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How Wearable Sensors Can Support
Parkinson’s Disease Diagnosis and
Treatment: A Systematic Review

Erika Rovini', Carlo Maremmani? and Filippo Cavallo ™

" The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Italy, 2 U.O. Neurologia, Ospedale delle Apuane (AUSL
Toscana Nord Ovest), Massa, Italy

Background: Parkinson’s disease (PD) is a common and disabling pathology that is
characterized by both motor and non-motor symptoms and affects millions of people
worldwide. The disease significantly affects quality of life of those affected. Many works
in literature discuss the effects of the disease. The most promising trends involve
sensor devices, which are low cost, low power, unobtrusive, and accurate in the
measurements, for monitoring and managing the pathology. Objectives: This review
focuses on wearable devices for PD applications and identifies five main fields: early
diagnosis, tremor, body motion analysis, motor fluctuations (ON-OFF phases), and home
and long-term monitoring. The concept is to obtain an overview of the pathology at each
stage of development, from the beginning of the disease to consider early symptoms,
during disease progression with analysis of the most common disorders, and including
management of the most complicated situations (i.e., motor fluctuations and long-term
remote monitoring). Data sources: The research was conducted within three databases:
IEEE Xplore®, Science Direct®, and PubMed Central®, between January 2006 and
December 2016. Study eligibility criteria: Since 1,429 articles were found, accurate
definition of the exclusion criteria and selection strategy allowed identification of the most
relevant papers. Results: Finally, 136 papers were fully evaluated and included in this
review, allowing a wide overview of wearable devices for the management of Parkinson’s
disease.

Keywords: Parkinson’s disease, wearable sensors, motion analysis, early diagnosis, tremor, motor fluctuations,
monitoring, telemedicine

INTRODUCTION

Parkinson’s disease (PD) is a complex neurodegenerative disorder that has a usually asymmetric
onset, characterized by typical motor symptoms as bradykinesia, hypo-/akinesia, muscular rigidity,
and resting tremor (Fahn, 2008). Although the pathology is generally diagnosed on the basis of these
motor symptoms, many non-motor manifestations (NMMs) are commonly evident and they may
sometimes be more disabling of motor disturbances, such as olfactory disturbances, autonomic
dysfunction, sleep fragmentation, depression, and dementia (Wolters, 2008). Some NMMs (e.g.,
sleep disorders, bladder disturbances, gastrointestinal symptoms, olfactory symptoms) may occur
throughout the entire course of the disease, even if cognitive symptoms such as hallucinations
and dementia tend to occur late in the PD. The disease is difficult to detect and treat promptly,
as it shows a wide variability in the clinical expression (Fahn, 2008) as well as in the somatic
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symptom progression (Dickson and Griinewald, 2004; Caslake
et al, 2013; de Lau et al,, 2014; Szewczyk-Krolikowski et al.,
2014). Over the past three decades, the knowledge of PD
has increased significantly, with particular interest on the pre-
motor phase and novel therapeutic and diagnostic approaches
(Korczyn and Gurevich, 2010). Currently, experts recognize the
need to redefine the research criteria for the diagnosis of this
complex disease by considering clinical features, pathological
findings, and genetics or molecular mechanisms (Mirelman
et al, 2011; Berg et al, 2013). Recent studies demonstrate
that several NNMs (e.g., rapid eye movement sleep behavior
disorders, hyposmia, constipation, depression) are correlated
to the neuropathological changes in the brain and they can
anticipate the motor manifestations of the disease by 5-7 years.
Furthermore, the study of the pre-motor phase could lead the
research for predictive biomarkers and risk or protective factors
for PD (Tolosa and Pont-Sunyer, 2011; Palma and Kaufmann,
2014). Today, PD diagnosis is based on the assessment of
motor (and non-motor) symptoms, typically during neurological
visual examinations, but the diagnostic methods and disease
progression monitoring approaches remain suboptimal for PD
management (Kassubek, 2014). This is particularly true when co-
factors such as greater age, poor cognition, and worse mobility
are manifested (Hu et al., 2011). During the test for PD
diagnosis, in fact, the neurologist watches the patient perform
specific tasks and assigns scores for each of them as required
and defined in the Unified Parkinson’s Disease Rating Scale
(UPDRS) (Fahn and Elton, 1987) or its updated version, the
Movement Disorder Society-sponsored revision of the UPDRS
(MDS-UPDRS) (Goetz et al., 2008). The Hoehn and Yahr scale
(HY) (Hoehn and Yahr, 1967) instead includes stages 1-5, and
it is used to assign an overall score to the patient on the
basis of the pathological progress. All these clinical scales are
subjective; this fact leads to high inter-rater variability among
different neurologists or different medical centers, as well as
high intra-rater variability over time. The correct diagnosis of
PD is of vital importance for adequate prognosis and treatment,
although a study reveals that ~25% of diagnoses are incorrect,
particularly when essential tremor, vascular Parkinsonism, and
atypical Parkinsonian syndromes are manifested (Tolosa et al.,
2006). An exhaustive study of the pathology, including a more
accurate knowledge of its clinical appearance and other tests such
as olfactory exam and magnetic resonance imaging (MRI), could
guide the correct diagnosis (Tolosa et al., 2006). The treatment
for PD is still a matter of debate, especially in the early phases.
Common sense says that the therapy must be personalized and
adapted to the individual needs of PD patients to provide the
best medical care and treat the predominant symptoms (Ossig
and Reichmann, 2015). Early and accurate diagnosis of PD may
improve the long-term quality of life (QoL) for PwPD, while
misdiagnosing a patient causes delay in receiving the appropriate
treatment plan.

In this context, the use of smart technologies for PD
applications has increased in recent years. In particular, wearable
sensors are fundamental in helping clinicians perform early
diagnosis, differential diagnosis, and objective quantification of
symptoms over time. A growing number of papers concerning

this topic during the last decade also demonstrate the increasing
development and use of such wearable technologies. For example,
the use of inertial sensors such as accelerometers (ACC) and
gyroscopes (GYRO), combined with advances in short-range
communication technologies (i.e., Bluetooth, Zigbee), is now
feasible and meets the needs of people with chronic disorders
by featuring low power consumption, unobtrusiveness, light
weight, and ease of use (Bonato, 2010). Wearable sensors have
demonstrated their potential power for PD diagnosis (Butt
et al,, 2017) and management (Rovini et al.,, 2016), as well as
for other pathologies (e.g., post-stroke, neck injuries) (Rodgers
et al.,, 2015) or to monitor pharmacological trials (Henderson
et al., 2016). In terms of pharmacological treatment, levodopa
(Ldopa) is currently the most used and effective medication for
PD, even if several side effects result from it, especially motor
fluctuations and dyskinesias (Chou, 2008). When Ldopa-related
side effects are difficult to control, surgical therapies such as
neuromodulation using deep brain stimulation (DBS) (Rissanen
etal., 2015) can be applied, while at the same time, other potential
solutions (e.g., biological therapies) are emerging (Strauss et al.,
2014). To redefine new metrics for early diagnosis, differential
diagnosis, and quantification of symptoms, the development of
a system for objective assessment of the pathology to identify
motor dysfunctions, which are imperceptible upon expert clinical
exam, is required (Scanlon et al., 2013). Finally, it is important
to consider also the social aspects that are involved with a
disabling pathology such as PD. The burden of care among
caregivers of PwPD considerably increases with age and disease
progression and is linked to the period and level of assistance
required (Razali et al., 2011), whereas non-motor symptoms,
especially cognitive decline, play a prevalent role in caregivers’
grief (Carter et al., 2012). To reduce the burden of caretakers, a
recent study (Megalingam et al., 2014) proposes a wearable health
monitoring system that can measure heart rate, temperature,
electrocardiogram (ECG), tilt, and fall of the homebound patients
and can send a notification via smartphone to the caregivers if a
critical situation is occurring. Such a system would enable remote
assistance.

The aim of this review is to provide readers with broad
scientific and technological information about the use and
challenges of wearable sensor technologies for PD applications.
This paper details the investigation of the typology of wearable
sensors, fields of application, processing approaches, and
experimental methodologies. Such a complete overview of
PD wearable technology makes this paper highly suitable
for scientists with both clinical and technical background.
In particular, this paper provides a review of the typologies
of wearable sensors that were investigated and adopted
for PD applications in the last decade, and it describes
implemented experimental protocols, the subjects of the studies,
extracted features, and performance of classifiers. Such wearable
technologies are organized with respect to five critical fields
of application that cover the entire pathology progression: (1)
early diagnosis, (2) tremor, (3) body motion analysis, (4) motor
fluctuations and ON-OFF phases, and (5) home and long-term
monitoring. For each topic, the existing systems, found using the
methodology described in the next paragraph, were investigated.
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The results are presented here, and recommendations for further
development and discussion of future trends are provided as well.

METHODS
Search Strategy

An electronic database search was performed from September
2016 to December 2016 using IEEE Xplore®, Science Direct®,
and PubMed Central® to identify articles concerning the use of
wearable sensors for PD applications. Specifically, the terms and
key words used for the literature research were (“Parkinson”)
AND (“wearable” OR “inertial” OR “accelerometer” OR
“acceleration” OR “gyroscope” OR “EMG” OR “EEG” OR “ECG”
OR “GSR” OR “clothes”) located within title and/or abstract.
Only original, full-text articles published in English, between
January 2006 and December 2016, which discussed the use
of wearable sensors for PD applications, were included in the
review. Obtained in the research were 485 references from
IEEE Xplore®, 653 references from Science Direct®, and 291
references from PubMed Central®. Five major applications
were identified: early diagnosis, tremor detection, analysis
of the motor performances, analysis of motor fluctuations
(on/off phases), and home and long-term monitoring. Papers
were screened from three independent reviewers (i.e., the
authors) and disagreements were solved through meetings and
discussions. Finally, the selected papers were classified on the
basis of the application area. Data abstracted from the papers
and reported in Tables 1-9 considered: the used technological
solutions and typology of sensors, their placement over the body
and the sampling frequency; the experimental protocol adopted;
the subjects involved, according to their pathology and their
health status; the performed analysis, including the extracted
features, the applied statistical methods, the implemented
classifiers and the main findings for each work. Particular
attention was focused on the classifiers performance because
they can synthetically represent the robustness of the technology
proposed for a specific PD application.

