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We provide large-scale evidence on the occurrence and value of FinTech innovation. Using
data on patent filings from 2003 to 2017, we apply machine learning to identify and classify
innovations by their underlying technologies. We find that most FinTech innovations yield
substantial value to innovators, with blockchain being particularly valuable. For the overall
financial sector, internet of things (IoT), robo-advising, and blockchain are the most valuable
innovation types. Innovations affect financial industries more negatively when they involve
disruptive technologies from nonfinancial startups, but market leaders that invest heavily in
their own innovation can avoid much of the negative value effect. (JEL G14, G20, G29,
G39)
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In recent years, the rapid advance of FinTech, or financial technology, has
attracted considerable attention within the finance industry. Many observers
have welcomed the rise of FinTech, claiming that newly emerging technologies
have the potential to radically transform financial services by making
transactions less expensive, more convenient, and more secure.1 Worldwide,
external funding for FinTech development has been rising quickly. During
the first half of 2018, global investment in FinTech companies totaled $57
billion, a striking increase from $38.1 billion for all of 2017 (KPMG 2018b).
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Furthermore, large financial institutions and technology firms are increasingly
investing in FinTech innovation.2

Yet, despite the widespread interest in FinTech, little is currently known about
exactly how it will affect existing financial firms and their business models.
Which specific types of new FinTech will be most valuable to their innovators?
Will FinTech discoveries help incumbent financial institutions reduce costs and
better engage customers, resulting in higher future profits? Or will new FinTech
enable upstart firms to erode established firms’ competitive advantage, leading
to lower profits and value throughout the industry? Such questions are difficult
to answer in the absence of systematic evidence on FinTech innovation.

In this paper, we provide the first large-scale evidence on the occurrence and
value of FinTech innovation. For this purpose, we construct a novel data set
of published FinTech patent applications over the 2003–2017 period. Our data
set draws on the Bulk Data Storage System (BDSS) of the United States Patent
and Trademark Office (USPTO) and includes both the full text of each patent
filing and identifying information on original patent assignees.3 By using the
identifying information to ascertain whether assignees are public firms, private
firms, or individual inventors, we can obtain a much more complete picture of
innovation activity than would be possible with public-company filings alone.

A fundamental challenge in studying FinTech innovation is that there
currently exists no standard definition of what “FinTech” is and what specific
technologies the term encompasses. One of the key goals of our study is thus
to develop an objective, data-based definition and classification of FinTech
innovation. To this end, we exploit the rich textual data in our sample of patent
filing documents. We first assemble a new lexicon of finance-related terms and
use it to narrow down the set of patent filings to those relating to financial
services. We then apply several families of machine-learning algorithms to
the textual data to identify FinTech innovations and classify them into seven
key technology categories: cybersecurity, mobile transactions, data analytics,
blockchain, peer-to-peer, robo-advising, and internet of things (IoT).4

Using our sample of classified patent filings, we document a number of
basic facts about FinTech innovation. For example, we find that publicly traded
companies as a group have driven only a minority of FinTech innovations
to date. Indeed, private companies and nonfirm individuals account for about
62.7% of FinTech filings in the sample. Of the FinTech filings from companies,
about 57.8% are in fact from technology companies outside of the financial
services industries. Among the seven FinTech categories, cybersecurity and

2 See Nash (2016) and Russo (2017).

3 The BDSS platform, first released to the public in October 2015, succeeds the discontinued Google USPTO Bulk
Downloads service. Although BDSS does not appear to have been used before by finance researchers, a number
of papers have used Google USPTO Bulk Downloads to obtain information on assignee names, grant dates, and
citations (see, e.g., He and Tian 2016; Kogan et al. 2017; Mann 2018).

4 In Section 1, we define these seven technology categories and provide illustrative examples of each.
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mobile transactions have experienced the most total innovation over the sample
period. Blockchain is currently the smallest but fastest-growing category of
FinTech innovation.

To explore the implications of FinTech innovation, we develop a new
methodology for estimating the value of a patent filing to one or more publicly
traded firms. Our valuation approach is based on observed stock market
responses to USPTO disclosures of patent filings. Importantly, our approach
accounts for the market’s anticipation of different types of patent filings made
by different filers.5 We start by estimating innovation arrival intensities via
Poisson regression models that account for factors such as technology type,
time effects, a patent filer’s prior innovation experience, and filer fixed effects.
Then, for each patent filing, we combine its predicted count intensity with a
firm’s stock price movements to infer the underlying value of the innovation to
the firm.

Using our valuation approach, we examine how much firms in the financial
services sector stand to gain from their own FinTech innovations. The
calculations show that a FinTech innovation’s private value (i.e., the value
accruing to the innovator) is typically large and positive. For instance, in
2017 dollars, the median private value of a FinTech innovation is about $46.7
million, which is much higher than the median private value of $3.1 million for
other financial innovations. Overall, the FinTech innovation types that are most
valuable to innovators are blockchain, cybersecurity, and robo-advising. When
we control in multivariate regressions for time-varying firm characteristics, firm
fixed effects, and patent quality measures, we find that blockchain and robo-
advising emerge as the most valuable types, thus underscoring the economic
importance of these new segments of the FinTech space.

We extend our valuation method to study how FinTech innovations affect the
financial services sector and its key component industries: banking, payment
processing, brokerage, asset management, and insurance.6 Our calculations
show that, for the financial sector as a whole, the typical FinTech innovation
brings positive value. The most valuable innovation types are IoT, robo-
advising, and blockchain, with median value impacts of $24.5 billion, $15.5
billion, and $8.1 billion, respectively (2017 dollars). Nonetheless, we find
substantial variation in value across different technology-industry pairings.
Among mobile transaction innovations, for example, the median value impact
is negative for the banking industry but positive for the payments industry.

What explains the wide cross-sectional variation in the value effects of
FinTech innovation? We argue that the value effects of an innovation are driven
by two key factors: (1) how inherently disruptive is the underlying technology;

5 Throughout, we use the term “filer” to refer to the original assignee of a patent application filing.

6 Because our method requires the use of stock-price data, any inferences or conclusions we draw about an
innovation’s value impact to an industry must be tempered by the fact that we cannot directly measure value
effects for privately held firms within the industry.
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and (2) whether the innovator poses a competitive entry threat to the industry.
To study this issue, we use technological spillovers emanating from individual,
nonfirm inventors to construct a data-based measure of “disruptiveness” across
technology-industry pairs. Consistent with theories of disruptive innovation
(e.g., Christensen 1997; Christensen and Raynor 2003; Downes and Nunes
2013), we find that a FinTech innovation tends to destroy significantly more
industry value when its underlying technology is disruptive and when it
originates from a young, nonfinancial firm (“FinTech startup”).

Next, we examine how FinTech innovation affects value from the viewpoint
of individual incumbent firms, that is, market-share leaders and their rivals.
Theoretical considerations suggest that disruptive innovation by potential
entrants can be especially harmful to an industry’s market leaders, which are
sluggish in adapting to change and focused on existing customers (Tang 1988;
Christensen and Raynor 2003). On the other hand, industry-wide disruption
might be advantageous to market leaders because, compared to rivals, they have
larger scale economies and more financial resources with which to innovate new
lines of business (Dasgupta and Stiglitz 1980; Scherer 1980; Blundell, Griffith,
and van Reenen 1999; Czarnitzki, Etro, and Kraft 2014). Our empirical tests
support the latter prediction and also suggest that market leaders’ ability to
avoid harm from disruptive outside innovation is strongly linked to the amount
of resources that they devote to their own research and development (R&D).

Our paper is connected to a number of different literatures. First, our work
complements the sizable body of research that utilizes patent data to study
innovation activity by firms (e.g., Griliches, Hall, and Pakes 1991; Hall, Jaffe,
and Trajtenberg 2005; Kortum and Lerner 2000; Lerner 2009; Brav et al. 2018).
While this literature has delivered valuable insights about corporate patenting
and innovation in general, much of the research relies on patent grant data and
thus cannot fully capture the FinTech innovation activity that has occurred over
just the past few years.7 By focusing on patent applications and utilizing the
BDSS data, we can mitigate the data truncation problems inherent in relying
on patent grants and thus provide a more complete picture of very recent trends
and patterns in FinTech innovation.

Second, our work builds upon a stream of research that uses stock price
data to study the value of innovation (see, e.g., Pakes 1985; Austin 1993; Hall,
Jaffe, and Trajtenberg 2005; Nicholas 2008; Kogan et al. 2017). The methods
that we develop extend this literature by recognizing the count-based nature
of innovation events over time, thus permitting more precise estimates of the
true value impact of such events. More generally, our approach of combining
stock price reactions with predicted Poisson arrival intensities could be useful

7 Empirical studies document that, for observed patent grants, the average time between application and granting
is about 2 years (e.g., Hall, Jaffe, and Trajtenberg 2005; Seru 2014; Cornaggia et al. 2015). Some applications
remain under review for much longer than 2 years and thus may not be captured by currently available grants
data.
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for studying other types of recurring, partially anticipated phenomena, such as
revisions to analyst estimates, sequences of corporate news releases, or waves
of mergers or bankruptcies.

Third, our findings contribute to the finance, strategy, and economics
literatures that explore the role of innovation in shaping industry competition.
Theoretical research has modeled how innovation from outside of an industry
can harm or benefit incumbent firms (see, e.g., Lieberman and Montgomery
1988; Henderson and Cockburn 1996; Christensen 1997; Adner 2012) and how
incumbents can use their own innovation to protect themselves from outside
threats (see Dasgupta and Stiglitz 1980; Gilbert and Newbery 1982; Aghion
et al. 2001; Aghion and Griffith 2005). Testing such theories is challenging
because of the difficulty of obtaining a large data sample of competitive threats
from innovation. Our work employs a new data set and provides systematic
evidence of how innovation by potential entrants can affect individual firms
within an industry.

Finally, our approach to identifying and classifying FinTech patent filings
contributes to the literature that applies textual analysis and machine learning
to finance and economics. Researchers have used text-based methods to study
news articles, online forum postings, corporate filings, and analyst reports (e.g.,
Antweiler and Frank 2004; Tetlock, Saar-Tsechansky, and Macskassy 2008;
Hanley and Hoberg 2010; Loughran and McDonald 2011; Jegadeesh and Wu
2013; Hoberg and Phillips 2016; Bellstam, Bhagat, and Cookson 2017; Manela
and Moreira 2017). Other work studies the application of machine-learning
methods to economics (e.g., Kleinberg et al. 2015; Glaeser et al. 2016; Naik,
Raskar, and Hidalgo 2016; Athey and Wager 2018; Athey, Tibshirani, and
Wager 2018). A number of the machine-learning algorithms that we use for
text classification appear to be new to the finance domain and can be applied to
study a broad set of questions relating to patent filings, legal documents, media
stories, and other textual data.

1. Categories of FinTech

What is FinTech? Although FinTech can be broadly defined as any technology
that enables or enhances the provision of financial services, such a definition is
of limited use for empirically identifying and classifying real-world FinTech. To
proceed with our analysis, we therefore require a typology that (1) distinguishes
innovation within the FinTech space from other types of financial or scientific
innovation; and (2) articulates the key technological differences among different
instances of FinTech innovation.

We begin with the premise that FinTech ultimately consists of the set of
recently developed digital computing technologies that have been applied—or
that will likely be applied in the future—to financial services. Then, based on a
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Table 1
Categories of FinTech

Category definition Key technologies Real-world examples

Cybersecurity: Hardware or
software used to protect financial
privacy or safeguard against
electronic theft or fraud

Encryption, tokenization,
authentication, biometrics

Diebold iris-scanning ATM,
Mastercard Biometric Card, USAA
face recognition login, Experian
CreditLock

Mobile transactions: Technologies
that facilitate payments via mobile
wireless devices, such as
smartphones, tablets, and wearables

Smartphone wallets, digital wallets,
near-field communication

Apple Pay, Android Pay, PayPal
Mobile Express Checkout, Venmo,
Square

Data analytics: Technologies and
algorithms that facilitate the
analysis of transactions data or
consumer financial data

Big data, cloud computing,
artificial intelligence, machine
learning

Equifax NeuroDecision credit
scoring, JPMorgan Contract
Intelligence (COiN), Bloomberg
Social Sentiment Analytics

Blockchain: Distributed ledger
technologies with a primary
application to financial services

Cryptocurrency, proof-of-work,
smart contracts, directed acyclic
graphs

Bitcoin, Ripple Payment Network,
Visa B2B Connect, Nasdaq Linq
asset trading platform

Peer-to-peer (P2P): Software,
systems, or platforms that facilitate
consumer-to-consumer financial
transactions

Crowdfunding, P2P lending,
customer-to-customer payments

GoFundMe, Kickstarter, Lending
Club, Prosper Marketplace, Zelle

Robo-advising: Computer systems
or programs that provide automated
investment advice to customers or
portfolio managers

Artificial intelligence, big data,
machine learning

Betterment, E-Trade Core
Portfolios, Schwab Intelligent
Portfolios, Vanguard Personal
Advisor Services

Internet of things (IoT):
Technologies relating to smart
devices that gather data in real time
and communicate via the internet

Smart devices, near-field
communication, wireless sensor
networks, actuators

UnitedHealthcare Motion F.I.T.
tracker, Nationwide SmartRide
telematics, Travelers Insurance
smart home sensors

This table shows a proposed typology of FinTech. The definitions, technologies, and examples listed are based
on the authors’ reading of news articles, industry reports, and surveys.

general reading of various articles and reports,8 we formulate a broad typology
of FinTech comprising seven categories: cybersecurity, mobile transactions,
data analytics, blockchain, peer-to-peer (P2P), robo-advising, and IoT. Table 1
provides brief definitions of these FinTech categories and lists key technologies
and real-world examples associated with each category.

