimates of the standard deviation of
the pooled treatment e�ect (comparison of panels a and b).
Figure 8 shows similar agreement plots, but for meta-analyses with 10 studies and a

between-study standard deviation of 0.8. These show that the agreement between estimates
using di�erent prior distributions for both the between-study standard deviation and the stan-
dard deviation of the pooled treatment e�ect is markedly much improved over the plots shown
in Figure 7. This indicates that as the study size and the between-study deviation increases
the inuence of the prior distributions is reduced.
Figure 9 shows further agreement plots for meta-analyses with 30 studies and a simulated

between-study standard deviation of 0.001. The plots show that, even when the number of
studies is large, agreement is poor when the between-study standard deviation is small. How-
ever, a degree of caution is required when interpreting these plots due to issues of convergence
as discussed below.
In general it is recommended to assess the convergence and mixing of MCMC chains

on which inferences are based [33]. However, with 117 000 models �tted this is unrealistic
for this simulation study. We therefore investigated informally (by visual inspection of the
trace plots) the �rst 50 data sets in each scenario for each of the 13 prior distributions.
The main problems we found were that the MCMC chain for the estimated between-study
standard deviation occasionally got ‘stuck’ close to zero for some of the prior distributions
and were slow mixing. This problem appeared to get more severe as the number of studies
increased. Thus, for the data sets generated with 30 studies and a simulated between-study
standard deviation of 0.001 there were a number of data sets where if a de�nitive analysis was
being performed then in practice one would probably want to run the chains for longer. Two
examples of such trace plots can be seen in Figure 10, where the trace plots are also shown
on the log scale to aid interpretation. The prior distributions that visual inspection revealed to
be particularly poor were Priors 3 and 4 (uniform on the log variance scale), Priors 11 and
12 (Gaussian on the standard deviation scale) and Prior 13 (DuMouchel). The convergence
problems were less severe for data sets generated with 10 and 5 studies and a between-study
standard deviation of 0.001. This problem getting ‘stuck’ close to zero has been recognized
elsewhere [11, 34] Hence, non-convergence is clearly a possibility, and this emphasises the
need for comprehensive diagnostic assessment to be used in routine application of even simple
models [33].
Table III shows the mean values of the median pooled e�ect size, the mean of the standard

deviation of the e�ect size and the coverage of the 95 per cent credible interval of the pooled
e�ect size. Coverage was assessed by calculating 95 per cent credible intervals using the 2.5th
and 97.5th percentiles of the distribution and evaluating the number of credible intervals that
contained the known estimate. The table shows that the estimates of the pooled e�ect size
appear to be unbiased. However, there is large variation in the standard deviation of the
pooled e�ect size when the analysis consists of �ve studies. This variation is reduced, but
still present, for analysis of 10 studies and reduced still further for 30 studies. The coverage
of the pooled e�ect size tends to be too high when the between-study standard deviation is
0.001. This can be explained by the fact that when the true standard deviation is close to
zero it will be upwardly biased as the MCMC sampler must always sample a positive value
[11, 34] Coverage tends to improve as the number of studies analysed increases.
Table IV shows the mean values of the median between-study standard deviation, the mean

of the standard deviation of the between-study standard deviation and the coverage of the 95
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Figure 8. Scatter plot matrix for selected prior distributions for the 10 study scenario with a be-
tween-study standard deviation of 0.8, displaying: (a) the between-study standard deviation (median);

and (b) the standard deviation of pooled log-odds ratio.
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Figure 9. Scatter plot matrix for selected prior distributions for the 30 study scenario with a
between-study standard deviation of 0.001, displaying: (a) the between-study standard deviation

(median); and (b) the standard deviation of pooled log-odds ratio.
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Figure 10. Example trace plots for four simulated data sets for the between-study standard
deviation when convergence appeared to be a problem with 30 studies and a between-study

standard deviation of 0.001.
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per cent credible interval of the pooled e�ect size. Coverage was assessed as above. When the
between-study standard deviation is near zero the MCMC estimate will always be upwardly
biased as sampled numbers must always be positive, as explained above. With large samples,
i.e. 30 studies, the between-study standard deviation is close to its nominal value when it is
some distance from zero. However, there are still some problems with bias with 10 studies
and particularly with �ve studies.
When the between-study standard deviation is close to zero the coverage is extremely

poor due to the upward bias issue discussed above. For values away from zero coverage is
improved, although one must take into account the complex relationship between bias and
coverage.