Selection Criteria

First, duplicated references were excluded. Then, during the
screening procedure, items were excluded if they (i) were an
abstract, a short communication, a review article, or a chapter
from a book; (ii) were not written in the English language; (iii)
were from years prior to 2010 only for sensors other than inertial
(i.e., EMG, EEG, ECG, GSR) because they did not concern
wearable devices. Eight hundred and forty-seven references were
fully assessed during the evaluation procedure, and papers were
excluded if (1) they did not use any type of wearable sensors;
(2) they did not appear appropriate for this review after the
reading of title and abstract; (3) they did not involve patients
with Parkinson’s Disease; (4) they were not full access; and (5)
they involved a number of PD patients <10, due to the low level
of reliability and statistical validity that can be obtained from
their results. In addition, if multiple papers written by the same
author had similar content, papers published in journals were
selected instead of papers presented at conferences. Furthermore,
if multiple papers written by the same author with similar

content were presented at conferences, the most recent paper was
selected. Finally, 136 papers were fully evaluated and included in
this review (Figure 1).

RESULTS

Of the 136 fully evaluated papers, 33 (24.3%) were published
in 2016, and 73 (53.7%) were published during the last 3
years. This result confirmed the increasing interest for wearable
sensors in PD applications (Figure 2A). Eleven papers were
appropriate for further applications, which resulted in a total of
147 papers. Among the applications covered by this review, the
majority of the papers (61.2%) focused on body motion analysis
(Figure 2B) and in particular on gait analysis, which resulted
in the most investigated task (37 papers, 25.2%) (Figure 2C).
Finally, regarding the number of PD patients involved in the
studies, even if works that recruited less than 10 PwPD were
excluded from this review, the majority of the research efforts
(47.1%) included fewer than 15 PwPD (Figure 2D). Thus, clinical
validation of the proposed solutions is still a matter of debate.
Because of the significant number of papers included in the
review process, only papers published in journals (58.8%) will
be shown in detail in the tables presented here, whereas the full
dataset of articles, including 56 papers from conferences, will be
uploaded as Supplementary Data online.

Application 1: Early Diagnosis

Only 5 papers that deal with early diagnosis were obtained
by following the research criteria of this review (Table1).
Posture detection systems were investigated because symptoms
of postural instability are frequent in the early stage of PD and can
lead to complications from festination in the next phases of the
pathology. Postural sway performance seems to be a biological
marker for prodromal PD (Chen et al., 2014), as it results in an
abnormal quite stance in subjects with untreated PD (Mancini
etal, 2011).

In contrast, Brodie et al. (2014) proposed to analyse new
features extracted from gait, which could represent a biomarker
for PD. Jerk, harmonic stability, and oscillation range measured
by accelerometers on the pelvis and head were significant
measures to distinguish early PwPD when compared to similar
measurements for age-matched healthy control (HC) subjects.
Sant’Anna et al. (2011) also analyzed gait, focusing on both leg
movements and arm swing. They demonstrated that asymmetry
between left and right sides in PwPD is higher than in HC,
particularly for upper limbs. Different indexes for asymmetry
assessment proposed in literature were compared, since this
characteristic results in one of the first motor symptoms of the
disease. Perumal and Sankar (2016) also considered selected
features extracted by gait analysis as possible biomarkers for
early diagnosis of PD, because the features enabled good
discrimination between PwPD and HC. Perumal and Sankar also
analyzed tremor in the frequency domain to differentiate between
Parkinsonian tremor and atypical Parkinsonism. They found that
different typos of tremor occurred in different frequency bands;
particularly, resting tremor occurred during the early stages of
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Entropy, peak freq

Group effect with larger PT for

PCs, PSD ANOVA and t-Test

11 PwPD, 11 HC

Postural task with and
without load (20 s)

400 Hz

Index finger, hand,

ACC

Hwang et al.,
2009

PwPD for all segments (o < 0.001);
Significant main effect of load

forearm, arm, spine

Cc7

modulation of segment tremors

except the C7 ACC; load effect on
the variance of PC1 (p < 0.05);
population effect for variance
explained by PC2 (p < 0.05)

the disease, appearing at the onset in approximately 70% of
patients.

Recommendations and Trends

The research for technological solutions able to address the early
identification of PD is lacking, as demonstrated by the small
number of papers found according to the inclusion criteria of
this review. The works specifically focused on posture, gait,
and asymmetry analyses. The idea is to recognize pathologically
abnormal postures as soon as possible, from the prodromal
phase of the pathology (Chen et al., 2014), to allow intervention
at the earliest stage of PD. To obtain accurate results, the
studies must be validated on a large dataset, involving a wide
number of subjects with PD at only a mild idiopathic clinical
stage of the disease (Brodie et al., 2014). The study of Perumal
and Sankar (2016), for example, aimed to accomplish early
diagnosis, but it involved PwPD with HY stage 2-3, which is an
inappropriate dataset of patients. To investigate the early stage
of the disease, only subjects with minimal motor abnormalities
must be included in the studies (Sant’Anna et al., 2011), even if
recruitment of such patients is difficult because they often do not
go to the doctor until symptoms are already widely manifested. In
this sense, large prevention and screening programs to identify
patients at risk to develop the disease should be recommended
and investigated, promoting the early diagnosis of pathology
with positive and effective consequences on the therapeutic
treatments.

Application 2: Tremor

Tremor is the most common symptom of PD, resulting in 26
papers in this review; it appears in 70% of patients and typically
involves one side only, at the beginning. Resting tremor (RT)
is the prevalent type, and it appears generally when limbs are
not intentionally moved, when patient is sitting (typically pill-
rolling tremor of the hands) or walks with arms dangling.
Other typos of tremor are postural tremor (PT) that occurs
when the body part is contracted against gravity, kinetic or
action tremor (KT) that is task-specific, limited to duration of
performing a particular task (e.g., writing), essential tremor (ET)
which can overlap the frequency band of RT but is associated
with a movement disorder different from PD, and physiological
tremor which is present in healthy subjects. Tremor is a complex
cerebello-thalamo-cortical phenomenon, but the specific role of
the cerebellum in suppressing or generating tremor remains
unclear. As the assessment of tremor is currently based on
the visual examination of a neurologist, technological solutions
able to quantify the gravity of the disease, and efficacy of the
therapy appear to provide an optimal solution that offers low
invasiveness and high reliability (Scanlon et al., 2013). Correct
diagnosis of different tremors is important because the treatment
depends on the specific etiology of each tremor type. However,
currently reported misdiagnosis between RT and ET may occur
in 20-30% of the cases (Ghassemi et al, 2016; Surangsrirat
et al,, 2016). In literature, several works have analyzed the use
of an inertial measurement unit (IMU) and other sensors, such
as electromyography (EMG), which can be complementary in
detecting tremor. These sensors can be attached to different parts
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(6) walking

from a glass of water,
back to the chair

% time frozen ICC: 0.73 inter-rater, 0.71

ICC

# FOG events, % time

frozen

10 PwPD, OFF

state

ACC Shanks 50Hz TUG (5m)

Morris et al.,
2012

intra-rater, 0.93 all raters. # FOG ICC: 0.63

inter-rater, 0.44 intra-rater, 0.78 all raters

of the body (e.g., ankles, shanks, lower back) to measure the
tremor in PwPD (Table 2). Further works proposed alternative
solutions, such as smart clothes (Niazmand et al, 2011) or
wearable glove systems, but the datasets for the experiments
with these gloves were limited (<5 PwPD) so were not analyzed
in this review. In contrast, Bazgir et al. (2015), Kostikis et al.
(2015), and Daneault et al. (2012) proposed smartphone-based
systems that were mounted in a custom-made glove-case from
which the acceleration signal was recorded. Finally, Braybrook
et al. (2016) proposed the Parkinson’s Kinetigraph System, a
wrist-worn device able to collect data continuously over an
extended time period and detect tremor events. Data for tremor
analysis were collected while the subjects performed standard
diagnostic exercises according to UPDRS for assessment of RT,
PT, KT; or conducted a reaching task (Alhamid et al., 2010)
or an action task (Kwon et al., 2016). In these exercises, it is
crucial to recognize different typos of tremors (e.g., essential,
resting, postural, re-emergent) accurately (Thanawattano et al,,
2015; Surangsrirat et al., 2016), analyse the various frequency
bands properly (Hossen et al,, 2010, 2013; Niazmand et al,
2011; Daneault et al, 2012; Hossen, 2012; Rigas et al., 2012,
2016; Pierleoni et al., 2014; Bazgir et al., 2015; Ghassemi et al.,
2016; Kwon et al.,, 2016; Mailankody et al., 2016; Zhou et al.,
2016), and distinguish tremor correctly from other movements
and disorders (e.g., dyskinesias, bradykinesia) (Salarian et al.,
2007b; Rigas et al., 2012, 2016; Pierleoni et al., 2014), as well
as recognize tremor severity accurately (Salarian et al., 2007b;
Daneault et al., 2012; Rigas et al., 2012; Pierleoni et al., 2014;
Bazgir et al., 2015). For these purposes, a frequency analysis was
the most appropriate approach (Salarian et al., 2007b; Daneault
et al.,, 2012; Hossen, 2012; Cavallo et al., 2013; Scanlon et al.,
2013; Pierleoni et al., 2014; Bazgir et al., 2015; Braybrook et al.,
2016; Zhou et al., 2016), and subjects with tremors in their
hands were expected to have higher power in the high-frequency
components (Alhamid et al., 2010). Although most of the works
used signals from accelerometers to calculate features for tremor
assessment, Surangsrirat et al. (2016) and Thanawattano et al.
(2015) proposed the use of angular velocities to calculate the
ratio of temporal fluctuations of tremor signal during resting
tasks and kinetic tasks. This method can differentiate between
PD tremor and ET since PwPD have a potential for higher tremor
fluctuations with PD tremors. Additionally, Salarian et al. (2007b)
used only gyroscope signals to calculate mobility and activity of
the hand during selected time windows.