It is apparent from Table 1 that some categories (e.g., data analytics) are
quite broad, and their constituent technologies are already in widespread use
across many financial industries. Other categories (e.g., P2P or robo-advising)
are associated with a narrower set of industries. In some cases, key technologies
underlying a FinTech category also belong to another, broader category. For
example, robo-advising shares big data, artificial intelligence, and machine-
learning technologies with the broader category of data analytics. In situations
in which an innovation involves a technology that spans multiple categories,
the intended finance application should dictate which category the innovation
belongs to.

8 See in particular The Economist (2015), Orton-Jones (2017), Robinson (2017a, 2017b), Reklaitis (2018), and
KPMG (2018a).
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Finally, it is important to note that not all the key technologies listed in Table 1
automatically qualify as being FinTech. Indeed, technologies are partly defined
by their intended use. Our typology requires that the actual (or intended) main
use case of a technology lie within the field of financial services in order for
the technology to be considered FinTech. Thus, a new blockchain designed for
supply-chain management or a new machine-learning algorithm for predicting
weather patterns would not be considered FinTech since the primary intended
applications of these innovations do not fall within the domain of financial
services.

2. Data

Our source of patent filings data is the Bulk Data Storage System (BDSS)
provided by the U.S. Patent and Trademark Office (USPTO). First released
to the public in October 2015, BDSS is updated weekly and provides
comprehensive coverage of patent filings from 1976 to the present. The
BDSS platform offers two key advantages relative to other data sets, such as
the commonly used National Bureau of Economic Research (NBER) patent
database. First, BDSS permits bulk downloads of the full text of patent
applications.9 Second, for applications after March 2001, BDSS reports the
dates on which patent applications were first disclosed to the public.10 Having
exact patent application disclosure dates is critical for our purposes because the
valuation methodology we develop in Section 3 makes use of stock price data
around public news of innovations.

To construct a sample for our study, we first use BDSS to obtain information
on the 4,680,587 total patent applications published by the USPTO between
January 1, 2003 and September 7, 2017. Of these, 2,243,484 patent applications
are identified in BDSS as having been filed by public firms, private firms,
and individuals located in the United States. We identify each patent filer’s
type by the assignee type and the assignee/applicant addresses as published in
BDSS.

We gather the International Patent Classification (IPC) codes associated with
each patent application and then restrict the sample to applications belonging to
either IPC Class G or IPC Class H. The union of these very broad patent classes
(“Class G&H”) covers the areas that are potentially related to digital computing,
which is a technology that underlies all FinTech categories as discussed in

9 Our study uses patent applications rather than patent grants because many FinTech patents applied for during
the past few years have not yet been granted. Thus, focusing only on news of FinTech patent grants could result
in a severe truncation bias.

10 Under the American Inventors Protection Act of 1999, patent applications filed on or after November 29, 2000
must be publicly disclosed by the USPTO no later than 18 months after the initial filing date. Disclosure can
occur sooner than 18 months after filing if an inventor requests early publication.
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Section 1.11 With this restriction, we obtain a sample of 1,181,162 Class G&H
patents filed by U.S. companies or individuals.

2.1 Identifying and classifying FinTech innovations
To identify and classify FinTech patent filings in accordance with our typology
outlined in Section 1, we proceed in two main steps. First, we use text-based
filtering to narrow down the large set of Class G&H patent filings to those that
are plausibly related to financial services. Second, we apply several families
of machine-learning algorithms to automatically generate classifications of the
filings. In the following three subsections, we describe the text-based filtering
process, the training and application of machine-learning classifiers, and the
results of the classification.

2.1.1 Text-based filtering to exclude nonfinancial innovations. We
construct a new lexicon of financial terms that can be used to exclude
nonfinancial patent filings from the overall sample. This approach is related
to prior research in finance that has used word lists or textual analysis to
measure sentiment, detect bias, or classify subjects in news media or financial
filings.12 To build our list of filtering terms, we start with two publicly available
glossaries. First, we obtain all terms from Campbell R. Harvey’s Hypertextual
Finance Glossary13 (the November 8, 2016, version), a widely used online
compendium of finance terms that serves as the basis for the glossaries of
numerous media companies, such as New York Times, Forbes, and CNN Money.
Second, we gather all terms from the online Oxford Dictionary of Finance
and Banking, 5th Edition, published by Oxford University Press. Combining
these two lists of terms and excluding acronyms, we obtain a total of 11,196
unique single-word and multi-word finance terms. From the combined glossary,
we create a list of all terms that can be unambiguously associated with
financial services, including single-word terms (e.g., “bourse,” “futures,” or
“chargeback”) and any 2- or 3-grams contained within glossary terms (e.g.,
“credit card,” “bond indenture,” or “mutual fund”). We add to our filtering list
a small handful of additional words that have recently gained recognition as
financial terms, such as “bitcoin,” “cryptocurrency,” and “crowdfunding.” Our
final list has a total of 487 unique finance-related terms.14

11 Class G corresponds to Physics and includes computing, calculating, counting, information and communication
technology, and other categories. Class H corresponds to Electricity and covers basic electric elements, generation
of electricity, applied electricity, basic electronic circuits, and their control; radio or electric communication tech-
niques; and other areas. Full descriptions of IPC classes are available at http://www.wipo.int/classifications/ipc/en.

12 Tetlock (2007) applies large-scale, quantitative content analysis to examine of the effects of media sentiment
on stock returns and trading volume. Tetlock, Saar-Tsechansky, and Macskassy (2008) and Kelly and Tetlock
(2013) study how text-based measures of negative sentiment relate to firm fundamentals, retail trades, and stock
returns. Loughran and McDonald (2011) develop a lexicon of finance words and use it to study how negative
sentiment in 10-K filings relates to outcomes such as stock returns, trading volume, fraud, and earnings surprises.

13 Available at https://people.duke.edu/∼charvey/Classes/wpg/glossary.htm.

14 Our list of finance-related filtering terms is available on request.
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We apply our filtering list to the sample of all Class G&H patents filed by
U.S. companies and individuals. Specifically, we retain patent filings that meet
two requirements: (1) at least one filtering term appears in the title, abstract,
summary, or claims sections of the filing; (2) a second, different filtering term
appears anywhere in the filing document. Using this filtering strategy, we obtain
a total of 67,948 patent filings that are potentially related to financial services.

2.1.2 Using machine learning to identify and classify FinTech innovations.
Next, we apply supervised machine-learning methods to classify the filtered

sample of patent filings based on their textual data. The application of these
methods requires three basic steps: text preprocessing, creation of a training
sample, and training one or more algorithms to produce a classification. For
ease of exposition, we briefly summarize each step here and provide more
detailed descriptions in Appendix A.

Step 1: Preprocessing text contained in filings

We preprocess the text of each patent application document using approaches
that are standard practice in text-based analysis, including tokenization,
stemming, removal of stopwords, and removal of very common terms (see, e.g.,
Gentzkow, Kelly, and Taddy forthcoming). Using a “bag of words” approach,
we map each filing document into a numerical vector of “term frequency-inverse
document frequency” scores, where a word’s score reflects how important the
word is to a document within the broader collection of documents.

Step 2: Constructing a training sample

To construct a training sample for the machine-learning algorithms, we first
compile a list of firms featured in the annual FinTech surveys of six different
magazines. We add to this list the firms in Compustat that are among the top-10
most-prolific patent filers within each of five financial industries: commercial
banking, payment processing, brokerage, asset management, and insurance.15

Out of all Class G&H patent applications filed during 2003–2017 by firms
on our list, we select a random subsample of 1,000. We review and manually
classify the 1,000 filings into nine groups (seven for the FinTech categories, one
for other financial filings, and one for nonfinancial filings). Using these groups
as the basis for a simple nearest-centroid classifier, we classify the entire sample
of 67,948 text-filtered filings into the nine groups and then select 200 from each
group. The resultant collection of 1,800 filings, which we manually reclassify
as needed, constitutes our training sample.

15 We identify these five industry groups using six-digit NAICS codes as follows: asset management: 523920,
523930; banking: 522298, 522120, 522291, 522220, 522110, 522210; brokerage: 523110, 523120; insurance:
524210, 524127, 524113, 524130, 524126, 524114; and payments: 522320.
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Step 3: Applying machine-learning classifiers

The key step in classifying the broader set of 67,948 text-filtered filings is
to train and use one or more supervised machine-learning algorithms. Rather
than simply rely on a single approach, we use several different families of
algorithms, each of which has been well-studied and successfully applied to
classification problems in other domains.16 The two types of classifiers that
are most central to our work are support vector machines (SVM) and neural
networks. Appendix A briefly explains these two approaches and reports the
specific hyperparameters and design choices that we use with each approach.
For comparison purposes, we also train and apply several other well-known
classifiers: Naïve Bayes (NB), k-nearest neighbor (kNN), random forest, and
gradient boosting. Since these additional methods do not play a direct role in
our final classification, we do not discuss them in detail and instead refer the
reader to Hastie, Tibshirani, and Friedman (2009).

2.1.3 Performance of the machine-learning classifiers. Table 2 reports
the performance of the various machine-learning classifiers we apply to our
sample.17 We consider a total of seven individual classifier models: naïve
Bayes, kNN, random forest, gradient boost, linear multiclass SVM, nonlinear
multiclass SVM (Gaussian kernel), and neural network. For each classifier,
we report performance according to four commonly used measures: accuracy,
precision, recall, and F1 score.18 Each performance measure for a given
classifier is calculated as an average performance score across the seven FinTech
categories. In practice, the F1 metric is generally considered to be superior to
the others if the data potentially contain many true negatives. Thus, when fitting
each individual classifier model, we select parameters to maximize the F1 score.

Panel A of Table 2 shows that, among the individual classifiers tested, the
neural network classifier and the linear SVM classifier are the top two models in
terms of F1 score and accuracy. To achieve stronger classification performance,
we use a simple majority-rule “voting” classifier that aggregates predictions of
the linear SVM, Gaussian SVM, and neural network models.19 (In the small

16 An early version of our paper relied on just one algorithm, support vector machines, to classify patent texts. We
thank several audience members at workshops and seminars for suggesting that we also use other well-known
algorithms to improve the quality of the classification and the overall reliability of our empirical results.

17 We evaluate classifier performance using a 10-fold cross-validation approach. This involves first splitting the
training sample into 10 random subsets. For each subset j =1,2,...,10, we use the union of the remaining nine
subsets as a training sample to fit the model and use subset j as a test sample to assess out-of-sample performance.
We then average the model’s performance across the 10 sample splits. This cross-validation method has the
advantage of being robust and utilizing the entire training sample (see, e.g., chapter 5 of James et al. 2013).

18 Accuracy is one minus the ratio of the number of incorrect category predictions to the total number of observations.
Precision is the ratio of true positives to the sum of true positives and true negatives. Recall is the ratio of true
positives to the sum of true positives and false positives. F1 is the harmonic mean of precision and recall.

19 The voting classifier is a popular and effective method of aggregating the results from different algorithms to
achieve better performance (see, e.g., Schapire et al. 1998).
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Table 2
Performance of machine-learning methods in classifying patent filings

A. Out-of-sample performance of different machine-learning methods

Random Gradient Linear Gaussian Neural Voting
NB kNN forest boost SVM SVM network classifier
(%) (%) (%) (%) (%) (%) (%) (%)

Accuracy 73.2 74.0 78.5 79.6 82.2 81.7 81.9 82.6
Precision 80.2 67.5 83.4 75.2 80.4 82.1 77.9 80.8
Recall 50.2 69.4 60.1 69.0 72.0 69.8 74.3 72.7
F1 score 58.6 68.1 67.5 71.6 75.7 74.9 76.0 76.3

B. In-sample performance of the voting classifier for the training sample

# of # of Classification
filings filings in of the
in true predicted Precision Recall filtered

Category category category (%) (%) sample

0 (nonfinancial) 573 567 99.3 98.3 45,011
1 (cybersecurity) 188 187 98.9 98.4 3,607
2 (mobile transactions) 175 176 97.7 98.3 1,659
3 (data analytics) 110 119 91.6 99.1 602
4 (blockchain) 69 68 100.0 98.6 136
5 (P2P) 86 88 96.6 98.8 488
6 (robo-advising) 73 73 98.6 98.6 377
7 (IoT) 59 58 98.3 96.6 270
8 (non-FinTech financial) 467 464 98.3 97.6 15,798
Total 1,800 1,800 97.7 98.3 67,948

This table summarizes the performance of text-based machine-learning methods used to identify and classify
FinTech patent filings. Texts of patent filings are obtained from the USPTO’s Bulk Data Storage System (BDSS).
Panel A shows the out-of-sample performance of each machine-learning method. Performance is measured by
ten-fold cross-validation using the training sample constructed in Section 2.1. Accuracy is one minus the ratio
of incorrect category predictions to total observations. Precision is the ratio of true positives to the sum of true
positives and true negatives. Recall is the ratio of true positives to the sum of true positives and false positives.
F1 score is the harmonic mean of Precision and Recall. Model parameters are selected to maximize the F1 score
of models in cross-validation. The parameters for the models are as follows: k =5 for kNN, C =0.6 for Linear
SVM, and γ =1.0, C =2.0 for Gaussian SVM. The neural network classifier has three hidden layers with 1,792,
307, and 53 neurons in the first, second, and third hidden layer, respectively. The voting classifier aggregates
the results of linear SVM, Gaussian SVM, and neural network under a majority voting rule. Panel B shows the
in-sample performance of the voting classifier on the training sample and shows the number of filings predicted
to be in each category according to the final classification of the text-filtered sample.

handful of cases in which all three classifiers predict different categories, the
tie is broken by using the neural network classifier prediction.) The voting
classifier outperforms all other methods with an accuracy of 82.6% and F1
score of 76.3%. This is therefore the classifier we use throughout the rest of the
paper.