5. DISCUSSION

We have performed a simulation study that demonstrates the potential inuence of using prior
distributions believed to be vague. We have generated data from a meta-analysis context,
but the problems we have identi�ed are likely to be generalizable to most areas in which
hierarchical /variance component modelling is undertaken. Thirteen di�erent prior distributions
are assessed under nine di�erent scenarios in which the size of the between unit variation and
the number of units are varied. For each scenario we have assessed the frequentist properties
of bias and coverage of the parameter estimates.
The results can be broadly summarised as follows. The point estimate of �xed e�ect (i.e.

the log-odds ratio) has little bias. However, the use of the di�erent prior distributions lead
to problems with coverage of the �xed e�ect estimate. This is because of the variation in
the estimates of the between unit standard deviation. Thus, even though all of these prior
distributions were intended to be vague, their use could lead to di�erent inferences. As the
number of units increases the inuence of the prior distribution is reduced, with the data
truly dominating. However, there are potential problems when the true between unit standard
deviation is close to zero. This is because the MCMC sampler is ‘forced’ to sample a positive
value at every iteration of the sampler. A further problem is that when estimates are close
to zero, poor mixing of the sampler can occur. This appeared to be more problematic as
the number of units increased. There is no one prior distribution which performed best for
all scenarios, but certain prior distributions performed particularly poorly in terms of the
frequentist properties of bias and coverage. The priors that were uniform on the variance
scale (5; 6; 7; 8) were particularly poor with a small number of units and if a vague prior is
desired there is little reason for their use.
There are a number of implications for practice resulting from this work. Firstly, when

using priors distributions that are intended to be vague for the between unit variance, a
sensitivity analysis is crucial. This is particularly important when the number of units is
small and/or the estimated variance is close to zero. Although we have simulated data from a
meta-analysis context, we feel that our results should apply to any area where random e�ects
models are used, which display such characteristics. It seems unlikely that if these problems
exist for simplistic models then they would disappear in more complex scenarios. This has
been demonstrated by Browne and Draper [22] who observed bias and incorrect coverage
when the number of units was small when using a random e�ects model with a Wishart prior
distribution on correlated random e�ects for the intercept and slope in a hierarchical linear
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model. We welcome the new addition to the WinBUGS examples that demonstrates how a
number of di�erent prior distributions can be �tted to the same model and their results plotted
in a similar format to those of Figure 3, allowing immediate comparison with relative ease
[35]. When there is only a sparse number of units it may be valuable to consider true prior
information as with such sparse data, the between unit variance is never going to be estimated
well using no prior information. We observed that convergence was potentially problematical
when the estimated between unit standard deviation was close to zero and this speci�c problem
appeared to get worse as the number of units increased. This highlights the need to check for
convergence routinely, even in models that may be perceived as elementary, such as those
used here.
Some of the prior distributions used here are clearly unrealistic in that they give support

to unfeasibly large values for the between unit standard deviations. The use of such priors
has been criticized [36]. We would therefore recommend investigation of prior distributions
that are vague within a realistic range for the data set under consideration within a sensitivity
analysis. This approach has been considered previously in Bayesian meta-analysis [37]. A
related method is to use previous empirical observations to derive reasonable prior distribution.
This has been considered in a meta-analysis context where the prior distribution for the
between-study variance has been derived from investigation of the observed heterogeneity from
previous meta-analyses in the same clinical area [38]. A further approach to the choice of prior
distribution is to use uniform shrinkage priors [10, 39, 40]. These are similar to the approach
of DuMouchel used here (prior 13). Whichever prior distributions are used for the main and
sensitivity analyses, on the grounds of transparency and following previous recommendations
[41], we strongly advocate the reporting of all prior distributions considered, their impact on
results and an assessment of their convergence.
All analyses were performed using WinBUGS (version 1.4), and hence it should be realized

that results may not just be theoretical di�erences but may also reect how the software
implements the MCMC methods. Use of alternative methods of estimation or software could
potentially lead to di�erent results. However, with an increasing number of analysts using
MCMC methods and WinBUGS in particular for a wide range of models, we feel that it is
an important message that the use of vague prior distributions should be treated with a degree
of caution and that sensitivity analysis to the choice of vague prior distributions, particularly
in small samples, is crucial to any analysis.