The principal aim of these works was to find a correlation
between the features measured and the clinical scores assigned by
the neurologists during medical examinations. Good results for
correlation were achieved in several works (Pierleoni et al., 2014),
which primarily used Pearson’s coefficient (Salarian et al., 2007b;
Cavallo et al., 2013; Kostikis et al., 2015; Rigas et al., 2016) and
Artificial Neural Network (ANN) (Bazgir et al., 2015). Several
machine learning approaches, including Support Vector Machine
(SVM) classifier and Random Forest (RF), were implemented to
predict the severity of tremor symptom (Kostikis et al., 2015).
SVM (Hossen, 2012; Ghassemi et al., 2016; Surangsrirat et al.,
2016), ANN (Hossen, 2012), combined Hidden Markov Model
(HMM) (Rigas et al., 2012) Linear Discriminant Analysis (LDA),
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and k-means clustering (Ruonala et al., 2014a) were also used to
distinguish between different groups of people (e.g., PWPD and
HC, Parkinsonian and subjects with ET, or tremor PwPD and
PwPD with other motor symptoms).

An alternative application was proposed by Hwang et al.
(2009), who analyzed whether a light load can suppress tremor
in the distal body segments. They demonstrated that in a PwPD
the tremor is not suppressed, but actually it is enhanced in
the proximal segments. They speculated that the application of
greater inertial loads could reduce the tremor but could also
be dangerous for patients that presented difficulties in balance
and in postural strategies differently from healthy people. A
load was also used by Ruonala et al. (2014a) who demonstrated
that increasing the load to 1 or 2kg decreased the accuracy in
discrimination between PwPD, HC, and ET subjects.

From a different perspective, Fukumoto (2014) studied the
effect of Ldopa treatment on tremor symptoms and found an
increase of mean frequency and decrease of tremor power except
for PwPD affected by motor fluctuations. Additionally, they
found that visual and sound cues on tremor PwPD are able
to improve tremor symptoms, similarly to the pharmacological
therapy, although the Ldopa effect is most effective.

Recommendations and Trends

According to Zhou et al. (2016), the harmonics of real tremor
are not sinusoidal, as those studied in some works to simulate
or control the PD tremor, but they vary over time. Thus, papers
in which only tremor is simulated were not included in the
review. For this reason, inclusion of a large number of PwPD
who are significantly affected by tremor is critical to test the
efficacy of the proposed systems in measuring the severity of the
symptoms (Ghassemi et al., 2016). Indeed, even though some
papers provided for the recognition of tremor severity, difficulties
remain in distinguishing between adjacent levels to define the
correct stage of pathology (Rigas et al, 2012). In addition,
the discrimination between patients with similar symptoms but
different pathologies (i.e., Parkinsonian tremor and ET) (Hossen,
2012; Hossen et al., 2013) is not easy to achieve, but it is crucial for
a correct diagnosis and treatment of the disease (Hossen, 2012;
Thanawattano et al.,, 2015; Ghassemi et al., 2016; Surangsrirat
et al., 2016). For example, although ET patients have a tremor
that is dominant during action and posture tasks, while PD
patients particularly have tremor during rest, it is not a simple
matter to find features that discriminate well between the two
groups. However, power spectral density seemed to be a good
measurement (Hossen, 2012; Pierleoni et al., 2014).

From a technical point of view, uniaxial accelerometers are
not sufficient to adequately analyse the motion, whereas the
use of triaxial inertial sensors can provide a more detailed
investigation regarding tremor detection. Tremors in hands vary
from one person to another and may occur more in specific
axes rather than others (Salarian et al., 2007b; Alhamid et al.,
2010; Thanawattano et al., 2015). Also, the integration of IMU
with other typos of sensors, such as EMG, can improve the
accuracy (Hossen et al., 2010; Hossen, 2012; Ruonala et al.,
2014a,b; Kwon et al, 2016; Mailankody et al., 2016) and the
range of the measurements, so additional different typologies of
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sensors could be investigated with the goal of improving tremor
recognition. Since the intra-individual variability of RT and PT
frequency in the dexterity-dominant lower limb was lower in
PwPD than in HC, and RT frequency differed between upper
and lower limbs in PD, devices able to identify minute variations
which are imperceptible upon expert clinical exam can be used to
differentiate a diseased person from a healthy one (Scanlon et al.,
2013).

Regarding the wearability of the devices, the use of gloves
in which to insert the sensors does not seem to be an optimal
solution because of the disadvantages due to the noises caused
by the electronic parts and the discomfort related to the device,
which is not adaptable to different hand sizes. On this topic, the
solution proposed by Cavallo et al. (2013) seems to be promising
in terms of wearability, portability, light weight, performance,
and ease of use. In addition, the wrist-worn Parkinson’s
Kinetigraph System can accurately detect tremor over an
extended time (Braybrook et al., 2016). Also, smartphone-based
solutions (Daneault et al., 2012; Bazgir et al.,, 2015; Kostikis
et al., 2015) could be an alternative for the measurement of
tremor, even if the need to have a custom-made glove-case
makes the device usable for only a short time. Additionally,
the RT is identified consistently, whereas the measured PT
correlates weakly with the clinical assessment, likely because the
mass of the smartphone affected the dynamics of the hand/arm
system (Kostikis et al, 2015). Added benefits of smartphone
use are the common availability and the fact that smartphones
do not require downloads or memory-consuming installation
because the service provided is web-based. Further, the use of
smartphones can provide for a ubiquitous assessment of the
disease both in the clinical setting and the home environment.
Finally, smart clothes can represent an additional solution
that is comfortable to wear and records data independently
from a laboratory or technical staff for long-term monitoring
(Niazmand et al., 2011).

The systems must be portable and lightweight to avoid
disturbing the characteristics of the tremor; capable of being
mounted to a predetermined anatomical anchor point (Alhamid
et al., 2010; Cavallo et al., 2013); and able to provide timely
feedback to the users. Thus, a wired system (i.e., connected by
USB cable) to implement an offline analysis or a prototype of
large dimensions (Salarian et al., 2007b) must be overcome in
favor of totally wireless devices equipped with algorithms for real-
time data analysis able to process the tremor quantification and
prediction models. For this purpose, dynamic algorithms and
models that allow the examination of the time-varying nature
of tremors (Rigas et al, 2012) in the presence of unscripted
and unconstrained voluntary movements (Cole et al., 2011; Roy
et al., 2011) could be a valid solution. Tremor suppression is
another important problem to improve QoL in PwPD who
suffer with this symptom, and devices able to accomplish
this must be investigated and implemented. For this purpose,
Zhou et al. (2016) obtained crucial information in their recent
study. They affirmed that PD tremor is composed of multiple
harmonics with time-varying amplitude; thus, it is not a mono-
frequency vibration. In particular, the 2nd and the 3rd harmonics
are so strong that they cannot be neglected. Ignoring these

components could lead to development of inefficient tremor-
suppression devices. This phenomenon of harmonic peaks in
higher-amplitude tremors carries also to differential diagnostic
information when different typos of tremors must be recognized
(e.g., Parkinsonian tremor and ET) (Hossen et al., 2010).

Application 3: Body Motion Analysis

The cardinal features of PD are tremor, postural instability,
muscular rigidity, and bradykinesia and/or hypokinesia. Thus,
PD patients are characterized by a worsening of the motor
performance that can be very disabling for them. These
symptoms appear evident in different parts of the body, such
as trunk, and lower and upper limbs. Generally, the symptoms
are assessed by the neurologist during medical examination
through visual inspection, in which the patients are asked
to perform typical tasks described in the motor section of
MDS-UPDRS (MDS-UPDRS III). In particular, for lower limbs
the most investigated tasks are gait, including the disabling
common complication known as freezing of gait (FOG), and
the Timed Up and Go (TUG) test. For upper limbs, the
research focused on finger tapping, alternating hand movement,
pronation/supination, and finger-to-nose movement. Only one
work concerning a multimodal system able to analyse motor
tasks from both upper and lower limbs was found (Oung et al.,
2015). Totally, 90 papers were assessed within this application.
Considering the wide range of impairments related to the body
motion, this application area is divided into five sub-sections,
concerning different body segments or symptoms, which are
named: gait and TUG test, freezing of gait, postural instability,
upper limbs and other symptoms (leg agility, rigidity, and arms
swing).