After fitting the voting classifier to the training sample, we use the fitted
model to obtain a final classification for the entire text-filtered sample of
67,948 patent filings. Panel B of Table 2 reports the in-sample classification
performance. As seen in the table, the voting algorithm has in-sample precision
of 97.7% and recall of 98.3%. The last column of panel B shows the number
of cases in the text-filtered sample that the voting classifier assigns to each
category. Based on the final classification, the sample consists of about 66.2%
nonfinancial filings, 23.3% non-FinTech financial filings, and 10.5% FinTech
filings.
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2.2 Matching filings with data on public and private firms
For the subset of finance-related filings made by public or private firms,
we assemble data on key filer characteristics. To this end, we start with
assignees’ names as reported in BDSS and then conduct a name match using
CRSP/Compustat, company websites, Google, and various other public online
sources. Because the name matching sometimes involves ambiguity (e.g., due to
acquisitions of assignees or the presence of name variants in BDSS), we employ
several consistency checks and filtering strategies to ensure that assignee firms
are properly identified. Also, we exclude from the sample a handful of filings
for which the name matching reveals that the filer is in fact a university, a foreign
company, or a U.S. subsidiary of a foreign company. Appendix B provides a
detailed description of the steps involved in the name matching.

Next, for each firm in the name-matched sample, we gather data (where
available) on financials, stock prices, SIC and NAICS industry codes, and year
of founding. We obtain data on industry codes and year of founding from D&B
Hoover’s, Standard & Poor’s NetAdvantage, LexisNexis company profiles,
Bloomberg, Bizapedia, and Google. For data on stock prices and financials,
we use CRSP and Compustat.

Table 3 shows the number of patent filings removed by the filtering and name
matching steps described above. Out of our set of 67,948 text-filtered filings
classified by machine learning, 22,937 are finance-related. From these 22,937
filings, we remove 1,792 problematic cases that are missing requisite data or
were filed by universities or non-U.S. entities. This leaves a sample of 21,145
filings by U.S.-based firms or individuals, of which 14,634 are non-FinTech
financial filings and 6,511 are FinTech filings.

2.3 Descriptive statistics
Table 4 reports the frequencies of FinTech patent applications filed by
various groups of innovators. As seen in the table, public firms, private
firms, and individuals filed, respectively, 37.3%, 23.0%, and 39.7% of all
FinTech applications. Nonfinancial firms are an important group of innovators,
accounting for 34.8% of FinTech filings. FinTech startups—which we define
as nonfinancial firms founded no more than 8 years prior—account for nearly
one-fourth of all filings made by nonfinancial companies. Among public firms
in the financial services industries, banks are by far the most active innovators,
followed by payment processing companies.

Table 5 considers whether certain types of innovators exhibit more activity
in certain FinTech categories. Panel A shows that public firms dominate most
of the seven categories, but private firms substantially contribute to total
firm-based innovation activity in robo-advising (59.4%), mobile transactions
(42.0%), data analytics (37.6%), and cybersecurity (36.0%). Nonfinancial
firms innovate heavily in cybersecurity, mobile transactions, and P2P, whereas
financial companies account for more than half of all blockchain and IoT filings
made by firms. Individual (nonfirm) inventors are also key participants in
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Table 3
Construction of the patent filings sample

Observations Remaining
Filtering step removed observations

Extract all patent filings disclosed from January 2003 to
September 2017

4,680,587

Remove patent filings with non-U.S. BDSS identifying
information

2,437,103 2,243,484

Remove patent filings not belonging to IPC Classes G or
H

1,062,322 1,181,162

Filter out nonfinancial patent filings using list of financial
terms

1,113,214 67,948

Remove filings classified as nonfinancial by
machine-learning algorithms

45,011 22,937

Remove filings with missing address and name
information

173 22,764

Remove filings by universities, non-U.S. firms, and
subsidiaries of non-U.S. firms

56 22,708

Remove filings by firms with missing industry code or
missing founding date

1,563 21,145

Remaining sample of financial patent filings: 21,145
Non-FinTech filings

by firms 8,056
by individuals 6,578

FinTech filings
by firms 3,923
by individuals 2,588

This table shows the steps involved in construction of the sample of patent application filings. Data on patent filings
are drawn from the Bulk Data Storage System (BDSS) provided by the U.S. Patent and Trademark Office. Text
filtering and machine learning methods are used as described in Section 2.1 to classify filings. Data on company
founding dates and NAICS industry classifications are gathered from Compustat, LexisNexis, Hoover’s, S&P
NetAdvantage, and public websites.

Table 4
FinTech innovation activity by innovator type

Number of FinTech patent filings

U.S. filers
Individuals 2,588
Public firms 2,429
Private firms 1,494

U.S. financial services firms
Public financial firms 1,425

Asset management 5
Banking 806
Brokerage 22
Insurance 56
Payments 536

Private financial firms 229

U.S. nonfinancial firms
FinTech startups 548
Other nonfinancial firms 1,721

This table shows the frequencies of FinTech patent filings by various types of innovators. The sample of FinTech
filings is constructed from patent applications drawn from the USPTO’s Bulk Data Storage System (BDSS).
FinTech startups are nonfinancial firms with a founding date no more than 8 years prior. Financial industry
groupings are based on primary NAICS codes as detailed in Footnote 15. Data on company founding dates and
NAICS industry classifications are obtained from Compustat, LexisNexis, Hoover’s, S&P NetAdvantage, and
public websites.
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Table 5
FinTech innovation activity by technology category and innovator type

A. FinTech innovation activity by firms and individuals

Innovator type

Technology Public Private Financial Non-financial FinTech Individual
Category firm firm firm firm startup inventor

Cybersecurity 1,179 664 749 1,094 258 1,510
Mobile transaction 569 412 311 670 171 468
Data analytics 234 141 211 164 32 202
Blockchain 60 27 47 40 21 19
P2P 207 101 131 177 33 160
Robo-advising 71 104 104 71 26 147
IoT 109 45 101 53 7 82

B. Industry-level FinTech innovation activity

Most-active industry 2nd -most-active industry

Technology category Industry # of filings Industry # of filings

Cybersecurity Banking 380 Payments 358
Mobile transactions Payments 175 Banking 129
Data analytics Banking 143 Payments 33
Blockchain Banking 34 Payments 11
P2P Payments 68 Banking 59
Robo-advising Asset mgmt. 33 Banking 30
IoT Banking 60 Insurance 41

This table shows, by technology category, the frequencies of FinTech patent filings made by various innovator
types. Technology categories are determined via text filtering and machine-learning methods as described in
Section 2.1. Panel A reports frequencies for public firms, private firms, financial firms, nonfinancial firms,
FinTech startups (nonfinancial firms with a founding date no more than 8 years prior), and individuals. Panel B
reports frequencies for the two industries that have the highest numbers of innovations within each technology
category. Financial industry groupings are based on primary NAICS codes as detailed in Footnote 15. Data on
company founding dates and NAICS industry classifications are obtained from Compustat, LexisNexis, D&B
Hoover’s, S&P NetAdvantage, Bloomberg, Bizapedia, and other public web-based sources.

FinTech innovation, especially in cybersecurity and robo-advising. As seen
in panel B, banking and payments firms dominate nearly all categories of
innovation, but some categories show narrowly focused activity by firms in
other industries. For example, asset management is the most active industry in
terms of robo-advising, and insurance is the second-most active industry with
regards to IoT.

Next, we present evidence on broad trends in FinTech innovation activity over
time. Given the very rapid and volatile rate of development of some FinTech
technologies (e.g., blockchain), we calculate innovation at a monthly frequency
and focus mainly on 6-month moving averages of patent filing counts. We
count a patent filing based on its USPTO publication date, which is typically
18 months (and occasionally less) after the initial filing.

Figure 1 displays time-series trends in filing activity from June 2003 to
August 2017 for three classes of patent applications: FinTech, Class G&H,
and All. Panel A shows FinTech patent applications increase approximately
fourfold over 14 years.20 The increase is particularly rapid from 2010 to 2014,

20 To facilitate comparisons, we normalize each group’s 6-month moving average series in panel A by dividing by
the respective group’s moving average in June 2003.
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Figure 1
Innovation over time: FinTech, Class G&H, and all
This figure shows, from June 2003 to August 2017, monthly frequencies of different classes of patent applications.
Frequencies are calculated as 6-month moving averages of patent filing counts. Panel A shows frequencies
for three groups of filings: FinTech filings, Class G&H filings, and all filings. (To facilitate comparisons, we
normalized the frequency series for each group by dividing by the respective group’s frequency in June 2003.)
Panel B shows the frequency of FinTech filings as a percentage of all filings and as a percentage of Class G&H
filings. FinTech applications are identified by applying text-based filtering and machine learning to patent filings
drawn from the USPTO’s Bulk Data Storage System (BDSS).

both relative to IPC Class G&H patent applications and relative to total patent
applications. Indeed, panel B shows that, over the sample period, FinTech
filings more than double as a percentage of Class G&H filings and nearly triple
as a percentage of all filings. The strong relative growth in FinTech filings
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Figure 2
FinTech patent filings over time, by technology category
The stacked area chart in this figure shows, for each year from 2003 to 2017, the number of newly published
FinTech patent applications within each of seven technology categories: cybersecurity, mobile transactions, data
analytics, blockchain, P2P, robo-advising, and internet of things. For 2017, the number of filing events in each of
the last 4 months is estimated as the monthly average of filings in June, July, and August. FinTech applications
are identified by applying text-based filtering and machine learning to patent filings drawn from the USPTO’s
Bulk Data Storage System (BDSS).

corroborates anecdotal evidence that FinTech innovation has been rapidly
accelerating over the past decade.

The stacked area chart in Figure 2 shows the annual number of newly
published filings within each FinTech category listed in Table 1.21 It is apparent
that innovation in most FinTech categories has accelerated over the sample
period. The time-series changes are particularly apparent for blockchain,
cybersecurity, mobile transactions, and P2P. Of all the seven patent filing
types, blockchain has experienced the highest rate of growth in the last few
years. Indeed, when blockchain filings first appear in the sample in 2015, they
account for only 5% of all FinTech filings. By 2017, blockchain emerged as
the third-largest category of FinTech innovation. Figure 2 also reveals dramatic
changes between 2003 and 2017 in the distribution of filings across categories.
For example, the percentage of all filings in the cybersecurity category sharply
declines from 70% in 2003 to 52% in 2017. By contrast, the share of filings
related to mobile transactions increases from 4% to 22%.

21 Because our data do not cover the last 4 months of 2017, we extrapolate for these months from the average
monthly filing count for June–August 2017.
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Figure 3
FinTech innovation over time by public firms, private firms, and individuals
This figure shows 6-month moving averages, from June 2003 to August 2017, of the numbers of published FinTech
patent applications filed by public firms, private firms, and individuals. FinTech applications are identified by
applying text-based filtering and machine learning to patent filings drawn from the USPTO’s Bulk Data Storage
System (BDSS).

Which types of innovators are most responsible for the dramatic growth in
FinTech innovation? Figure 3 plots 6-month moving averages of the numbers
of FinTech patent applications filed by each of three innovator groups: public
companies, private companies, and individuals. Notably, individuals contribute
the largest portion of FinTech innovation in earlier years. Company innovators
lag in FinTech patent filings until 2014 but thereafter gain a leading position.
Given that financial resources as well as economies of scale and scope can be
important for innovation productivity, it is unsurprising that public companies
are most responsible for the recent spike in FinTech applications. Nevertheless,
private firms also play an important role and contribute about one quarter of
FinTech filings after 2013.