APPENDIX I: SIMULATION IN BUGS

model hiersim {

# nsim=number of simulations

# nstud=number of studies

# nprior=number of different priors for variance

# create replicates of datasets

for(i in 1:nsim){
for(j in 1:nstud){
for(k in 1:nprior){
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y[i,j,k] <- y.dat[i,j]

}
}

}

# loop over datasets i

for(i in 1:nsim){

# loop over number of priors k

for(k in 1:nprior){

# loop over number of studies j

for(j in 1:nstud){
y[i,j,k] dnorm(mu[i,j,k],prec[i,j])

mu[i,j,k] dnorm(theta[i,k],tau[i,k])

}

# prior for pooled effect

theta[i,k] dnorm(0,0.0001)

}

# priors for variances

# prior 1 - Gamma(0.001,0.001) on precision

tau[i,1] dgamma(0.001,0.001)

var[i,1] <- 1/tau[i,1]

sd[i,1] <- sqrt(var[i,1])

# prior 2 - Gamma(0.1,0.1) on precision

tau[i,2] dgamma(0.1,0.1)

var[i,2] <- 1/tau[i,2]

sd[i,2] <- sqrt(var[i,2])

# prior 3 - Uniform [-10,10] on log variance

lv[i,3] dunif(-10,10)

log(var[i,3]) <- lv[i,3]

tau[i,3] <- 1/var[i,3]

sd[i,3] <- sqrt(var[i,3])

# prior 6 - Uniform [0,4] on variance

var[i,6] dunif(0,4)

tau[i,6] <- 1/var[i,6]

sd[i,6] <- sqrt(var[i,6])

# prior 4 - Uniform [-10,4] on log variance

lv[i,4] dunif(-10,1.386)

log(var[i,4]) <- lv[i,4]

tau[i,4] <- 1/var[i,4]

sd[i,4] <- sqrt(var[i,4])

# prior 5 - Uniform [0,1000] on variance
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2426 P. C. LAMBERT ET AL.

var[i,5] dunif(0,1000)

tau[i,5] <- 1/var[i,5]

sd[i,5] <- sqrt(var[i,5])

# prior 7 - Pareto(1,0.001) (equiv to unif(0,1000) on variance)

tau[i,7] dpar(1,0.001)

var[i,7] <- 1/tau[i,7]

sd[i,7] <- sqrt(var[i,7])

# prior 8 - Pareto(1,0.25) (equiv to unif(0,2) on sd)

tau[i,8] dpar(1,0.25)

var[i,8] <- 1/tau[i,8]

sd[i,8] <- sqrt(var[i,8])

# prior 9 - Uniform(0,100) on sd

tau[i,9] <- 1/var[i,9]

var[i,9] <- pow(sd[i,9],2)

sd[i,9] dunif(0,100)

# prior 10 - Uniform(0,2) on sd

tau[i,10] <- 1/var[i,10]

var[i,10] <- pow(sd[i,10],2)

sd[i,10] dunif(0,2)

# prior 11 - half-normal on sd var=100

tau[i,11] <- 1/var[i,11]

var[i,11] <- pow(sd[i,11],2)

sd[i,11] dnorm(0,0.01)I(0,)

# prior 12 - half-normal on sd - var=1

tau[i,12] <- 1/var[i,12]

var[i,12] <- pow(sd[i,12],2)

sd[i,12] dnorm(0,1)I(0,)

# prior 13 - log-logistic on sd (from DuMouchel)

p[i] dunif(0,1)

sd[i,13] <- p[i] *s0[i]/(1-p[i])

tau[i,13] <- 1/var[i,13]

var[i,13] <- pow(sd[i,13],2)

s0[i] <- sqrt(nstud/sum(prec[i,]))

}
}
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