Gait and Timed Up and Go (TUG) Test

Gait is the most examined task in the studies for the analysis of
motor performance in PwPD (37 papers were included). Motion
capture systems (e.g., ultrasound system, optical system, and/or
forceplates) are the gold standard for motion analysis. These
systems are typically used to assess the parameters characterizing
gait, but they are expensive, unportable, and usable only in
laboratory environments. Recent studies also support the use
of IMUs to assess objectively the movement of PwPD by
demonstrating the validity of IMUs in comparison to motion
capture systems (Del Din et al., 2016; Ferrari et al., 2016; Sejdic¢
et al., 2016). Several studies showed the use of accelerometers
(Stamatakis et al., 2011; Palmerini et al., 2013; Jarchi et al.,
2015; Del Din et al, 2016; Sejdi¢ et al, 2016), gyroscopes
(Fatmehsari and Bahrami, 2010; Grimpampi et al., 2013), or both
methods (Oung et al., 2015; Trojaniello et al., 2015; Ferrari et al.,
2016), placed on different segments of the body (e.g., shank,
thigh, foot, lower back) to measure the performance of gait in
PD patients, in particular to assess both TUG test and long-
distance walking, to distinguish between HC and PwPD during
specific tasks (Esser et al., 2013; Mariani et al., 2013; Del Din
et al., 2016; Table 3). An alternate approach foresees the use
of a smartphone-equipped triaxial accelerometer (Arora et al.,
2014) or a StepWatch worn on the wrist (Schmidt et al., 2011)
to capture the movement of patients during preset gait tests.
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Statistical (e.g., mean, variance, skewness, kurtosis), frequency
(e.g., energy, power spectral density, fundamental frequency),
and spatiotemporal/kinematic (e.g., stride length, TUG time,
stride velocity) features were extracted and analyzed. Step or
stride segmentation were key points for the gait analysis to
recognize heel-strike and toe-off times characterizing the gait
cycle and the complete walk (Barth et al., 2013; Del Din et al.,
2016; Parisi et al,, 2016). The experimental protocols were
principally based on TUG exercise and gait. The TUG test
consisted of standing up from the chair and walking a 3m (or
7 m) distance at a normal speed, followed by a turn of 180° and
walking back, and ending with another turn of 180° and sitting
down on the chair (Salarian et al., 2010; Weiss et al., 2010; Al-
Jawad et al., 2012; Mariani et al., 2013; Palmerini et al., 2013;
Reinfelder et al., 2015). Restricted sit-to-stand (Si2St) task with
feet fixed on the floor without any linear translation movement
(Giuberti et al., 2015); extended TUG test (ETUG) with 10 m
to walk and wide curve trajectory (Caldara et al., 2014); and
Instrumented Stand and Walk Test (ISAW), which is a TUG in
which the phase of standing up and sitting down are not included
(Curtze et al., 2016; Horak et al., 2016), are variations on the
traditional tasks. Alternatively, other works focused on gait tests
on short (Esser et al., 2013), moderate (Schmidt et al., 2011; Arora
et al., 2014), and long distance (Weiss et al.,, 2011), including
180° turns (Mariani et al., 2013; Rahimi et al., 2014); or straight
walking at different speeds (e.g., comfortable, slow, fast) (Salarian
etal., 2013; Del Din et al., 2016); or random walking with initiated
stops and several 360° turns; or basic mobility-related activities
(e.g., lying, standing) and domestic activities (Barth et al., 2013;
Yoneyama et al., 2016). Only Barth et al. (2011) and Oung et al.
(2015) proposed to analyse exercises able to assess foot mobility
(e.g., heel-toe tapping or foot rotation), whereas, Parisi et al.
(2015) proposed a comparative outlook of different tasks: gait,
sit-to-stand, and leg agility. Others (Lord et al., 2010; Rochester
et al., 2010) implemented experimental protocols which include
single, dual, and multiple tasks to analyse the effect of external
cues on gait strategies. Only one work (Salarian et al., 2009)
was focused on turning; it recognized differences between early
PwPD and HC with excellent sensitivity and reliability thanks to
the automatic detection of all turns. The majority of the works
compared the performances of a group composed of PwPD and
a group of control subjects (Barth et al., 2013; Palmerini et al.,
2013; Arora et al., 2014; Oung et al., 2015; Parisi et al., 2015),
and showed that the second group had better results in terms of
time of execution, speed (Horak et al., 2016), regularity, cadence,
symmetry, stride length (Demonceau et al., 2015), amplitude,
and slope (Weiss et al., 2011). Others implemented multi-class
classification to distinguish among HC, PwPD without gait
disturbance, and PwPD with gait disturbance (Tien et al., 2010)
or compared the performance of HC, PwPD, and subjects with
dementia (Yoneyama et al., 2016). Moreover, recent European
research projects, including REMPARK (Cabestany et al., 2013),
PERFORM (Cancela et al., 2011), and CuPiD (Ferrari et al,,
2016), used systems based on wearable IMUs to examine disease
management and assessment with artificial intelligence and to try
to identify the gait and movement of PD disorders.

Recommendations and trends

As with other applications previously analyzed, some works
presented limited datasets, investigating groups that were not
age-matched (Ferrari et al., 2016) and sometimes including other
pathologies in addition to PD (Schmidt et al., 2011; Salarian
et al.,, 2013). Thus, bigger sample sizes are needed to confirm
the significance of the novel gait parameters (Mariani et al,
2013). In several studies, moderate patients (e.g., HY = 2/3,
Palmerini et al., 2013; Yoneyama et al., 2013; Sejdi¢ et al., 2016)
were involved, so the difference in performance between PwPD
and HC are easily identifiable. The recruitment of PwPD in
the first stage of the disease (i.e., HY = 1) should be primarily
investigated to demonstrate the accuracy and the objectivity
of the technological solutions with respect to the traditional
clinical evaluations (Demonceau et al., 2015), aiming to achieve
early diagnosis of the pathology (Barth et al., 2011). Many gait
analysis protocols have been developed to complete the medical
exam of PD patients, but the optimal method remains under
debate (Demonceau et al.,, 2015). Regardless, the use of inertial
sensors placed on different parts of the body seems to be a
promising method for objective estimation of the parameters
of the gait (Barth et al, 2013; Del Din et al., 2016; Ferrari
et al,, 2016). The performance of the inertial sensors is different
from that of commercial pedometers that are less accurate in
quantifying gait performances. Although the TUG test, which
includes turning movements, was analyzed in several papers, and
the importance to classify the different phases with the TUG test
is recognized (Reinfelder et al., 2015), only one work specifically
dealt with the rotation task. This is likely because turning is
not directly measured in UPDRS, and the PIGD sub-score as a
clinical measure of reference has limited compliance (Salarian
et al., 2009). The majority of the papers aimed to distinguish
between the PwPD and HC and compared the spatiotemporal
and frequency features measured during the protocol adopted.
Only a restricted number of studies (e.g., Salarian et al., 2010,
2013; Tien et al., 2010; Parisi et al., 2015) focused on developing
full biomechanics analysis to measure biomechanical parameters,
such as joint range of motion, ankle dorsiflexion, finger flexion,
etc., and investigated the benefit of using such kind of features
in artificial intelligence algorithms. Within the same papers,
different feature selection methods could be examined and
compared; those revealing the best accuracy in distinguishing
between the two groups were selected [e.g., SVM, LDA, RE
odds ratios (ORs), k nearest neighbors (kNN), nearest centroid
classifiers (NCC), t-test]. Parisi et al. (2015) also reported good
results in correlating kinematic features and UPDRS scores,
although the automatic system tends to underestimate the actual
UPDRS scores. The lack of a meaningful correlation might be
due to the relatively blunt nature of UPDRS in assessing PD
symptoms (Yoneyama et al., 2013). Alternatively, Barth et al.
(2013) implemented a step segmentation algorithm based on
Dynamic Time Warping (DTW), which has the main advantage
that the two input series do not need to be aligned in the
time domain, and the error caused by the non-linear relation
of the two series can be avoided. Other papers pointed out
conflicting results, even when starting from identical hypotheses
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(Salarian et al., 2009; Palmerini et al., 2013). For Palmerini et al.
(2013), in fact, temporal measures of PwPD are normal compared
to HC, but patients are characterized by reduced smoothness
and dynamics in trunk movement during gait and turining.
However, the misclassification rate of 22.5% in the early-mild
stage of the disease is high. Further, the separation between
PwPD and HC is not challenge anymore, because an accurate
distinction within the group of PwPD should be achieved to
assess the severity of the pathology at each moment (Barth
et al.,, 2011). This task remains difficult, even though significant
differences between mild and severe PwPD (Yoneyama et al.,
2016), as well as between mild and moderate PwPD (Demonceau
et al., 2015) were seen. Further, Parisi et al. (2015) revealed
the contribution of the sit-to-stand task to distinguish between
patients with slight and mild symptoms and those who manifest
moderate or severe impairments. Finally, for the TUG test,
accelerometer-derived parameters, in addition to test duration,
could represent complementary and objective biomarkers of PD
to assess the pathology progression and therapeutic response
(Weiss et al., 2010). To minimize the invasiveness of the devices
and to improve the acceptability of the systems proposed, it
is important to try to reduce the number of sensor units
using existing biomechanical models and place the devices in
a way that does not interfere with gait (Salarian et al., 2013).
Fatmehsari and Bahrami (2010), for example, demonstrated
that a single gyroscope attached to either shank or thigh is
sufficient to discriminate between PwPD and HC by calculating
non-linear features. Trojaniello et al. (2015) confirmed that a
single IMU placed on the lower back works well for healthy
subjects, but it shows difficulties for impaired gait. This result
was confirmed by Ferrari et al. (2016), who found that shuffling
gait could mask the proper detection of initial contacts and
foot-off events. In contrast, Sejdi¢ et al. (2016) obtained good
results in pathological subjects, as did Del Din et al. (2016),
who affirmed that a single accelerometer on the lower back is
sufficient for measuring gait characteristic, including asymmetry
and variability. Therefore, in pathological situations, the use of
sensors placed on both legs is recommended (Reinfelder et al.,
2015) so that data from left and right sides can be merged for
the final evaluation (Ferrari et al., 2016). A smartphone-based
solution (Arora et al., 2014) or the StepWatch (Schmidt et al.,
2011) can be innovative in terms of wearability because the
sensors are hidden in common tools, and they can accurately
count the strides. However, these solutions do not allow
measurement of clinical features of interest such as stride length,
so a complete analysis of the movement is not possible, and
direct comparison with other systems is not feasible. For future
implementations, it is crucial that the results of the gait analysis
are shown immediately after execution of the test, through the
development of semi-automated operations (Caldara et al., 2014)
or dedicated applications available on smartphones (Ferrari
et al., 2016), to enable real-time gait analysis. The algorithms
should automatically detect all transitions and all turns, showing
differences between HC and PwPD and good test-retest reliability
(Salarian et al., 2010), even if large variations in results are
common due to different walking styles. Although the principal
aim of gait analysis is to quantify the motor performance of the

patients to provide a more accurate diagnosis of the pathology,
gait analysis can be associated with other applications, including
rehabilitation, supporting decision-making (Grimpampi et al.,
2013), biofeedback for gait monitoring, and fall prevention
(Caldara et al., 2014). The use of adequate external cues can
improve the gait stability for early/mild patients, but the cues
become less effective for advanced patients. However, the use
of auditory, visual, and somatosensory cues during single and
dual tasks enhance motor learning in PwPD (Rochester et al.,
2010), so they could reasonably support rehabilitation programs.
Differently, the implementation of dual and multi tasks that
measured selective, divided, and sustained attention, negatively
interfered with the gait (Lord et al., 2010).