Figure 4 considers whether FinTech innovation is primarily driven by
financial companies or by firms operating outside of the financial sector. Panel A
reveals an acceleration in FinTech patent applications by both groups, especially
in recent years. It is noteworthy that nonfinancial firms dominate the filing
activity in most time periods. This fact suggests that FinTech innovation often
relies critically on basic advances in nonfinancial areas, such as computer
science, IT, and software technology. It is also of interest to compare the filing
activity of well-established financial firms versus young outsider firms. Panel
B of Figure 4 plots innovation frequencies of publicly traded financial firms
and FinTech startups. The plot shows that FinTech startups have filed a large
number of patent applications over the past several years. Concurrently, the
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Figure 4
FinTech innovation over time by financial and nonfinancial firms
This figure shows 6-month moving averages, from June 2003 to August 2017, of the numbers of published
FinTech patent applications filed by different groups of firms. Panel A shows moving averages for financial firms
and nonfinancial firms. Panel B shows moving averages for public financial firms and FinTech startups. FinTech
startups are defined as firms operating outside of the traditional financial services sector that were founded 8
years or less prior to the filing news date. FinTech applications are identified by applying text-based filtering and
machine learning to patent filings drawn from the USPTO’s Bulk Data Storage System (BDSS).

number of applications by public financial firms has strongly increased. This
pattern is consistent with the idea that incumbents may often pursue FinTech
innovation for defensive or preemptive purposes.
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3. The Value of FinTech Innovation

3.1 Estimating values with stock market reactions
Our empirical analysis requires having reliable estimates of the values of
individual FinTech innovations. Since the work of Pakes (1985) and Austin
(1993), the literature on corporate innovation has recognized that stock price
reactions can be used to study the value of new patents. What is less well
appreciated, however, is that the price response to a patent event reflects a
surprise component: market investors may anticipate an event’s future arrival
and partially incorporate this anticipation into a firm’s stock price today. Thus,
without correcting for rational anticipation, the abnormal stock-price reaction to
a patent event will give a biased estimate of the intrinsic value of the innovation.
Most studies of price reactions to patents do not explicitly account for partial
anticipation by investors. A notable exception, however, is Kogan et al. (2017),
who estimate patent values using anticipation-adjusted price reactions to patent
grants.

In reality, the market may anticipate not just one future innovation during
a given time period, but possibly two, three, four, or more. We proceed to
outline a method for recovering the underlying value of a FinTech innovation
in the presence of anticipation of multiple innovation events. Our method is
sufficiently general that it can be used with different models of patent count
data (Poisson, negative binomial, zero-inflated Poisson, etc). However, for
simplicity, we focus here on the well-known Poisson count distribution used by
Hausman, Hall, and Griliches (1984) and others in studies of patenting activity.

Let V0 be the intrinsic value of a firm without a patent event and let V ∗ be
the incremental value of one patent event to the firm. Assume the number of
patents, N , that will occur during the time interval (t,t +T ] follows a Poisson
count distribution:

Pr(N =m|It )=
λme−λ

m!
, m=0,1,... (1)

where It is the information set of market participants at time t . Let the
incremental time t +T value to the firm be mV ∗ if exactly m patent events
occur. Then the ex ante market value of the firm before any patent event occurs
is

V̄0 =V0 +
∞∑

m=1

λme−λ

m!

(
mV ∗)=V0 +λV ∗ (2)

Assuming that the patent events are independent, then the occurrence of one
patent event yields a conditional distribution over total end-of-period patents
that is effectively a Zero-Truncated Poisson distribution:

Pr(N =m|N ≥1,It )=
λme−λ

(1−e−λ)m!
, m=1,2,... (3)
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Therefore, the ex post market value of the firm after one patent event occurs
is equal to

V̄1 =V0 +
∞∑

m=1

Pr(N =m|N ≥1,It )mV ∗

=V0 +
∞∑

m=1

λme−λ

(1−e−λ)m!
mV ∗ (4)

=V0 +
λ

1−e−λ
V ∗

From Equations (2) and (4), it follows that the incremental value of a patent
is given by

V ∗ =
�V
λ

1−e−λ −λ
=

eλ−1

λ
�V , (5)

where �V ≡V 1 −V 0 is the observed change to the market value of the firm
upon occurrence of the patent event. Equation (5) gives a straightforward
method of calculating the incremental value of a patent, V ∗, from observational
data. In particular, the observed market value change �V can be computed from
abnormal stock price reactions, and the Poisson intensity parameter λ can be
estimated from an empirical model of patent counts like in Hausman, Hall, and
Griliches (1984).

3.2 Estimating innovation intensities
To construct time-varying estimates of the intensity parameter λ in the above
model, we fit a series of Poisson regressions using innovator-year panel data on
patent filing counts. Since innovation intensities could depend systematically on
both the nature of the underlying technology and on innovator characteristics,
we fit separate models for different pairwise combinations of technology
type and innovator type (public firms, private firms, and individuals). In
total, we estimate 8×3=24 different regression models, including 21 models
for the seven FinTech categories and three “benchmark” models for other
(non-FinTech) financial innovations.

In the case of public firms, for a given technology category k we estimate
the following regression using maximum likelihood estimation (MLE):

log(λi,k,t )=α+β1Sizei,t +β2RDi,t +β3RDi,t−1 +β4RDi,t−2 +β5RDi,t−3

+β6Agei,t +β7PriorFinTechi,t +β8PriorOtherFinanciali,t

+β8PriorNonFinanciali,t +γi +δt +εi,k,t

, (6)

where i and t are indices for the innovating firm and year, respectively. In the
regression, Sizei,t is total assets (in 2003 dollars); RDi,t−n is R&D expenditures
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n+1 years prior to the current year (in 2003 dollars); Age is the number of
years since founding of the company; PriorFinTechit , is the company’s stock
of FinTech applications before year t ; PriorOtherFinanciali,t is the company’s
stock of non-FinTech financial applications before year t ; PriorNonFinanciali,t
is the company’s stock of nonfinancial filings in Class G&H before year t ; and
γi and δt capture innovator and year fixed effects, respectively. All nonindicator
variables are in a natural log form.

In the case of private firms, we estimate the following regression:

log(λi,k,t )=α+β1Agei,t +β2PriorFinTechi,t +β3PriorOtherFinanciali,t

+β4PriorNonFinanciali,t +γi +δt +εi,k,t

. (7)

Likewise, we estimate the following regression for individual innovators:

log(λi,k,t )=α+β1PriorFinTechi,t +β2PriorOtherFinanciali,t

+β3PriorNonFinanciali,t +γi +δt +εi,k,t

. (8)

Table 6 reports the results of the Poisson regressions. Panels A, B, and C are
based on filer-years corresponding to public firms, private firms, and nonfirm
individuals, respectively.22 As seen in the table, for most categories, public
firms that are larger tend to file more FinTech patent applications. Among
private firms, firm age and the extent of prior non-FinTech filings are strong
positive predictors of FinTech innovation. Finally, for individuals, the most
consistent predictor of FinTech filing activity appears to be prior innovation
experience in non-FinTech financial areas.

3.3 The private value of FinTech innovation
In this section, we examine how much value publicly traded financial companies
obtain from their own FinTech patent filings. To infer these “private values,”
we combine the Poisson intensities estimated above with cumulative market-
adjusted abnormal returns (CARs) around news of patent filings. Specifically,
for an innovation of technology type k filed by company i and published on date
t , the empirical analogue of Equation (5) yields an estimate of the innovation’s
value to the company:

V
∗,Own
i,k,t =

eλ̂i,k,t −1

λ̂i,k,t ×ni,t

CARi,tMi,t , (9)

where λ̂i,k,t is the predicted firm-level innovation intensity from the Poisson
regressions estimated in Section 3.2 (winsorized at the 1st and 99th percentiles);

22 Note that, in each panel, the sample sizes in Columns 1 through 7 are smaller than the sample size in Column 8.
The difference is because the Column 8 regressions include filer-years where the filer made at least one financial
patent application during the sample period, whereas the other regressions only include filer-years where the filer
made at least one FinTech application during the sample period.
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Table 6
Poisson count models of FinTech and financial innovation by public firms, private firms, and individuals

A. Public firms

Cybersecurity Mobile trans. Data analytics Blockchain P2P Robo-advising IoT Other financial
(1) (2) (3) (4) (5) (6) (7) (8)

Total assets 0.943∗∗∗ 0.907∗∗∗ −1.277∗∗ −35.903∗ −0.355 2.017∗∗ 1.410 0.776∗∗∗
(0.193) (0.349) (0.541) (20.399) (0.486) (0.827) (0.887) (0.066)

R&D 0.073 1.753∗∗∗ −0.172 59.590∗∗ 1.988 4.745 −2.000 −0.042
(0.304) (0.557) (1.720) (29.945) (1.362) (3.061) (1.724) (0.140)

R&D_1 0.048 −0.673 1.908 34.657∗∗ 3.738 −3.871 2.863 −0.094
(0.300) (0.660) (2.245) (16.662) (2.336) (3.456) (2.490) (0.204)

R&D_2 −0.236 0.364 0.287 −22.221∗∗ −7.361∗∗∗ −0.350 −5.094 −0.091
(0.288) (0.662) (2.050) (10.288) (2.344) (2.692) (6.064) (0.228)

R&D_3 −0.273 −0.935∗ −1.241 29.204∗∗ 2.111∗ 0.407 6.846 0.047
(0.248) (0.514) (1.443) (14.246) (1.129) (1.565) (5.348) (0.168)

Age −0.201 −0.093 −3.693∗∗ 37.648 −0.295 −5.210∗ −12.298∗∗∗ −1.194∗∗∗
(0.591) (1.329) (1.514) (139.437) (2.107) (2.658) (2.827) (0.250)

Prior applications (FinTech) 0.111 −0.092∗ 0.244 −5.566 −1.126∗∗∗ −0.447 0.541∗ 0.300∗∗∗
(0.110) (0.174) (0.309) (3.711) (0.339) (0.430) (0.279) (0.040)

Prior applications (other financial) 0.253∗∗ 0.197 0.358 27.971∗∗ 1.243∗∗∗ 0.405 0.378 0.018
(0.101) (0.176) (0.278) (12.487) (0.305) (0.513) (0.278) (0.038)

Prior applications (nonfinancial) 0.123∗ 0.035 −0.332∗ −22.240∗ 0.010 0.010 −0.972∗∗∗ 0.172∗∗∗
(0.069) (0.135) (0.201) (12.153) (0.200) (0.333) (0.242) (0.034)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1,757 1,757 1,757 1,757 1,757 1,757 1,757 2,852

B. Private firms

Cybersecurity Mobile trans. Data analytics Blockchain P2P Robo-advising IoT Other financial
(1) (2) (3) (4) (5) (6) (7) (8)

Age 1.145∗∗∗ 1.730∗∗∗ 3.399∗∗∗ 11.987∗∗ 3.547∗∗∗ 0.541 0.190 0.905∗∗∗
(0.166) (0.306) (0.628) (5.550) (0.725) (0.447) (1.583) (0.079)

Prior applications (FinTech) −0.555∗∗∗ −1.103∗∗∗ −1.643∗∗∗ −2.790∗∗ −1.105∗∗∗ −3.663∗∗∗ −1.967∗∗∗ 1.115∗∗∗
(0.090) (0.137) (0.267) (1.304) (0.270) (0.512) (0.698) (0.041)

Prior applications (other financial) 0.619∗∗∗ 0.818∗∗ 0.966∗∗∗ 8.111∗∗∗ 0.867∗∗ 0.408 −0.459 −1.265∗∗∗
(0.101) (0.174) (0.281) (2.982) (0.369) (0.389) (0.612) (0.044)

Prior applications (nonfinancial) 0.576∗∗∗ 1.120∗∗∗ 1.745∗∗∗ 0.997 1.372∗∗∗ 2.900∗∗∗ 1.141∗ 0.723∗∗∗
(0.082) (0.125) (0.277) (1.295) (0.271) (0.524) (0.656) (0.038)

Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,365 7,365 7,365 7,365 7,365 7,365 7,365 23,745
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Table 6
(Continued)

C. Individuals

Cybersecurity Mobile trans. Data analytics Blockchain P2P Robo-advising IoT Other financial
(1) (2) (3) (4) (5) (6) (7) (8)

Prior applications (FinTech) −1.684∗∗∗ −1.525∗∗∗ −0.965∗∗∗ −74.508 −1.792∗∗∗ −6.367∗∗∗ −2.503∗∗∗ 2.205∗∗∗
(0.083) (0.140) (0.154) (225.781) (0.252) (0.598) (0.416) (0.112)

Prior applications (other financial) 1.598∗∗∗ 1.247∗∗∗ 0.094 61.036 1.233∗∗∗ 0.857 0.586 −3.448∗∗∗
(0.120) (0.219) (0.470) (406.907) (0.345) (0.866) (0.674) (0.058)

Prior applications (nonfinancial) −0.035 −0.252 −0.443∗∗∗ −7.663 0.654 −0.019 0.712∗ 0.691∗∗∗
(0.081) (0.171) (0.215) (191.575) (0.467) (0.475) (0.398) (0.066)

Individual fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 22,275 22,275 22,275 22,275 22,275 22,275 22,275 85,875

This table reports the results of Poisson regressions estimating the count intensities of FinTech and other financial patent applications from 2003 to 2017. Panels A, B, and C are based
on filer-years corresponding to public firms, private firms, and individual inventors, respectively. Each regression in each panel is estimated for a specific technology type. Regressions
in Columns 1 through 7 include only filer-years where the filer made at least one FinTech patent application during the sample period. Regressions in Column 8 include only filer-years
where the filer made at least one financial patent application during the sample period. Total Assets is measured as of the fiscal year immediately preceding the year of a filing news
event. R&D, R&D_1, R&D_2, and R&D_3 are research and development expenditures 1, 2, 3, and 4 years, respectively, before the year of a filing news event (missing values of R&D
are treated as zero). Prior applications (FinTech) is a filer’s number of prior FinTech applications. Prior applications (other financial) is a filer’s number of prior non-FinTech financial
applications. Prior applications (nonfinancial) is a filer’s number of prior nonfinancial applications in Class G&H. Age is the number of years since a firm’s founding. All independent variables
shown are in natural logarithms. Each regression also includes filer fixed effects and year fixed effects. Robust standard errors are reported in parentheses. *p<.1; **p<.05; ***p<.01.
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ni,t is the number of filings by company i that are published on date t ; CARi,t

is calculated over a 4-day window starting 2 trading days before the publication
date t ; and Mi,t is the firm’s market capitalization 5 trading days prior to date
t . Innovation values estimated from (9) are converted into 2003 U.S. dollar
values.