Freezing of Gait

FOG is one of the more disabling complications, especially in
elderly long-term, advanced PwPD. Motor blocks are a subtype
of the FOG phenomenon that primarily affect the gait initiation
process. They include delayed release of anticipatory postural
adjustments (APA), hypokinetic APA (reduced scaling), and
bradykinetic APA (abnormal timing), suggesting the existence of
a pathophysiological mechanism that involves both locomotor
networks and cortical areas (Delval et al., 2014). FOG episodes
mainly appear at the gait initiation, when the patient must turn or
when to the patient must pass through narrow spaces. The gold
standard for FOG evaluation is direct or video recorded gait—
even if, often, the FOG questionnaire (FOG-Q) is administered
(Bachlin et al.,, 2009). Worsening coordination during gait is
another feature characterizing PwPD, and is directly correlated
to FOG severity (Mazilu et al., 2016). In the 20 studies included
in this review, IMUs were used alone, with other sensors, or
integrated in different technological devices to improve the
detection of FOG events (Table 4). Force sensors (Djuri¢-Jovici¢
et al., 2014b), EMG (Cole et al., 2011), headsets (Lorenzi
et al., 2015), earphones (Bachlin et al.,, 2009, 2010), ECG and
Galvanic Skin Response (GSR) sensors (Mazilu et al., 2015), and
a portable four-channel wireless electroencephalogram (EEG)
system (Handojoseno et al., 2012, 2013, 2014, 2015) were
the most common supplementary devices used to provide
biofeedback. In contrast, Morris et al. (2013) proposed a validated
method to assess the phenomenon using a computer-generated
animation and reconstructed data coming from IMUs. Capecci
et al. (2016) used a smartphone at the hip joint to record gait
data to detect FOG events. Mazilu et al. (2016) proposed to apply
IMU on the wrist since movement on the upper limbs is also
highly correlated with FOG events, and the wrist seems to be
a convenient place in terms of unobtrusiveness, usability, and
acceptability. Furthermore, results from both ankles and wrist
are minimally better than those obtained by ankles only. To
define a parameter to assess FOG episodes, Moore et al. (2008)
analyzed the frequency characteristics of vertical leg movement
during walking. They introduced the Freeze Index (FI), the ratio
between the power of the gait signal in the “freeze” band (3-
8 Hz) and the power in the “locomotor” band (0.5-3 Hz). When
experiencing a freezing episode, a “trembling” of the leg was
observed, reflected in the power spectra of vertical leg movement
with high-frequency components in the band 2-6 Hz. Zach et al.
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(2015) also adopted the FI to identify freezing episodes by
analyzing FOG-eliciting tasks as rapid full turns and walking
with rapid short steps. They obtained low specificity due to
false positive events detected by the sensor but not revealed by
video analysis. Additional information about step cadence can
improve sensitivity and specificity for FOG event recognition,
avoiding false event detection (Capecci et al., 2016). Tripoliti
et al. (2013) instead proposed to measure the entropy related
to the freezing event, since it is a nonlinear parameter, as is the
FOG disorder. Djuri¢-Jovici¢ et al. (2014b) proposed a novel
method that used the Pearson’s correlation coefficient to define
the “representative stride” and the “normal zone” to separate
normal from abnormal gait, distinguishing also between straight
and turning strides. Alternatively, Cole et al. (2011) proposed
a dynamic neural network to better capture the time-varying
nature of FOG, because the method enabled them to learn how
the features representative of FOG events can change over time.
Differently, Handojoseno et al. performed frequency and wavelet
analysis to extract significant features from EEG signals and then
used MLPNN to detect FOG episodes with accuracy ranging
between 70 and 80% (Handojoseno et al., 2012,2013,2014, 2015).
Vibration and auditory biofeedback methods were implemented
(Béchlin et al., 2009, 2010; Mazilu et al., 2014) to provide a cue
to alert the patient about the occurrence of a FOG event. This
kind of intervention can be helpful in preventing falls due to FOG
episodes, with the aim to reduce major complications for the
PwPD both in terms of health and costs. To allow the biofeedback
intervention and the alert to the patient, a real-time processing
of data is needed (Bachlin et al.,, 2009; Mazilu and Hardegger,
2012; Mazilu et al., 2014). Recently, in European projects (e.g.,
REMPARK, CUPID), systems for PD that include the detection
and intervention of FOG episodes (Cabestany et al., 2013; Mazilu
et al, 2014, 2015, 2016), propose devices such as GaitAssist, and
are equipped with two IMUs and a smartphone for active support
of gait initiation, turns, and response inhibition, were developed
(Mazilu et al., 2014).

Recommendations and trends

As with the other applications, the number of patients involved
in these studies is not very high. Furthermore, not all the patients
experienced FOG during experimental phases, so the datasets are
further reduced. To avoid this issue, the systems also could be
tested at home, at convenient times during the day, to capture a
higher number of FOG events. However, the implementation of
along experimental protocol that includes cognitive and physical
dual-tasks seemed to be able to trigger FOG episodes also in
the laboratory setting (Capecci et al.,, 2016). Nevertheless the
major difficulty for FOG detection is its unpredictability, so it
would be preferable to test the wearable sensors in everyday
situation and not while performing structured test (i.e., TUG
test). Moreover, the large variability between clinicians suggests
that caution should be used when comparing subjective ratings
across centers (Morris et al.,, 2012). The majority of the works
implemented experimental protocols that included all the part
of freezing (i.e., starting, turning and narrow) while only some
works (Handojoseno et al., 2012, 2013, 2014, 2015; Morris et al.,
2012, 2013; Zach et al., 2015; Capecci et al., 2016) applied

TUG test for FOG detection, which is a test that not include
“narrow” tasks. Generally the number and the duration of the
freezing events were assessed, analyzing the gait of the patient
directly or through a video recorded, but the reliability results
of clinical assessment for these features were moderate (Morris
et al., 2012; Tripoliti et al., 2013). Percent time frozen seemed
to be a reliable metric of severity for both clinical and objective
measures (Morris et al., 2012). In addition, the measurement of
entropy allowed a detection of FOG events. Furthermore, this
method is independent from the type of movement of the patient
and the condition of the experiment; it is not based on thresholds
and permits the detection of FOG events within longer periods of
time while the patient performs daily activities (Tripoliti et al.,
2013). Alternatively, the implementation of wavelet transform
can have the advantage of providing localization in time and
spectral domains, which is important for localizing the FOG
events. Furthermore, because the use of a video recording to
assess FOG is not always possible, different solutions should
be found. The study of Morris et al. (2013) that employed
computer-generated animation reconstructed by IMU data could
be a promising solution, allowing for monitoring outside of the
clinical environment, despite the complexity of this approach
and the fact that motion artifacts in the computer-generated
representation can affect event detection. Finally, at present, the
use of videos seems to be mandatory to obtain good sensitivity
and specificity, by establishing a FI (Moore et al., 2008) and
thresholds to detect FOG events, because the use of IMU sensors
only seems to identify several false positive detections (Zach et al.,
2015) that should be avoided. The system for FOG detection
should be user-specific (Capecci et al., 2016) and in real time,
implementing algorithms able to effectively reduce the delay
tolerance between FOG event detection and system reaction to
promote a timely intervention (Béchlin et al., 2009) that could
help the PWPD to avoid FOG episodes. Moreover, feedback
should be context-aware, because continuous cueing is not
appreciated by patients (Béichlin et al., 2010) and the efficacy of
cueing could decrease over time. An interesting challenge would
be freezing prediction instead of freezing detection (Mazilu
et al., 2015), whereas possible integration of IMUs with other
sensors to measure physiological parameters could provide a
more complete analysis of patients’ status related to the detection
and prevention of FOG episodes, even if current results have
limited accuracy (Handojoseno et al., 2012, 2013, 2014, 2015;
Mazilu et al., 2015). Finally, the system should be usable outdoors,
during unconstrained and unscripted activities (Cole et al., 2011),
and be highly compact (Lorenzi et al., 2015), unobtrusive, light
weight, easy to use, and meet the requirements of acceptability
(Tripoliti et al., 2013; Capecci et al., 2016). In this direction,
a smartphone-based system (Capecci et al., 2016) could be a
valid solution that could allow patients to use the system during
everyday activities and in the community, without discomfort.
Also, the solution proposed by Mazilu et al. (2016), which looks
for wrist sensors that can be included easily in a smartwatch
or wristband, could represent a valid solution in terms of on-
body acceptance and accessible technology, despite the fact that
it comes at the cost of an increased number of false positives and
a slight increase in detection latency.

Frontiers in Neuroscience | www.frontiersin.org

28

October 2017 | Volume 11 | Article 555


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Rovini et al.

Wearable Sensors for Parkinson’s Disease

Postural Instability

Postural instability is one of the four cardinal motor symptoms
in PD, resulting in 14 papers in this review. The pull test
is the main clinical examination to assess postural instability,
as suggested by MDS-UPDRS, even if the equilibrium score
derived from the Sensory Organization Test (SOT) is largely
used. Postural instability accounts for 70% of PwPD that fall at
least once each year, resulting in an increase of hospitalization
and decrease in QoL (Ozinga et al,, 2017). Postural control
problems cause impairments in PD patients from the early
stages of the disease (Gago et al, 2015; Masu et al, 2016).
Furthermore, in pharmacologically untreated subjects (Mancini
et al., 2011), prediction of postural instability enables prediction
of future problems (Palmerini et al., 2011) and slows disease
progression (Hubble et al., 2016) (Table 5). Sensor-based systems
can improve PD diagnosis both in early disease, by measuring
parameters not accurately identified by traditional tests (Hubble
et al, 2016), as well as by distinguishing between mild and
moderate disease stages (Masu et al., 2016). Pasluosta et al.
(2015) proposed a new methodology to estimate postural sway
to obtain unbiased and automated score prediction comparable
to that rated by the physician. Gago et al. (2015), instead, tried
to characterize the postural stability response to normal stance,
Romberg test, and Ldopa treatment. PD patients showed high AP
postural sway, increased jerk, and low responsiveness to Ldopa,
correlated to their gait disturbance, resulting in the ability to
identify PD in subjects at the early stage. Contrarily, jerk was
slightly close to statistical significance in Hill et al. (2016). In
a recent work, Baston et al. (2016) proposed the use of IMUs
to quantify postural strategy and sway dispersion among HC
and PwPD at different disease stages. Postural strategy was not
affected by disease stage, but it was significantly lower in ON
compared to OFF medication, and it was associated with self-
perception of balance, while sway dispersion was significantly
larger in the more severe PD group compared to the mild. In
contrast, Mancini et al. (2016) focused on the APA prior to gait
initiation and the first step, a state that is not readly observable to
the naked eye. The system resulted in high test-retest reliability,
both for HC and patients, and data measured from IMUs were
highly correlated with those derived by validated systems. The
peak of the ML acceleration during APA resulted in the most
sensitive measure to the disease, with an amplitude significantly
smaller in PD OFF compared to controls. Alternatively, Mellone
et al. (2011) determined that since the tremor which is very
common in PwPD can affect the identification of postural
sway, appropriate techniques of filtering had to be adopted to
remove tremor and preserve local dynamics without sacrificing
frequency bandwidth. Additionally, the instrumented balance
test can be adopted to classify PwPD on the basis of motor
subtypes (i.e., dominant tremor or PIGD) (Rocchi et al., 2014)
with high accuracy regarding clinical scales. Different motor
subtypes show differences in biological and pathophysiological
aspects, so their identification can be useful in large clinical
studies and to promote accurate personalized therapies. Yelshyna
et al. (2016) explored the mechanism underlying compensatory
postural adjustments (CPA) by implementing a kinematic and
time-frequency analysis based on IMU data during a virtual

reality scenario to find differences between PwPD ON, PwPD
OFF and HC, to evaluate Ldopa effects. The lower band (LB)
reflected the effect of Ldopa, while the higher band (HB) was
responsible for the reaction to visual input-changing scenario;
PwPD OFF showed abnormal CPA with respect to PwPD
ON and HC in both bands. Finally, Hill et al. (2016) were
the first to investigate the relationship of vision and visual-
cognition with postural control in PwPD compared to HC.
Contrast sensitivity, visuo-constructive ability, and visuo-spatial
ability were associated with postural control impairments in PD
compared to age-matched HC. Visual biofeedback is important
to maintain equilibrium, stability, and vertical body orientation,
contributing also to a significantly decreased percentage of falls
in PwPD in response to clinical pull test (Caudron et al., 2014).

Recommendations and trends

Even if the retropulsion test is included in the MDS-UPDRS 3.12
item to evaluate the postural stability, only two studies included
in this review attempted to replace this test (Caudron et al., 2014;
Hubble et al., 2016), probably due to methodological difficulties.
The accelerometer-based approach makes it easier to quantify
postural impairments compared to the conventional protocol
with force plates, which are more expensive and not portable
(Palmerini et al., 2011; Mancini et al., 2016; Ozinga et al., 2017).
APA and postural sway, both in ML and AP directions, are the
most analyzed features, able to differentiate between PD patients
and HC (Ozinga et al., 2017) in the early stages of the disease
(e.g., APA disruption can precede the compromission of the step
execution) (Gago et al.,, 2015; Mancini et al., 2016), as well as
between mild and severe PD groups (Baston et al., 2016) for
differential diagnosis or between ON/OFF states for the advanced
patients (Baston et al., 2016; Yelshyna et al., 2016). Alternatively,
only one work took into account atypical parkinsonism (i.e.,
vascular PwPD) other than idiopathic PD patients (Gago et al,,
2015), analyzing the response to L-dopa therapy. Additional
sensory and attentional demands included in the experimental
protocol can be helpful to identify the optimal features for
disclosing postural differences between PD and HC subjects
(Palmerini et al., 2011).

Upper Limbs

According to literature, several groups have studied the use of
wearable sensors for the analysis of upper limb motion (15
papers were included). In particular, two main approaches have
been followed: the use of simple sensors (e.g., on fingers or
wrists) or the integration of the sensors in a sort of glove (e.g.,
TG® medical glove and MiMed smart glove) (Table6). An
alternative solution was proposed by Cavallo et al. (2013) who
developed a wireless wearable modular device called SensHand
equipped with IMUs placed on the wrist and on the distal
phalanx of thumb, index, and middle fingers. The device was
not a traditional glove in terms of wearability and modularity,
but an integration of inertial sensors. The use of a combination
of inertial sensors adequately placed on arms, forearms, hands,
and finger segments allowed the measurement of a wide range
of parameters both in spatiotemporal and frequency domains.
EMG signals, only, were analyzed by Robles-Garcia et al. to
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assess the variability of the movements in finger tapping (Robles-
Garcia et al., 2013). In most of the works, the examiners asked to
the patients to perform standard task items described in MDS-
UPDRS III (e.g., alternating hand movements, finger-to-nose,
finger tapping) for upper limb motion analysis (Fukawa et al.,
2007; Okuno et al., 2007; Patel et al., 2009; Yokoe et al., 2009;
Hoffman and McNames, 2011; Cavallo et al., 2013; Robles-Garcia
et al., 2013; Jia et al., 2014; Delrobaei et al., 2016; Djuri¢-Jovicic
et al., 2016; Eskofier et al., 2016). The papers looked for the
correlation between the features extracted and the clinical scores
assigned by clinicians on the UPDRS (Okuno et al., 2007) using
Pearson (Robles-Garcia et al,, 2013) or Spearman correlation
(Delrobaei et al, 2016; Djuri¢-Jovici¢ et al,, 2016), multiple
linear regression (Cavallo et al, 2013), ANN (Fukawa et al,
2007), quadratic, and nearest mean scaled classifiers (Djuric¢-
Jovici¢ et al., 2014a), and they presented a good data separation
in clusters between different groups of subjects (Cavallo et al.,
2013; Djuri¢-Jovidi¢ et al., 2014a; Delrobaei et al., 2016). For
example, Cavallo et al. (2013) showed better performance in
terms of frequency, velocity, and amplitude of movement for
HC compared to PwPD, whereas Patel et al. (2009) provided
analysis of bradykinesia and dyskinesia with low estimation error
values. Also, Eskofier et al. (2016) performed an assessment of
bradykinesia, but they introduced the use of deep learning instead
of machine learning techniques as a promising method to analyse
wearable sensor data. Bradykinesia also was objectively assessed
by Delrobaei et al. (2016), who provided for a new index (i.e.,
BKI score) to express a quantification of this symptoms in upper
limbs, according to UPDRS. Djuri¢-Jovici¢ et al. (2014a) defined
areas and volumes related to tapping activities that can be used to
quantify the movement vigor and highlight their decrement over
time, which is typical for PWPD caused also by fatigue (Djuri¢-
Jovici¢ et al., 2016). Yokoe et al. (2009) proposed the opening
velocity in the finger-tapping task as a novel parameter for
the discrimination of PD patients, whereas Okuno et al. (2007)
focused on contact force in finger tapping to predict the level of
the pathology. A different approach was proposed by Barth et al.
(2012), who used a Biometric Smart Pen (BiSP) equipped with a
triaxial accelerometer, finger grip force during holding the pen,
refill force, and vibration sound, able to measure handwriting,
drawing, and gesture movements on paper or in free air.

Recommendations and trends

The clear trend in terms of wearable technology is the
development of wireless, unobtrusive, quiet, and washable
devices that are easy to use without a technicians support
(Cavallo et al.,, 2013). Triaxial inertial sensors seem to be
preferable rather than uniaxial accelerometers (Patel et al., 2009)
because the former provides the possibility to analyse the motion
not only in a plane (e.g., AP plane, sagittal plane) but in a
complete 3D space. In addition, combining results obtained by
sensor pairs to characterize motion patterns that correspond to
normal activity and detect their transition into abnormal ones
is easier using triaxial inertial sensors. Further, to acquire data
able to finely measure the motion of the hand and fingers, a
high sampling frequency of the sensors is needed (e.g., 100 Hz)
(Patel et al., 2009; Hoffman and McNames, 2011; Cavallo et al.,

2013), instead of low acquisition rate (Jia et al., 2014). Features
that are extracted with Continuous Wavelet Transform (CWT)
(Djuric¢-Jovicic¢ et al., 2014a) or entropy (Patel et al., 2009), even
if they can discriminate well between PwPD and HC, can be
difficult to interpret for clinical staff. Biomechanical measures
such as velocity, frequency, or displacement of movements
(Yokoe et al., 2009; Cavallo et al., 2013; Delrobaei et al., 2016)
provide results that are more appropriate, easier to understand,
and more similar to the assessment required by MDS-UPDRS.
Halts and hesitations are important parameters, as well, to
evaluate the severity of the diseases for tasks such as finger
tapping, but no study has proposed their exact calculation
based on inertial signals. The calculation of indexes able
to quantify the severity of PD symptoms, such as the BKI
score for bradykinesia assessment (Delrobaei et al., 2016), are
encouraging, because the development of such indicators could
overcome the issues of subjectivity and inter-rater variability that
currently afflict the diagnosis of the pathology. Furthermore,
the implementation of these indexes could assist with home
monitoring and personalized assessment and treatment of the
symptoms. Further, some features can have a potential use to
achieve optimal stimulator settings for DBS, a technique widely
used in PwPD, especially in advanced stages of the disease
to improve and slow the symptoms of the pathology. Even if
DBS effects result in high inter-subject variability, and different
DBS settings show high intra-subject variability, the EMG
features proposed by Rissanen et al. (2015) could detect motor
symptoms that kinematic measurements or clinical evaluation
cannot detect, and they can help the clinicians in arriving at
optimal DBS settings more quantitatively. To obtain predictive
values from motion analysis, Hoffman and McNames (Hoffman
and McNames, 2011) proposed a comparison between different
adaptive filtering algorithms: least mean square and Kalman filter
show the best results in predicting angular velocities and angular
values of the movements performed by the patients.

Other Symptoms: Leg agility, Rigidity, and Arms
Swing

A task specifically requested by the UDPRS scale for motor
evaluation of lower limbs is the leg agility task (LA). It consists
of raising the foot from the floor as fast as possible, starting
from a sitting posture, for 10 repetitions. A wide number of
features can be measured by placing an inertial sensor on each
thigh and analyzing this exercise (Giuberti et al., 2014; Parisi
et al., 2015), because thigh inclination and heel elevation are
highly correlated, as demonstrated by comparing results from
the sensors with those of an optoelectronic system. A good
correlation emerged between the extracted features and the score
assigned by expert neurologists on the UPDRS scale. The use of a
wireless body sensor network (BSN) makes the proposed system
directly integrable into IoT systems.