Table 7 reports summary statistics for private values of innovation within
nine different groups: the seven distinct FinTech categories, the set of all
FinTech innovations, and the set of non-FinTech financial innovations. The
table also reports mean CARs for each of the nine groups. As seen in the table,
FinTech innovations create economically sizeable private value: the average
value to the innovator is $19.7 million, and the median value is $35 million.
By comparison, non-FinTech financial innovations yield a much lower median
value of $2.3 million, although the average value is close to that of FinTech
innovations. These magnitudes are consistent with the average and median U.S.
patent values of $19.1 million and $6.0 million, respectively, that Kogan et al.
(2017) estimate using data on patent grants.23 Across innovation categories,
the mean CARs are mostly positive. The mean and median private values for
some categories have opposite signs, suggesting a high degree of skewness
in the distributions. Nevertheless, the median values are almost all positive,
with the sole exception being data analytics. The largest median values are in
blockchain ($98.1 million), cybersecurity ($52.9 million), and robo-advising
($49.1 million).

To assess statistical significance of the mean and median private values,
we use a two-stage bootstrapping procedure, which is described in detail in
Appendix C. We do not use standard tests (e.g., t-tests or nonparametric sign
tests) here because they could lead to biased inferences.24 Table 7 reports, in
parentheses, the bootstrapped (two-tailed)p-values for means and medians. The
results show that the positive medians for cybersecurity, mobile transactions,
blockchain, and IoT are all statistically different from zero. Medians for each
of the other three categories within FinTech are not significantly different from
zero, but the positive median for all FinTech innovations is highly statistically
significant. Thus, taken together, the p-values in Table 7 support the view that
FinTech innovations tend to bring substantial private value to innovators.25

23 See Table 1 in Kogan et al. (2017). To facilitate comparisons, we report the values in Kogan et al. (2017) in terms
of their equivalents in 2003 U.S. dollars.

24 Using standard tests in the current setting gives rise to three difficulties. First, the Poisson regressions in Table 6
introduce estimation error that can differ systematically by technology category and/or innovator type, and such
differences can propagate via Equation (5) to innovation values. Second, the innovation values themselves may
be heteroskedastic. Third, it is evident that the value distributions are skewed and, as such, depart substantially
from normality.

25 Although we use per-patent values in our main analysis, it is of interest to gauge the aggregate importance of
each FinTech category. To do so, we divide each patent filing’s private value by the ratio of 1-year lagged nominal
U.S. GDP to 2002 nominal U.S. GDP and then sum the resulting scaled values within each category. We find that
cybersecurity is the most valuable FinTech category, with an aggregate private value of $28.01 billion. This is
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Table 7
The private value of FinTech innovation

Mean Value

Innovation type N CAR (%) Mean Median SD p10 p90

Cybersecurity 643 0.26 57.7 52.9 1,658.4 −819.8 902.6
(0.410) (0.004)

Mobile transactions 271 0.42 43.1 18.9 1,013.8 −607.7 707.9
(0.456) (0.092)

Data analytics 181 −0.31 −98.1 −45.3 1,803.8 −715.2 663.4
(0.492) (0.166)

Blockchain 42 0.24 −105.9 98.1 975.2 −653.8 264.5
(0.544) (<0.001)

P2P 95 −0.33 −30.1 1.2 884.0 −668.6 744.6
(0.772) (0.874)

Robo-advising 54 0.04 93.5 49.1 791.9 −1,142.3 1,096.6
(0.322) (0.278)

IoT 86 0.30 −20.8 32.2 973.4 −397.1 540.9
(0.916) (0.096)

All FinTech 1,372 0.17 19.7 35.0 1,439.9 −668.6 734.1
(0.592) (<0.001)

Other financial 2,719 0.20 20.7 2.3 3,141.0 −1,081.0 1,206.5
(0.676) (0.588)

This table reports summary statistics for the private (own-firm) value effect of different categories of FinTech
innovation. Values, measured in millions of 2003 U.S. dollars, are calculated like in Equation (9) from public
financial firms’ abnormal stock returns around news of their own patent filings. Cumulative abnormal returns
(CARs) are calculated over the 4-day event window beginning 2 days before the date of patent filing news. Two-
tailed p-values for means and medians, reported in parentheses, are calculated using a two-stage bootstrapping
method as described in Appendix C.

Next, we use multivariate regressions to investigate how private values of
FinTech innovations depend on the underlying technologies. First, to mitigate
the effects of skewness and outliers in the value distribution, we apply a
logarithmic transformation to the estimated private values using the following
formula:

V =

{
log(1+V ∗), if V ∗ >0

−log(1−V ∗), if V ∗ <0
, (10)

where V ∗ is the estimated value from Equation (9) and V is the transformed
value to be used as the dependent variable in regressions. We then estimate
regressions of the following form:

V OWN
i,k,t =αi +β ′T echnologyDummiesk +	′Xi,k,,t +εi,k,t , (11)

where V OWN
i,k,t is the log-transformed private value to firm i of its own patent

filing of technology type k on date t . In these regressions, TechnologyDummies
are binary variables that capture the different FinTech types (mobile
transactions is the omitted category). The term X includes controls for firm
size, firm age, prior FinTech filings, prior filings in other (non-FinTech)

followed by mobile transactions and robo-advising, which account for aggregate private values of $10.44 billion
and $3.96 billion, respectively.

2086

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/32/5/2062/5427776 by guest on 21 August 2022



[09:15 28/3/2019 RFS-OP-REVF180132.tex] Page: 2087 2062–2106

How Valuable Is FinTech Innovation?

financial areas, and prior nonfinancial filings in Class G&H. Also included
are controls for patent quality, patent breadth, and firm and year fixed effects.
All nonindicator controls are in a natural log form.

Table 8 reports the regression results. Column 1 shows that blockchain is
the most valuable category of innovation, followed by robo-advising. These
categories are associated with significantly more valuable innovation compared
to the baseline category of mobile transactions. The other four categories
(cybersecurity, data analytics, P2P, and IoT), however, do not significantly
differ from mobile transactions. Columns 2 and 3 show that, after controlling
for firm size, firm age, prior innovation activity, patent breadth, and patent
quality, blockchain continues to be the most valuable category. This finding is
consistent with the suggestion in industry reports and the popular press that
blockchain technology can offer large potential benefits in terms of future cost
savings in financial services.

3.4 Industry-level value of FinTech innovation
As a next step, we examine the value impact that FinTech innovations have
on financial industries. To measure industry-level value effects, we start by
calculating, for each FinTech patent filing, the value-weighted 4-day CARs
across firms in a given financial industry or in the financial sector as a whole.
Then, for an industry i and a patent filing of technology type k filed by innovator
j and published on date t , we estimate the industry-value impact using the
following empirical analogue to Equation (5):

V
∗,IND
i,j,k,t =

eλ̂j,k,t −1

λ̂j,k,t ×nk,t

CARi,tMi,t , (12)

where λ̂j,k,t is the predicted firm-level innovation intensity from the Poisson
regressions estimated in Section 3.2;nk,t is the total number of filings in category
k that are published on date t ; CARi,t is the 4-day value-weighted CAR for
industry i beginning 2 trading days before the patent publication date t ; and
Mi,t is the total market capitalization of the industry 5 trading days prior to date
t . Equation (12) applies to patent filings by all of the major innovator types:
public firms, private firms, and nonfirm individuals.

We summarize the industry value impact of FinTech innovations in Table 9.
Each cell in the table shows, for a given technology-industry pair, the median
value impact from innovations within that technology category. Also reported
in each cell are the mean value impact (in brackets) and a two-tailed p-value
(in parentheses) for a test of zero median. Medians and means are expressed
in millions of 2003 dollars. To calculate p-values, we use a similar two-stage
bootstrapping procedure as for Table 7, except that here we focus on a patent’s
industry-value impact rather than its private-value impact.

Column 1 of Table 9 shows that, for the financial sector as a whole, IoT, robo-
advising, and blockchain are the most valuable types of innovation, translating
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Table 8
Technology categories and the private value of FinTech innovation

(1) (2) (3)

Cybersecurity 0.245 0.256 0.260
(0.533) (0.525) (0.564)

Data analytics −0.260 −0.280 −0.221
(0.623) (0.569) (0.659)

Blockchain 2.022∗∗∗ 2.060∗∗∗ 2.037∗∗∗
(0.652) (0.627) (0.667)

P2P −0.259 −0.245 −0.289
(1.029) (0.961) (1.010)

Robo-advising 1.341∗ 1.287∗ 1.289∗
(0.731) (0.659) (0.689)

IoT 0.704 0.645 0.791
(0.947) (0.896) (0.819)

Total assets 1.171 1.257
(1.711) (1.705)

Age −2.183 −2.17
(5.706) (5.838)

Prior applications (fintech) 0.313 0.267
(0.665) (0.669)

Prior applications (other financial) 1.439 1.404
(1.517) (1.516)

Prior applications (nonfinancial) −0.877 −0.826
(1.289) (1.291)

Patent claims −0.407
(0.239)

Patent classes 0.084
(0.425)

Firm fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes

Observations 1,367 1,367 1,367
R2 .058 .064 .065

This table reports regressions relating the private value of FinTech innovation to the category of the underlying
technology. Innovation values, measured in millions of 2003 U.S. dollars, are calculated like in Equation (9) from
public financial firms’ abnormal stock returns around news of their own patent filings. The dependent variable in
the regressions is a log transformation of the innovation value (see Equation (10)). Cybersecurity, Data analytics,
Blockchain, P 2P , Robo-advising, IoT, and Mobile transactions are indicators for technology categories. Total
assets is in 2003 U.S. dollars and is measured as of the fiscal year immediately prior to the year of a news event.
Age is the number of years since founding. Prior applications (FinTech) is the count of a firm’s prior FinTech
applications. Prior applications (other financial) is the count of a firm’s prior non-FinTech financial applications.
Prior applications (nonfinancial) is the count of a firm’s prior nonfinancial applications in Class G&H. Patent
claims is the number of independent claims in a filing. Patent classes is the number of IPC patent codes spanned
by a filing. All nonindicator controls are in natural logarithm form. Standard errors, reported in parentheses, are
clustered at the firm level. *p<.1; **p<.05; ***p<.01.

into median values of $18,348 million, $11,625 million, and $6,053 million,
respectively, in 2003 dollars. However, not all FinTech categories bring positive
value to the financial sector. The data analytics category, for example, is
associated with a median value impact of −$5,862 million. Thus, some types of
FinTech innovation appear likely to erode future profits throughout the financial
sector by opening the door to new business models, new entrants, and increased
competition.

Columns 2 to 6 report the technology-specific value effects for each of the
five financial industries. Some FinTech categories have innocuous or beneficial
effects across all five industries, consistent with the notion that these types
of innovations will help firms lower costs across a wide range of financial
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Table 9
Industry value effects of FinTech innovation

Financial Payment Asset
Fintech Number of services Banking processing Brokerage management Insurance
category obs. (1) (2) (3) (4) (5) (6)

Cybersecurity 3,222 296.9 −121.2 21.7 32.5 37.3 102.1
[−4,347.3] [−3,953.2] [2.2] [9.0] [49.6] [−454.8]

(0.760) (0.988) (<0.001) (<0.001) (0.006) (0.184)
Mobile 1,430 −2,575.4 −3,811.5 49.3 25.6 13.2 −96.1
transactions [−9,570.5] [−8,868.1] [−13.0] [−39.3] [−35.0] [−615.2]

(0.106) (0.050) (<0.001) (0.146) (0.596) (0.410)
Data analytics 562 −5,862.1 −6,350.7 28.7 38.1 46.7 −211.1

[−21,584.7] [−21,361.9] [25.0] [−137.3] [77.0] [−187.5]
(0.034) (0.202) (0.010) (0.176) (0.700) (0.516)

Blockchain 102 6,053.4 5,762.8 −13.5 81.0 −43.8 245.1
[−1,793.2] [−3,567.9] [287.9] [93.9] [25.2] [1,367.8]

(0.004) (0.016) (0.074) (0.486) (0.946) (0.004)
P2P 438 −674.1 −3,808.2 80.2 −170.1 83.2 −335.2

[−28,702.3] [−25,253.5] [26.9] [−59.6] [66.9] [−3,483.0]
(0.986) (0.686) (0.076) (0.140) (0.370) (0.520)

Robo-advising 305 11,624.8 10,494.4 31.2 299.2 162.8 346.3
[6,266.3] [6,588.3] [196.9] [447.4] [270.9] [−1,237.2]

(0.290) (0.388) (0.050) (0.076) (0.136) (0.338)
IoT 218 18,347.7 18,551.9 12.3 124.7 −179.4 −599.4

[18,039.4] [20,610.3] [−178.0] [−89.7] [−186.0] [−2,117.2]
(0.062) (0.034) (0.558) (0.544) (0.556) (0.470)

This table reports median and mean industry value effects of different categories of FinTech innovation. The
sample of innovations consists of FinTech patent applications filed by public firms, private firms, and nonfirm
inventors. Mean value effects appear in brackets below median value effects. Value effects are in millions of 2003
U.S. dollars and are calculated from value-weighted portfolios of public firms’ abnormal stock returns around
patent filing news (see Equation (12)). Two-tailed p-values for medians, reported in parentheses, are calculated
using a two-stage bootstrapping method as described in Appendix C.

services and products. Other FinTech categories have more heterogeneous
effects. For example, the median value impact of blockchain innovation is
significantly positive for banking and insurance but significantly negative for
payment processing. This suggests that, while blockchain technology can help
banks and insurers better serve the needs of customers, it will also eventually
disrupt traditional payment systems. Overall, the univariate evidence in Table
9 shows that different categories of FinTech innovation can have very different
aggregate value effects, both within and across industries.