Rigidity is one of the four cardinal symptoms in PD,
but uncertainty exists about the best method to evaluate it.
Rissanen et al. (2009) proposed to measure the dynamic muscle
contraction and distinguish between PD patients and HC by
analyzing EMG and acceleration signals acquired during elbow
flexion and extension movements. The results showed that
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these dynamic measurements can be informative for assessing
neuromuscular dysfunction in PD, even if the accuracy in
assessing the patients and the controls was not very high,
especially considering that Parkinsonian subjects had low scores
in the UPDRS scale for rigidity, finger tapping, and tremor tasks
(Table 7). According to the MDS-UPDRS item 3.3, the rigidity
should be assessed during passive movements, so methodological
difficulties can occur in measuring the rigidity response of PD
patients using wearable sensors. This could be responsible for the
very limited number of papers found about the measurement of
this impairment.

The assessment of the arm swing using ultrasound-based
motion analysis during treadmill walking is useful to identify
PwPD, particularly when they are subjected to dual tasks, as well
as in response to adaptation of the pharmacological treatment.
Specifically, asymmetry indexes based on angular amplitude of
the movement calculated for both of the arms were analyzed
and compared by Sant'/Anna et al. (2011), resulting in good
discrimination between PwPD and HC in the first stage of the
disease.

Application 4: Motor Fluctuations and
On/Off Phases

Levodopa (Ldopa) is the most common pharmacological therapy
adopted by PwPD. It is a treatment able to partially reactivate
the neural connections that control the temporal patterns
responsible for performing the activity, because Ldopa is
converted to dopamine, which is lacking with the progression
of the pathology. Also, several side-effects are caused by
Ldopa therapy, particularly dyskinesias (referred to as Ldopa-
induced dyskinesias or LID), and discrimination between these
movements and voluntary motion is difficult to achieve using
wearable sensors. PD patients in mid-stage and advanced disease
often suffer from motor-fluctuations which represent a severe
motor disorder that negatively influences health-related QoL
in those patients. Several papers exist in literature about the
use of devices based on inertial sensors to monitor the motor
fluctuations that affect PwPD, especially in the late stage of the
pathology and to evaluate therapy response (12 papers were
included in the review). Accelerometers and gyroscope MEMS
were placed on different body segments (e.g., wrist, upper arm,
thigh, shin, foot, trunk) and combined with other sensors (e.g.,
EMG or ECG) as reported in Table 8. To monitor the fluctuations
that can appear during the day in a patient, both linear and
nonlinear features were analyzed. Patel et al. (2009) proposed for
monitoring of motor fluctuations; dyskinesia and bradykinesia
assessment; and measurements of the intensity of acceleration,
modulation, rate, regularity, coordination between right and left
sides, and entropy in a continuous monitoring. Cancela et al.
(2011), instead, focused on spectral analysis, showing that the
power spectrum in PwPD is wider than in HC, and the power
in the main peak moved to different frequency bands, generating
new peaks with a significant power. Sama et al. (2012) also
focused on the spectral analysis of the accelerometer signal,
defining frequency thresholds able to identify if a patient suffers
from dyskinesia, avoiding false positive detections, similarly

studied by Pérez-Lopez et al. (2016). Further, they provide
for an ON/OFF state algorithm detection, based on stride
characterization during walking, since OFF states results in lower
amplitude in both temporal and frequency domain. To evaluate
the pharmacological therapy taken by the patients, instead,
Ruonala et al. measured ECG-derived parameters both in time
and frequency domain, demonstrating that some parameters
effectively decrease in a significant way, between off and on
medication (Ruonala et al., 2015). Hssayeni et al. (2016) focused
on signal power, jerk, entropy, peak-to-peak, and correlation
coeflicient and developed a semi-supervised clustering approach,
k-means based, to automatically assess the ON/OFF medication
states of PwPD. Finally, Ramsperger et al. (2016) measured
dyskinesia as the ratio of the angular rate around the z-axis
over the angular rates lying within the xy-plane, as measured by
the triaxial gyroscope sensor within the SENSE-PARK European
research project. The previous features were extracted following
specific experimental protocols that included standard diagnostic
exercises according to the UPDRS scale such as finger-to-
nose, tapping, sit-to-stand, walking, stand-to-sit, finger tapping,
alternating hands movements, heel tapping (Patel et al., 2009;
Rissanen et al., 2011); or allowing subjects to do everyday free
activities (e.g., walking, reading, eating) (Ramsperger et al., 2016);
or prescribing specific daily activities (e.g., cutting food, dressing)
Sama et al. (2012) (Hssayeni et al., 2016); or permitting a
combination of both typos of movements (Pastorino et al., 2011;
Rahimi et al., 2011; Tsipouras et al., 2012) eventually with some
restrictions (e.g., subject seated) (Tsipouras et al., 2011). The aim
of these studies was to identify different motor states (Patel et al.,
2009; Sama et al., 2012; Hssayeni et al., 2016); quantify the efficacy
of treatment (Ruonala et al., 2015) and DBS (Rissanen et al.,
2011) in PD to assess the severity of bradykinesia (Pastorino et al.,
2011), dyskinesias (Pérez-Lopez et al., 2016; Ramsperger et al.,
2016), and LID (Tsipouras et al., 2011); and to manage them
(Tsipouras et al., 2012). For this reason, permitting the use of
the system at home in an unsupervised environment, at times,
is important (Pastorino et al., 2011; Ramsperger et al., 2016).

Recommendations and Trends

The study and identification of motor fluctuations in PwPD is
a challenge in the long-term management of the pathology. The
OFF states can appear during the day, when the effect of the
drugs consumed by patients is reduced and the severity of the
symptoms comes out or re-emerges. When a patient is in the
OFF phase, the patient’s condition can be considered critical,
and the patient can be subject to the risk of falls, FOG events,
LID, significant tremor, and general difficulties in performing
daily activities. Commonly, this situation is not manifested when
a patient is under medical examination in a hospital or in
ambulatory monitoring, so the ability to control the subject
at home throughout the day is essential to identify and to
prevent, if possible, these critical events. The pharmacological
treatment most commonly used for PD is based on Ldopa. This
drug effectively holds off the motor symptoms of the pathology
(Ruonala et al., 2015), but at the same time, it can be responsible
for side effects such as LID that, in turn, can be very disabling
for PwPD and predictive for risk of falls (Ramsperger et al,
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2016). An adequate monitoring of LID is needed to adjust the
pharmacological treatment followed by the patients and ensure
the benefits derived from an optimal drug therapy (Pérez-Lopez
et al,, 2016). However, the detection of LID severity, particularly
for slightly impaired patients, is not easy to obtain (Tsipouras
et al, 2011). Because of the lack of objective methods for
quantifying the efficacy of treatment in PD, new strategies should
be implemented (Rissanen et al., 2011; Ramsperger et al., 2016).
Since the border between ON and OFF depends on the stage of
the disease and on the patient, thresholds that best distinguish
both motor states in a certain patient are not expected to be
the best thresholds for another patient (Sama et al., 2012). The
inter-individual differences between patients, in fact, can lead
to different responses both on therapy treatment and motor
states. To date, the best results in identifying different motor
states are restricted to patients with a great improvement in
tremor and bradykinesia from medication OFF to ON stage
(Hssayeni et al., 2016). Long-term experimentations in home
settings appear necessary to obtain valuable data that allow an
accurate assessment of ON/OFF motor states in PwPD and
dyskinesias (Ramsperger et al., 2016).

Application 5: Home and Long-Term
Monitoring

To date, as clinical scales are the gold standard for in-clinical
setting assessment of PD, the use of patient-completed symptom
diaries is the current gold standard for the home monitoring
of the pathology (Fisher et al., 2016). Recent studies proposed
the use of commercial devices such as the Microsoft Kinect
sensor (Paredes et al., 2015) as a low-cost solution to assess the
movement of Parkinsonian patients, not only in clinical settings,
but also at home. Nevertheless, the accuracy of these systems
can be considered good in the measurement of spatiotemporal
features for gross movements, but it is not acceptable compared
to validated motion capture systems, which are the gold standard
for fine movement analysis of actions such as hand clasping or
finger tapping, which is required in the MDS-UPDRS scale for
PD severity evaluation.

The concept of monitoring patients in their own homes is
the future trend in terms of long-term monitoring, instead of
the typical ambulatory monitoring proposed in previous works
(Salarian et al., 2007a), even if with good results. Recently,
the European Committee has emphasized this direction, as
demonstrated by the grant of different projects for home
monitoring. PERFORM, for example, consisted of design,
development, validation, and exploitation of a multi-parametric
system for the long-term, continuous, and effective assessment
and monitoring of motor status in PD using the PERFORM
WMSMU, a wearable multi-sensor monitoring unit (Tsipouras
et al, 2014). The system aimed to allow the physicians to
monitor and detect changes in the symptomatic behavior as
quickly as the changes appear (Cancela et al., 2010). Also, the
European research project CuPiD looked for home environment
applications. In particular, within this project, a system composed
of IMUs and smartphone-based application was developed with
the aim to provide an efficient gait training application at home

for PwPD (Ginis et al., 2016). They system gave real-time
measurement of gait, auditory biofeedback on spatiotemporal
gait parameters, and rhythmical auditory cueing to prevent or
overcome FOG episodes. The system was able to improve gait and
balance in PwPD in a more effective way than traditional home-
based gait intervention as well as follow-up controls. Moreover,
it appeared well-tolerated and user-friendly for PwPD, even for
those who were unfamiliar with a smartphone. The systems
proposed in literature (14 papers included in this review) for
monitoring and managing the development of the disease at
home are equipped with triaxial accelerometers and gyroscopes,
MEMS or EMG devices, placed on different body segments (e.g.,
wrist, ankle, waist, thigh, shin) for a full wearable system that
did not impose limitations to patients’ movements (Table9).
The data logger was required to be portable and multifunctional,
and a robust control on the device was adopted to inform the
patient about the treatment program or to allow the sending of
emergency calls if needed (Tsipouras et al., 2014). Alternatively,
Cook et al. (2015) proposed the CASAS Smart Home, in which
sensor data from ambient sensors are added to wearable sensors
and smartphone. The system included a large number of sensors,
but it allowed extraction of a considerable number of features,
revealing differences between tasks performed by HC and PwPD
and providing an automatic classification of end users between
HC, subjects with mild cognitive impairment (MCI), and PwPD
with or without MCI. To control the development of the disease,
different approaches are adopted, as reported in literature. In
some works the patients are asked to perform standardized
motor tasks only, as those described in the motor section of
MDS-UPDRS (e.g., quiet sitting, finger tapping, finger-to-nose,
alternating hand movements, heel tapping, walking) (Patel et al.,
2009; Jaywant et al.,, 2016). Other works required instead the
performance of ADL or similar common everyday tasks (i.e.,
preparing snacks, eating, reading, writing, using of Internet,
conversing with someone) (Cancela et al.,, 2010; Rahimi et al.,
2011; Khan et al., 2014; Lambrecht et al., 2014; Cook et al., 2015;
Fisher et al., 2016), whereas further works aimed to continuously
monitor the patients (Pastorino et al., 2011; Roland et al., 2013,
2014; Wallén et al, 2014), eventually even during the night
(Fisher et al., 2016). In terms of measurements, a wide range
of features were extracted for long-term monitoring at home,
including statistical and frequency features, gait parameters,
Fourier coeflicients, and many others.