4. Disruption, Competition, and the Value of FinTech Innovation

In this section, we empirically examine what determines the wide cross-
sectional variation in the value impact of FinTech innovation on industries and
firms. We posit that the value effects of an innovation crucially depend on two
considerations: (1) how inherently disruptive the underlying technology is to
existing lines of business in an industry and (2) whether the innovation is likely
to be used by the innovator to enter an industry and compete with incumbent
firms. In what follows, we develop and test several hypotheses based on these
two considerations.
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4.1 Hypothesis development
While innovation can help existing firms reduce costs and improve product
quality, it also can yield destructive effects that threaten the very existence
of entire industries (Schumpeter, 1942; Aghion and Howitt, 1992; Klette and
Kortum, 2004). An innovation could be harmful to an industry because the
technology underlying the innovation is disruptive, that is, at odds with existing
business models and processes. In the case of FinTech, anecdotal evidence
suggests that some innovations can be disruptive, some nondisruptive, and
others both. For example, P2P platforms that disintermediate lending may be
disruptive to traditional banking. Cybersecurity and mobile innovations may be
complementary to the traditional payments industry. Blockchain could pose a
substantial future threat to the payments industry, yet at the same time numerous
banks have embraced it to help lower the costs of interbank settlement.26

The disruptiveness of the technology behind an innovation, however, is not
the only factor that determines the innovation’s value impact. Another key factor
is how the innovator will use the innovation. Prior research shows that both
industry incumbents and potential entrants have incentives to seek disruptive
innovations (see, e.g., Arrow 1962; Christensen 1997; Christensen and Raynor
2003; Etro 2004; Nerkar and Roberts 2004; Cockburn and MacGarvie 2011).
But, whereas potential entrants leverage disruptive innovations to successfully
launch novel products and gain footholds in new markets, incumbents use
disruptive innovations to preempt other innovators27 or to secure first-mover
advantages against future threats. This distinction leads to two basic predictions.
First, a disruptive innovation will more adversely affect industry value if
the innovation comes from a potential entrant rather than an incumbent.
Second, among the innovations of potential entrants, those based on disruptive
technologies will be more detrimental to industry value than those based on
nondisruptive technologies.

How will different types of FinTech innovation affect the key players within
an industry? For instance, will market-share leaders be more affected by a
potential entrant’s innovation if the innovation is built on disruptive technology?
Market leaders tend to focus on their existing customers rather than changing
their business lines (Christensen and Raynor 2003), and they are often sluggish
in adapting to change because of large sunk costs in fixed assets and marketing
(Tang 1988). Moreover, leaders may suffer from “incumbent inertia” that
makes them unwilling to alter existing routines, adjust pricing, or cannibalize
product lines (see, e.g., Bresnahan 1985; Lieberman and Montgomery 1988;

26 See, for example, Arnold (2016) and Vigna (2017).

27 For example, an incumbent firm could preemptively file patent applications to establish intellectual property
rights over new technologies without intending to use the technologies in commerce (see Aghion and Griffith
2005; Acemoglu and Akcigit 2012).
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Gilbert 2005). This suggests a straightforward empirical prediction: market-
share leaders within an industry will experience a greater value loss when a
potential entrant’s innovation is disruptive than when it is nondisruptive.

A competing prediction is that the magnitude of value loss to market leaders
will be smaller when an entrant’s innovation is disruptive. That is, market
leaders may be able to gain additional advantage over industry rivals in a
disruptive environment. For example, market leaders enjoy technical economies
of scale and ample financial resources with which they can develop their own
new technologies for reducing costs and retaining customers (Blundell, Griffith,
and van Reenen 1999; Czarnitzki, Etro, and Kraft 2014). Also, compared
to other firms that are mainly focused on imitation, market leaders have
greater capacity to develop entirely new product lines that are insulated from
industry-wide disruption (Lieberman and Montgomery 1988).

4.2 Results
4.2.1 Measuring disruptiveness. To test our predictions about disruption
and competition, we first construct an empirical, data-based measure of
disruptiveness.28 Here, the challenge is that we do not want our measure to
directly account for strategic or competitive effects, for example, the possibility
that an innovator will use its new technology to enter an industry and acquire
rents from incumbents. Rather, we want our measure to capture the fundamental
industry effects of the technology behind an innovation. To proceed, we rely on
the idea that, even when an entity does not enter competitively into an industry,
its innovations can still affect the industry via technological spillovers. This
idea is related to the argument of Aghion and Howitt (1992) that a private
research sector can be destructive to an industry because private research firms
do not internalize the disruptive costs arising from their innovations.

Our empirical definition of technology disruptiveness is based on how
negatively the FinTech patent filings of nonfirm innovators affect an industry’s
value. Specifically, for a given industry, we define a FinTech category to be
disruptive if it is one of the two most negative categories in terms of median
value impact from nonfirm filings. It is important to emphasize that the median
calculations exclude public-firm and private-firm filings. The reason for this is
that company filers are not “neutral” innovators—they represent a competitive
threat of entry into the industry.29 By focusing on nonfirm patent filers, we
can largely abstract away from the confounding effects of strategic entry and
capture disruptiveness in a clean manner.

Table 10 lists each FinTech innovation category that our definition identifies
as being disruptive, along with the associated median industry-value impact.

28 Specifying on theoretical grounds which technologies are disruptive to which industries would be impractical
given the large number of different technology-industry pairings in our sample.

29 For the same reason, we do not simply rely on the median industry-value effects reported in Table 9 to measure
disruptiveness.
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Table 10
Disruptive FinTech categories by financial industry

Industry

Banking Payments Brokerage Asset management Insurance

Most-disruptive Blockchain IoT P2P Blockchain Robo-advising
technology category [−9,117.5] [−209.1] [−591.5] [−535.4] [−526.7]

2nd-most-disruptive Cybersecurity Blockchain Robo-advising IoT P2P
technology category [−368.2] [−74.9] [−334.6] [−253.2] [−358.6]

Diff. in medians −4,744.0 −224.5 −427.7 −270.6 −418.4
(top-two disruptive
categories vs. others)

p-value, permutation .021 <.001 <.001 <.001 .028
test for diff. in medians

This table shows disruptive FinTech categories for each financial industry. Disruptive FinTech categories are
those that have either the most negative or second-most negative median industry value impact (calculated using
only the patent filings of nonfirm inventors) among all categories. The median industry value impact for each
technology-industry pair is reported in brackets. Industry value impacts are in millions of 2003 U.S. dollars and
are calculated from value-weighted portfolios of public firms’ abnormal stock returns around patent filing news
(see Equation (12)). The third row of the table shows, for each industry, the difference between the median value
impact from disruptive innovations and the median value impact from nondisruptive innovations. The last row
in the table reports one-tailed p-values for tests that the median disruptive value impact is less than the median
nondisruptive value impact. Tests of differences are based on permutation tests (see Appendix D).

For each industry, we use a permutation test (details provided in Appendix D) to
test whether the median value impact of disruptive innovations is more negative
than the corresponding median from all other innovations. The p-values from
these permutation tests confirm that our definition of disruptiveness is well-
formulated with respect to industry-value impact. It is also noteworthy that
some of the results in Table 10 stand in stark contrast to our earlier findings about
the median industry-value impact across all patent filings. For example, recall
from Table 9 that blockchain filings by all innovators (individuals and firms
together) have a positive median value of $5.8 billion for the banking industry.
But Table 10 shows that blockchain-related filings by nonfirm innovators have
a negative median value impact, -$9.1 billion, for banking. Such differences
underscore the importance of restricting attention to nonfirm innovators when
gauging the inherent disruptiveness of FinTech.

4.2.2 Industry-level value impact: Disruption and competition. To test
our predictions about how disruption and competition relate to the industry-
value effects of FinTech innovation, we first identify innovators that pose an
elevated threat of competitive entry. Intuitively, it is the young, nonfinancial,
innovating firms that should present the largest competitive threat to an industry
because they do not have established business lines that would suffer should
their innovation cause widespread disruption throughout the industry. We thus
define a FinTech Startup to be a patent-filing firm in our sample that has a
nonfinancial industry code and is no more than 8 years old as measured from
its date of founding.30

30 Our main qualitative results are similar if we define FinTech startups according to a 6-year age cutoff or a 10-year
age cutoff.
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We estimate panel regressions that explain the value impact of innovations
on the five financial industries. The sample includes all patent filing news
events associated with public-firm and private-firm innovators. Specifically,
we estimate variants of the following:

V IND
i,j,k,t =β0 +β1Disruptivei,k +β2FinTechStartupj ×Disruptivei,k

+β3FinTechStartupj ×NonDisruptivei,k +	′Xi,j,k,t +εi,j,k,t

, (13)

where V IND
i,j,k,t is the log-transformed (see Equation (10)) value effect on industry

i of the filing news event on date t associated with innovator j and technology
type k. In these regressions, Disruptivei,k and Nondisruptivei,k are indicator
variables equal to 1 and 0, respectively, for disruptive innovation events;
FinTechStartupj is an indicator equal to 1 if the innovator j is a FinTech startup;
and Xi,j,k,t represents a set of control variables. We estimate regressions with
ordinary least squares and cluster standard errors at the industry-technology
level.

The coefficients β2 and β3 allow us to separately test both of our predictions
about the effects of disruptive FinTech and strategic entry. Specifically, if
disruptive innovations are more negative when brought by potential entrants
rather than incumbents, then we expect β2 to be negative. Likewise, if potential
entrants’ innovations are more detrimental when they are disruptive in nature,
then we expect β2 to be strictly less than β3. We do not have strong a priori
expectations on the coefficient β1 since disruptive innovations by incumbent
firms could have ambiguous effects on industry value.

The control variables in our regressions include the following innovator
characteristics: age since founding, prior stock of FinTech applications, prior
stock of non-FinTech financial applications, and prior stock of nonfinancial
filings (all in a natural log form). These variables proxy for a filer’s general
ability to drive FinTech innovation. To capture the potential quality and
importance of patent filings, we also control for the number of independent
claims in a filing and the number of IPC codes covered by a filing (both in a
natural log form). Finally, to account for time-invariant industry characteristics
as well as potential innovation cycles, we control for industry fixed effects, year
fixed effects, and, in some specifications, industry-year and technology-year
fixed effects.

Table 11 reports the results. In Column 1, we first estimate a basic
specification that includes Disruptive and FinTechStartup but excludes any
interaction terms, filer-level controls, or patent-level controls. The coefficient
estimates show that the extent of disruptiveness does not seem to explain
the value impact of FinTech innovations. However, the coefficient on
FinTechStartup is negative and significant (p-value = .041), which implies
that innovations coming from FinTech startups are generally more harmful
to industry value than are innovations from other types of firms.

In Column 2, we test our industry-level predictions from Section 4.1 by
replacing FinTechStartup with its pairwise interactions with Disruptive and
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Table 11
Disruptive innovation, FinTech startups, and industry value

(1) (2) (3) (4)

Disruptive 0.153 0.281 0.267 −0.058
(0.216) (0.230) (0.228) (0.199)

FinTech startup −0.315∗∗
(0.148)

FinTech startup × Disruptive −1.139∗∗ −1.188∗∗∗ −1.102∗∗
(0.503) (0.420) (0.460)

FinTech startup × Nondisruptive −0.154 −0.207 −0.422
(0.150) (0.270) (0.264)

Filer’s age 0.001 −0.112
(0.093) (0.090)

Filer’s prior applications (FinTech) −0.018 −0.004
(0.105) (0.111)

Filer’s prior applications (other financial) 0.040 0.065
(0.082) (0.087)

Filer’s prior applications (nonfinancial) −0.043
(0.034)

Patent claims −0.075
(0.114)

Patent classes −0.210
(0.163)

Industry fixed effects Yes Yes Yes No
Year fixed effects Yes Yes Yes No
Industry × Year fixed effects No No No Yes
Technology × Year fixed effects No No No Yes

Observations 18,090 18,090 18,090 18,090
R2 .007 .007 .007 .029

This table reports regressions explaining the value impact on financial industries from FinTech innovations by
public and private firms. The industry value impact of an innovation is in millions of 2003 U.S. dollars and is
calculated from a value-weighted portfolio of public firms’ abnormal stock returns around patent filing news (see
Equation (12)). The dependent variable in the regressions is a log transformation of the industry value impact (see
Equation (10)). Disruptive is an indicator equal to 1 if a filing’s FinTech type is disruptive to the target industry
according to the definition in Table 10. FinTech startup is an indicator equal to 1 if the patent filer is a firm existing
outside of the financial services sector with an age of 8 years or less (measured from the founding date). Filer’s
Age is the number of years since the filer’s founding. Filer’s prior applications (FinTech) is the number of prior
FinTech applications. Filer’s prior applications (other financial) is the number of prior non-FinTech financial
applications. Filer’s prior applications (nonfinancial) is the number of prior nonfinancial applications in Class
G&H. Patent claims is the number of independent claims in the patent filing. Patent classes is the number of
IPC patent codes spanned by a filing. All nonindicator controls are in natural logarithm form. Standard errors,
reported in parentheses, are clustered at the industry-technology level. *p<.1; **p<.05; ***p<.01.

Nondisruptive. The regression shows that FinTechStartup×Disruptive has
a negative and significant coefficient. In other words, consistent with our
first prediction, disruptive innovations are incrementally more negative to an
industry when they originate from potential entrants rather than from other firm
types. Also, a t-test reveals that the coefficient on FinTechStartup×Disruptive is
significantly less than the coefficient on FinTechStartup×Nondisruptive (two-
sided p-value = .066). This lends support to our second prediction, namely, that
an innovation from a FinTech startup should be more harmful to an industry’s
value when the technology behind the innovation is inherently disruptive.

When controls are added in Column 3 for a filer’s capacity to drive and
leverage FinTech innovation, the coefficient on FinTechStartup×Disruptive
becomes slightly more negative and remains statistically significant. Moreover,
the two interaction coefficients continue to differ according to a two-sided test
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(p-value = .063). Finally, in Column 4 we introduce controls for patent quality
and also include a full set of industry-year and technology-year indicators
that can account for innovation cycles within industries or technologies.
In this complete specification, the coefficient on FinTechStartup×Disruptive
is once again negative and significantly less than the coefficient on
FinTechStartup×Nondisruptive. Based on these results, we conclude that
disruptiveness and the threat of competitive entry have an interactive effect:
when both factors are present in an innovation, the destructive value effects on
an industry can be particularly large.

4.2.3 Firm-level value impact: Market-share leaders and disruption. In
this section, we test our competing predictions about how the value loss to a
market-share leader will vary with the disruptiveness of a FinTech startup’s
innovation. We define a time-varying indicator variable, Leader, equal to one if
an incumbent firm is in the top quartile within its industry in terms of revenue-
based market share. We then focus on the subsample of innovations by FinTech
startups and estimate a series of regressions explaining the firm-level value
impact. Specifically, we estimate regressions of the following form:

V FIRM
i,j,k,t =β0 +β1Disruptivei,k +β2Leaderi,t

+β3Leaderi,t ×Disruptivei,k +	′Xi,j,k,t +εi,j,k,t ,
(14)

where V FIRM
i,j,k,t is the log-transformed value effect31 on firm i resulting from the

filing news event on date t associated with innovator j and technology type k.
The set of controls, Xi,j,k,t , includes filer and patent characteristics as well as
firm, year, industry, and technology indicators or their interactions. We estimate
the regressions with OLS and firm-level clustering of standard errors.

Table 12 reports the regression results. In Columns 1 through 3, the estimated
coefficient on Leader×Disruptive is positive and highly statistically significant.
Also, the sum of coefficients for Disruptive and Leader×Disruptive is positive
and significant across all three regressions. These facts confirm the prediction
that market-share leaders find FinTech startup innovations to be less harmful
when the underlying technology is disruptive rather than nondisruptive. It is
also worth noting that, in all three regressions, the coefficient on Leader is
negative and highly significant. Although not one of our main predictions, this
finding suggests that nondisruptive innovation from startups is more harmful
to leaders than to other firms in the industry.

How are market leaders able to avoid much of the harm from FinTech
startups’ disruptive innovation? One plausible explanation is that leaders
typically enjoy large financial resources and technical economies of scale, and

31 The calculation of these value effects proceeds in a manner similar to what was done for private values in Section
3.3 (see Equations (9) and (10)).
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Table 12
Incumbent firms and the value effects of innovation by FinTech startups

(1) (2) (3)

Leader × Disruptive 0.283∗∗∗ 0.283∗∗∗ 0.281∗∗∗
(0.037) (0.037) (0.036)

Disruptive 0.015 0.007 −0.020
(0.012) (0.013) (0.022)

Leader −0.281∗∗∗ −0.280∗∗∗ −0.260∗∗∗
(0.054) (0.054) (0.053)

Total assets −0.071∗∗∗ −0.071∗∗∗ −0.077∗∗∗
(0.025) (0.025) (0.025)

Filer’s age −0.064∗∗∗ −0.081∗∗∗
(0.014) (0.015)

Filer’s prior applications (FinTech) 0.048∗∗∗ 0.025∗∗∗
(0.006) (0.006)

Filer’s prior applications (other financial) −0.121∗∗∗ −0.069∗∗∗
(0.011) (0.011)

Filer’s prior applications (nonfinancial) 0.008 0.003
(0.006) (0.006)

Patent claims 0.016
(0.011)

Patent classes −0.014
(0.016)

Firm fixed effects Yes Yes Yes
Year fixed effects Yes Yes No
Industry × Year fixed effects No No Yes
Technology × Year fixed effects No No Yes

Observations 310,416 310,416 310,416
R2 .004 .005 .012

This table reports regressions explaining the value impact on financial industry market leaders and followers
from innovations by FinTech startups. An innovation’s value impact on a firm is in millions of 2003 U.S. dollars
and is calculated like in Equation (9) from the firm’s abnormal stock returns around news of the patent filing.
FinTech startups are defined as firms operating outside of the traditional financial services sector that are no more
than 8 years from their founding. The dependent variable in the regressions is a log transformation of the value
impact on a firm (see Equation (10)). Leader is an indicator equal to 1 if a firm’s revenue market share is in its
industry’s top quartile. Disruptive is an indicator equal to 1 if a filing’s FinTech type is disruptive as defined
in Table 10. Total assets is measured in 2003 dollars and is in a natural log form. Table 11 describes Filer’s
age, Filer’s prior applications (FinTech), Filer’s prior applications (other financial), Filer’s prior applications
(nonfinancial), Patent claims, and Patent classes. Standard errors, reported in parentheses, are clustered at the
firm level. *p<.1; **p<.05; ***p<.01.

they can invest heavily in their own innovation to protect themselves from
the adverse effects of disruption. To investigate this explanation, we restrict
our sample to the set of disruptive innovations from FinTech startups and
consider three continuous measures of investment in innovation over the most
recent fiscal year: R&D, which is simply the log-transformed amount of R&D
spending in the year prior to the filing news event; R&D Intensity, which is
equal to R&D spending divided by total revenues; and R&D/Assets. All three
measures are computed with Compustat data and winsorized at the 0.1% and
99.9% levels to account for outliers. We then estimate regression models similar
to those in Equation (14), except that Disruptive and Leader×Disruptive are
replaced, respectively, with one of the continuous measures of R&D investment
and its interaction with Leader.

Table 13 reports the results of these regressions. As seen in Column 1,
R&D has an insignificant coefficient, but the coefficient on Leader×R&D is
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Table 13
Incumbent R&D spending and disruptive innovation by FinTech startups

(1) (2) (3)

Leader × R&D 0.445∗
(0.260)

R&D −0.127
(0.258)

Leader × R&D intensity 17.329∗∗∗
(5.257)

R&D intensity 0.314
(5.102)

Leader × R&D/assets 68.371∗∗∗
(7.275)

R&D/assets −2.084
(6.001)

Leader 0.015 0.018 0.016
(0.070) (0.070) (0.070)

Total assets −0.164∗∗∗ −0.168∗∗∗ −0.164∗∗∗
(0.041) (0.042) (0.041)

Control variables Yes Yes Yes
Firm fixed effects Yes Yes Yes
Industry × Year fixed effects Yes Yes Yes
Technology × Year fixed effects Yes Yes Yes

Observations 115,195 115,195 115,195
R2 .005 .005 .005

This table reports regressions explaining the value impact on market leaders and market followers from disruptive
innovations by FinTech startups. An innovation’s value impact on a firm is in millions of 2003 U.S. dollars and is
calculated like in Equation (9) from the firm’s abnormal stock returns around news of the patent filing. FinTech
startups are defined as firms operating outside of the traditional financial services sector that are no more than
8 years from their founding. The dependent variable in the regressions is a log transformation of the value
impact (see Equation (10)). Leader is an indicator equal to 1 if a firm’s revenue market share is in the industry’s
top quartile, and 0 otherwise. R&D is log-transformed R&D spending in 2003 dollars. R&D intensity is R&D
spending divided by total revenues. R&D/assets is R&D spending divided by the book value of total assets. R&D
spending, sales, and total assets are from the most recent fiscal year preceding the year of a filing news event.
Total assets is measured in 2003 dollars and is in a natural log form. Each regression includes all filer-level and
patent-level control variables appearing in Table 12. Standard errors, reported in parentheses, are clustered at the
firm level. *p<.1; **p<.05; ***p<.01.

positive and significant at 10%. When we use R&D Intensity and R&D/Assets
as alternative measures of investment in Columns 2 and 3, the interaction
coefficients increase substantially in both magnitude and statistical significance.
The economic magnitudes of the interaction effects are sizable. Consider,
for instance, the coefficient estimate for Leader×R&D Intensity in Column
2. Supposing that the value impact from a startup’s disruptive innovation
is negative, the estimate implies, ceteris paribus, that a 1-percentage-point
increase in R&D intensity from its mean translates into roughly a 16.2
percent reduction in the negative value impact for leader firms.32 We conclude,
therefore, that the ability to invest heavily in innovation does play an important

32 We estimate this reduction in value impact by calculating an approximate average partial effect of R&D intensity
in the regression, conditional on the predicted value impact being negative. Specifically, for each observation,
we first calculate the predicted (log-transformed) value from the regression and infer the predicted value impact
from the log-transformation in Equation (10). We then calculate the predicted value impact for a changed R&D
intensity, keeping other variables fixed, and thus obtain the change in value impact for each observation. The
mean level of R&D intensity in the sample is about 1.03%.
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role in helping market leaders avoid harm from FinTech startups’ disruptive
innovation.

5. Conclusion

The dramatic surge of interest in FinTech over the past few years has highlighted
the need for a better understanding of the value of technological innovations in
this space. Our paper provides large-scale evidence to help fill this gap. Using
a new data set constructed from the full document texts of patent applications,
we study the occurrence of FinTech innovation and the value that it brings to
innovators, industries, and incumbent firms.

Our data set enables the application of text-based machine learning to classify
FinTech innovations according to their underlying technologies. To obtain value
estimates of such innovations, we use a new method that combines observed
stock price reactions with estimated Poisson arrival intensities. We find that
FinTech innovations are generally valuable to innovators and to the financial
sector as a whole. However, for some financial industries, certain types of
FinTech innovation can have an adverse value impact. We find that value effects
on an industry are more negative when an innovation comes from a young,
nonfinancial firm and brings forth disruptive technology. Also, market-share
leaders tend to suffer less harm from outside disruptive innovation if they have
invested heavily in their own R&D.

We note limitations to our approach of using market reactions to study the
value of FinTech innovation. First, despite being an important outcome of the
innovation process, patent applications reflect only part of firms’ innovation
activities. Some firms may have unsuccessful innovation attempts; others may
choose to forego the patenting process altogether and rely on trade secrets to
protect their discoveries. Second, we cannot accurately measure the direct costs
of FinTech innovation due to the aggregated nature of R&D spending. Third,
stock-price data are not well suited to studying the impact that FinTech is likely
to have on non-U.S. firms, privately held firms, customers, and employees. For
many firms and individuals throughout the financial services sector, FinTech
innovation will undoubtedly lower costs. At the same time, by paving the way
for more automation, FinTech also has the potential to reduce employment and
welfare. Future research can study the very important issue of what broader
societal impacts FinTech innovation will have going forward.

Appendix A. Using Machine Learning to Classify Patent Filings

A.1 Text Preprocessing

We preprocess the text of each filing using standard methods in applied text analysis (see, e.g.,
the survey article by Gentzkow, Kelly, and Taddy forthcoming). First, for each financial patent
application, we create a document that contains the text of its title, abstract, summary, and claims
sections and then “tokenize” the document into a sequence of words. Because English words have
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different inflections (e.g., singular and plural noun forms or different verb tenses), we then use
a stemmer to obtain the unique stems of words. For example, “transforms,” “transformed,” and
“transforming” are all converted into the word stem “transform.” We also exclude very common
words (so-called “stopwords”), such as “the,” “and,” and “a,” because these words do not contain
information useful for classification of patent documents. For this purpose, we use the stopword list
of Jegadeesh and Wu (2017) but exclude from this list any words that appear in one or more terms in
our financial lexicon constructed in Section 2.1.1. We also rank words by the number of documents
they appear in and remove the top-50 words (except for those that appear in at least one of our
financial lexicon terms). These top-50 words are generic terms, such as “method” or “background,”
that appear in a vast number of patent filings and thus are not helpful for implementing text-based
classification methods.

Next, we convert documents into numeric vectors using a “bag of words” approach. Each
document is mapped into a numerical vector that contains a frequency score for each individual
word in the document. Frequency scores are calculated using the popular “term frequency-inverse
document frequency” (tf-idf ) method (Jones 1972). Tf-idf provides a statistic that represents the
importance of a word in a document contained in a corpus, or collection of documents. The tf-idf
statistic increases with the number of times a word appears in a document, while it decreases in the
frequency of the word in the corpus. Therefore, tf-idf adjusts for both varying lengths of documents
and varying commonality of words in the collection of documents.

A.2 Creating a Training Sample
We start by compiling a group of likely FinTech innovators from six annual lists: the Forbes’
Fintech 50, the Fintech 100 list of H2 Ventures/KPMG, American Banker’s Fintech 100, and the
“FinTech companies to watch” surveys in Inc, Entrepreneur, and Fastcompany. These six sources
differ in their focus and selection methods. For instance, the Forbes and H2 Ventures/KPMG lists
focus on new startup companies, while the American Banker list features technology companies
that derive a large share of their revenues from financial services. In the case of Inc, Entrepreneur,
and Fastcompany, we use the 2016 editions of the lists. For the other three periodicals, we use
both the 2015 and 2016 editions. After combining the various lists and keeping only U.S. firms,
we obtain an overall list of 72 distinct firms.

We then augment our list with a set of publicly traded, “traditional” financial firms that are
observed to file patent applications. Specifically, we identify the top 10 most prolific Compustat
companies—in terms of total patent applications filed and published during the sample period—
within each of several industry subgroups.33 The industry subgroups, based on six-digit NAICS
codes as described in the text (Footnote 15), include the following: commercial banking, payment
processing, brokerage, asset management, and insurance. In total, we add 44 distinct publicly traded
companies from these financial industries to our list.

Next, for each firm in our combined list of likely FinTech innovators, we extract all of the
firm’s associated Class G&H patent applications during the sample period. This provides us with
11,431 filings, from which we randomly draw 1,000 cases. We read through and manually classify
these 1,000 filings into nine different categories: the seven FinTech types from Table 1, other
(non-FinTech) financial filings, and filings unrelated to financial services.

Note that the random sample of 1,000 documents includes only patent filings by companies in
the list of likely FinTech innovators we constructed from magazines and Compustat. Therefore, the
random sample might not be representative of all FinTech filings by U.S. companies and individuals.
To address this issue, we use the 1,000 filings to bootstrap the creation of a more representative
training sample. This is done by applying a simple nearest-centroid classifier to the 67,948 text-
filtered patent filings identified in Section 2.1.1. Specifically, for each text-filtered patent filing,

33 Identifying the top patent filers among public financial services companies requires matching assignee names in
the BDSS bulk data with the names of Compustat firms. For this purpose, we use exact name matches combined
with manual matching.

2099

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/32/5/2062/5427776 by guest on 21 August 2022



[09:15 28/3/2019 RFS-OP-REVF180132.tex] Page: 2100 2062–2106

The Review of Financial Studies / v 32 n 5 2019

we calculate its distance to a patent category i =0,...,8 by averaging its distance to all category-i
patents in the random sample, where distance between two patent filings is defined as one minus
the cosine similarity between the filings.

The result of the centroid classifier is a nine-way classification of all 67,948 patent filings in the
text-filtered sample. From the filings in each of the resulting nine categories, we then select the 100
patents that are closest to the centroid plus an additional 100 random filings. Thus, in total we have
9×200=1,800 filings. We read through these filings and manually reclassify them as needed. The
resulting classified set of 1,800 filings serves as the training sample for all of our machine-learning
algorithms.

A.3 Main Classification Algorithms: Support Vector Machines and Neural Networks
One classification method we use is support vector machines (SVM). SVM is a class of supervised
machine-learning algorithms that has been applied to a wide range of problems, such as text
categorization, image classification, handwriting analysis, and classification of biological proteins.
Given a training sample for which each data point is already assigned to one of two classes, Linear
SVM searches for an (n−1)-dimensional hyperplane that separates the two groups in n-dimensional
space and maximizes the margin, that is, the distance from the hyperplane to the closest data point.
A key advantage of SVM is that it can deliver good classification performance even for data with a
large number of features compared to the sample size. This makes SVM especially well-suited for
classifying texts since document collections typically have large numbers of distinct words (see,
e.g., Joachims, 1998).

We also use a Neural Networks approach to classification. Originally motivated by the brain
structure of humans and animals, research on artificial neural networks has recently led to new,
deep-learning models that perform well in complex classification tasks involving large data sets.
Neural networks have been widely applied in numerous fields, such as natural language processing,
speech recognition, computer vision, autonomous driving, and medical sciences. A typical neural
network has three parts: (1) an input layer of neurons that are used to receive the input data; (2) an
output layer of neurons that produce predictions and results; and (3) one or more hidden layers of
neurons in the middle that connect the input and output layers. The number and configuration of
hidden layers turns out to be crucial for efficient implementation of the network training process.
Goodfellow et al. (2016) provide a detailed treatment of modern machine-learning techniques
based on neural networks.

A.4 Hyperparameters and Design Choices for Classifiers
The hyperparameters used in the classifiers are as follows: k =5 for kNN, C =0.6 for Linear SVM,
and γ =1.0, C =2.0 for Gaussian SVM. For the neural network classifier, we follow the suggestion
of Masters (1993) and Shibata and Ikeda (2009) and use a geometric pyramidal layout to pin down
the numbers of neurons in the various hidden layers. We fit neural network classifiers with one,
two, three, four, and five hidden layers and select the configuration with three hidden layers since
this yields the best F1 score. In the first, second, and third hidden layers that follow after the input
layer, there are 1792, 307, and 53 neurons, respectively.

Appendix B. Matching Patent Filings to Data on Public and Private
Firms

We attempt to gather data on key characteristics of the public and private firms that filed patent
applications in Categories 1 through 8 (finance-related innovations). Starting with all of the
assignees’ names reported in BDSS, we conduct a name match against CRSP/Compustat, D&B
Hoover’s, Standard & Poor’s NetAdvantage, LexisNexis, Bloomberg, company websites, Google,
and other publicly available websites.

The name matching process for public and private firms often involves some ambiguity. In
some cases, an assignee firm appears in the USPTO database with multiple names. In other cases,

2100

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/32/5/2062/5427776 by guest on 21 August 2022



[09:15 28/3/2019 RFS-OP-REVF180132.tex] Page: 2101 2062–2106

How Valuable Is FinTech Innovation?

different assignee firms may have similar names. To ensure that name matches are valid, we extract
from USPTO filings the city and state of each assignee firm and look for an exact name-city-state
match. If either the assignee’s name or address does not match, we use additional information
from online Google searches, Bloomberg company profiles, or company websites to determine
whether the match is valid.34 Another source of ambiguity arises from the fact that assignee firms
are occasionally acquired by other firms during the sample period, and both acquirers and targets
appear in the databases we use. Given the large number of private assignee firms, tracking the
merger and acquisition histories for all firms is difficult. Therefore, we screen for cases in which
the assignee’s name contains keywords in its current parent company’s name, and in such cases
we use the parent’s information for matching.35 Also, we note that some filers are coded in BDSS
as being U.S. firms, but they are in fact universities, foreign companies, or subsidiaries of foreign
companies.36 We remove from the sample a small number of filings that correspond to such cases.

For each public and private firm in the name-matched sample, we gather available data on
financials, stock prices, SIC and NAICS industry codes, and the firm’s year of founding. The data
on stock prices and financials are from CRSP and Compustat. Data on industry codes and founding
year are drawn from D&B Hoover’s, Standard and Poor’s NetAdvantage, LexisNexis, Bloomberg
company profiles, Google, Bizapedia, and other web-based sources.

Finally, we observe that, due to IPOs and exchange listings, a small number of filers are publicly
traded at the disclosure of an application but were privately held when the application was originally
filed. Thus, for each patent filing by a public firm, we compare the filing date to the time window
of the firm’s available stock prices in CRSP/Compustat. If the filing date does not locate in the
time window, we treat the filer as a private firm in the Poisson regression analysis of Table 6.

Appendix C. Using Two-Stage Bootstrapping to Calculate p-Values
(Tables 7 and 9)

As described in Footnote 24, standard tests for significance of means and medians are
not appropriate in the context of Table 7 due to measurement error, heteroskedasticity, and
nonnormality. Therefore, we develop a two-stage bootstrapping approach for testing whether the
means and medians reported in Table 7 are significantly different from zero (see, e.g., Efron (1979),
Efron and Tibshirani (1986), and Mooney and Duval (1993) for general treatments of bootstrapping
methods).

In the first stage of our procedure, we bootstrap each of the 24 Poisson regressions in Table
6 to obtain distributions of the estimated innovation intensities. Specifically, we resample each
regression sample 200 times with replacement to obtain bootstrapped samples, each of which has
the same number of (filer-year) observations as the original regression sample. We then conduct
the Poisson regressions on each bootstrapped sample and obtain predicted innovation intensities
for each filer-year observation. Pooling the results together, we obtain a distribution of 200 fitted
innovation intensities (lambdas) for each filer-year observation in each regression.

The second stage involves building upon the fitted lambdas from the first stage to bootstrap
innovation values at the filing level. Specifically, within each innovation category in Table 7, we

34 For instance, Mass Catalyst Corporation, an assignee located in Arlington, Texas, according to BDSS data, has
one possible match in Hoover’s with the same corporation name but a different city: Dallas, Texas. A Google
search in this case verifies that the match is correct.

35 An example of such a case is the patent filer Visa International Service Association. Since this filer operates
as a subsidiary of Visa Inc. and since its name contains the word “Visa,” we use Visa Inc.’s company data for
matching purposes.

36 For example, we exclude filings from Samsung Pay, Inc. which is a U.S. subsidiary of the South Korean
conglomerate Samsung. We also exclude filings, such as USPTO document number 20070040019, which was
filed by University of Nevada-Las Vegas but incorrectly classified in BDSS as having been filed by a U.S.
company.
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resample the set of patent filings 1,000 times with replacement to create bootstrapped samples.
Each bootstrapped sample of filings is then merged with the appropriate set of 200 possible fitted
innovation intensities from the first stage. Simulated private values are calculated like in Equation
(9) from a filing’s CAR and from each of the 200 fitted lambdas. Note that each of the 1,000 two-
stage bootstrapped samples of values consists of 200×N observations, where N is the number
of actual filings in the innovation category. We then calculate the mean and median values from
each two-stage bootstrapped sample to obtain distributions of the two statistics. Without assuming
normality of the distributions, we can use the nonparametric percentile method (see, e.g., Mooney
and Duval 1993), which entails sorting each statistic and using the 2.5th and 97.5th percentiles
as the lower and upper bounds of the 95% confidence interval. Similarly, we can obtain specific
p-values of the statistics by comparing the bootstrapped distributions of the statistics against zero.

For Table 9, we can also apply two-stage bootstrapping to compute p-values for tests of whether
median industry-level values differ from zero. The bootstrapping procedure used here resembles
the one used for Table 7 but differs in two respects: (1) the filing-level bootstrap resampling
is conducted within each technology type-industry pair; and (2) the bootstrapped industry-level
value impacts are computed using Equation (12) rather than Equation (9).

Appendix D. Permutation Tests (Table 10)

Estimation error from the Poisson regressions in Table 6 could systematically affect the calculation
of industry-level values. Therefore, for Table 10 we rely on nonparametric permutation tests (see,
e.g., Good 1994) to assess whether the median value impact of disruptive technologies on an
industry is significantly more negative than that of nondisruptive technologies. The permutation
test for a given industry is implemented as follows. First, we first divide the original sample of all
patent filings by individual inventors into those that are disruptive and those that are nondisruptive
and then calculate the median values for each group. The difference between the two (i.e., disruptive
median minus nondisruptive median) is taken to be the original statistic.

We then compute, for each filing in the original sample, all of the 200 possible industry
values using the fitted innovation intensities from the first stage of our two-stage bootstrapping
procedure (see Appendix C). We then resample this bootstrapped sample without replacement,
randomly assigning 200×D observations to an artificial disruptive group and the rest to an artificial
nondisruptive group, where D is the number of disruptive filings in the original sample. For a given
resampling iteration, we calculate the difference in median values of the two artificial groups (i.e.,
disruptive median minus nondisruptive median). The resampling is repeated 1,000 times to obtain
1,000 permutation statistics. Finally, we locate the original statistic on the permutation distribution.
The p-value for the permutation test is the fraction of the 1,000 permutation statistics that are no
larger than the original statistic.
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