The system proposed by Fisher et al. (2016) was composed
of wrist-worn accelerometers to acquire data in laboratory and
home environment and ANN to compare the sensor data with
the diaries of patients as self-reported. Diaries and clinician-
rated assessments were compared. High specificity both in
laboratory and at home was seen for dyskinesia, but with low
sensitivity at home, perhaps because the system is based on
wrist-worn accelerometers. Thus, dyskinesia that can occur in
other body segments cannot be assessed. High correlation was
found between sensor data and diaries regarding the amounts of
time in a given disease state. However, since the ideal PD home
monitoring system should be real time and adaptable, and in light
of the information obtained, the real-time evaluation with the
proposed sensor system is not feasible. A different analysis was
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conducted by the research group of Roland et al., who pointed
out the differences between PwPD and HC, but also between
genders on the basis of features extracted by EMG signals,
and found significant dissimilarities (Roland et al., 2013, 2014).
Finally, Jaywant et al. (2016) studied the efficacy of home-based
gait observation training to enhance walking in PD. Objective
changes in gait did not result, but an increased self-perceived
mobility was reported. Since this aspect is evaluated through
the administration of PDQ-39 mobility subscale, it is possible
that accelerometers did not measure the kinds of functional
improvements perceived by the patients and expressed in the
clinical scale. Furthermore, the system was feasible and easy to
understand and to use.

Recommendations and Trends

The principal aim of the home monitoring is to provide an
optimal management of PD. According to literature results, this
can be done by observing the development of the pathology
through the analysis of data acquired by wearable sensors, which
seem to be the best type of devices to adopt. The implementation
of a Smart Home, in fact, lowered the users’ acceptance of
the technology and resulted in an invasive system that did not
provide a sufficiently high accuracy in observations and also
measured numerous irrelevant features (Cook et al., 2015).

To obtain a useful monitoring system, the clinicians should
be able to interact remotely with patients in the home
setting, to configure the sensor nodes for the application at
hand, and to record annotated data with the possibility of
video conferencing, real-time data visualization, data collection
supervision, annotation tools, and spot checks. Collecting data
in the home setting and remotely monitoring the patient would
allow clinicians to improve quality of care of the patients
while reducing the costs. From a technical point of view, the
system should be able to work in an unsupervised environment
(Pastorino et al., 2011; Roland et al., 2013, 2014; Wallén et al.,
2014; Fisher et al., 2016), provide real-time biofeedback (Ginis
et al,, 2016), feature user-friendly interfaces both for clinicians
and patients, and attend to the real-time transmission of the data
acquired to prevent data loss caused, for example, by absence
of available Internet service, to be acceptable and usable (Fisher
etal., 2016; Ginis et al., 2016; Jaywant et al., 2016).

At the moment, the large variability resulting within subjects
for each task, across tasks for individual subjects, and between
scripted and unscripted tasks is a crucial point to overcome to
ensure the correct assessment of the status of the patient. The use
of alarge number of sensors seems, for instance, the most feasible
solution to capture the wide range of movement patterns adopted
by PwPD to perform required tasks (Rahimi et al., 2011). On
the contrary, to address acceptability and usability requirements,
a reduced number of sensors is more appropriate, as with the
wrist-worn devices proposed by Fisher et al. (2016), which are
usable also in the home environment and do not compromise
the execution of common ADL. Moreover, large dimension and
weight of wearable devices should be avoided because they are
not comfortable (Pastorino et al., 2011).

For future works, the system should be totally automatic and
avoid the requirement that patients must introduce information

manually about medication or meal intake using the developed
GUI, or compile a daily diary (e.g., every half-hour). Finally,
to obtain real-time assessment of the patients’ status, different
machine learning methods were, and the SVM with Gaussian
radial kernel seemed to be the best classifier for detecting PD
(Khan et al., 2014).

DISCUSSION AND CONCLUSIONS

PD is a disabling pathology that affects millions of people
worldwide. Since the disease heavily influences the QoL of
patients, raising the burden of care on their relatives and the
costs for health and care for the society, an optimal solution
for the management and treatment of PD is needed. This paper
focuses on the use of wearable devices for PD applications (early
diagnosis, tremor, body motion analysis, motor fluctuations and
ON-OFF phases, and home and long-term monitoring), to
analyse the current state-of-the-art of existing systems used in
this field and to identify the pros and cons for each work with
the aim to give recommendations for future improvements.
Currently, PD is diagnosed when wide areas of the brain
are already damaged, because the patients go to the clinician
when motor symptoms are evident and begin to influence
their common activities. Thus, the diagnosis is generally made
when the brain neurodegenerative process is already triggered,
whereas to improve the treatment of the pathology, PD should
be diagnosed when it is at the onset. Recent trends show that
it is very important to identify the disease in the early stage,
possibly in the prodromal phase, when the symptoms are not
yet evident, to optimize the management of the pathology and
to improve the quality of care and consequently the QoL for
the patients. Currently, the neurologist diagnoses the pathology
by asking the patient to perform tasks defined in the MDS-
UPDRS (Goetz et al., 2008) and assessing the patient through a
visual examination. The scale adopted is semi-quantitative, and
the neurologist assigns a score between 0 (normal state) and 4
(severe stage of PD) for each task performed and then sums the
scores for all the items. This type of evaluation is subjective,
based on the experience of the clinician, and generally it can
vary between different neurologists and health centers, making
the diagnosis inaccurate or uncertain, at times. Additionally, to
confirm the diagnosis, invasive and expensive nuclear medicine
tomographic imaging techniques are generally adopted (i.e.,
single proton emission computed tomography—SPECT—with
DaTscan) with high costs for healthcare. For these reasons, in
recent years, different research groups have worked to find a
method to objectively measure the motor performance of the
patients, since the motor symptoms are those that generally
lead the neurologist to the diagnosis. The idea is to quantify
the motor skills of the patients, finding a way to measure the
items proposed in MDS-UPDRS III. A method to objectify the
motion can lead to a quantitative diagnosis of the PD, overtaking
the problems linked to the subjectivity and to the inter-rater
and intra-rater variability, thus increasing the accuracy of the
diagnosis. A study (Ghassemi et al., 2016) revealed that the
overall classification rate is not only limited by technical accuracy,
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but also by clinical accuracy. In this direction, different works
proposed well-defined experimental protocol to replicate the
MDS-UPDRS III items, looking for a close correlation between
the parameters measured with the technological solution adopted
and the clinical scores assigned by the neurologist. System cost
and portability are two important characteristics that must be
considered when developing a novel diagnostic tool. To measure
the motor performance of the patients, the most appropriate way
seems the use of wearable devices based on inertial sensors, which
can acquire data with a high sample rate (e.g., 100 Hz, Mellone
etal., 2011; Palmerini et al., 2011; Cavallo et al., 2013; Sejdi¢ et al.,
2016), and examination of the results on board or transmittal of
results to a control station for offline data processing. Thanks
to the recent advances in MEMS technology, this type of device
is portable, light weight, unobtrusive, easy to use, inexpensive,
and accurate in the measurements. Thus, wearable devices with
inertial sensors can represent an optimal solution in healthcare
applications, for use in both clinical infrastructure and the home
environment. Similarly, traditional motion capture tools such
as multi-camera retro-reflective motion analysis systems, while
potentially effective at finely measuring the motor performance
of the subjects, are nonetheless difficult to bring out of a
laboratory setting because of their cost and non-portability.
Although features extracted from 3-D motion data are slightly
more accurate than features extracted from inertial sensor data,
inertial sensors are non-invasive and can be used continuously
and in uncontrolled environments (Sant’Anna et al., 2011).

The possibility to use the system not only in controlled
health infrastructures, but also in unsupervised environments
(homebound setting, over a 24-h cycle) (Pastorino et al., 2011;
Fisher et al., 2016; Ramsperger et al., 2016) and during unscripted
tasks (Cole et al., 2011; Roy et al., 2011) is crucial to improve
the monitoring and assistance for PD patients during common
everyday activities. For this reason, the devices must be tested
fully, not only for the typical items proposed in MDS-UPDRS
III, which are needed for the diagnosis, but also for the ADL
and other tasks of everyday life (Salarian et al., 2007b; Bachlin
et al, 2009, 2010; Mazilu and Hardegger, 2012; Lambrecht
et al.,, 2014; Cook et al.,, 2015; Fisher et al., 2016; Rigas et al.,
2016). Since video recording for long-term monitoring during
free daily activities is not possible (Salarian et al., 2007b), the
use of wearable sensors is the most promising solution for
this purpose, with the plan to eventually implement them into
IoT systems (Giuberti et al., 2014). An alternative approach
in order to avoid high variability in remote monitoring could
be the use of Virtual Reality technologies. They, in fact,
could be an useful tool for an homogeneous approach of
monitoring patients at home and they could be suitable also
for other applications (i.e., rehabilitation) in PD (Dockx et al.,
2016).

Moreover, to guarantee an optimal management during the
home monitoring, it is mandatory to develop and provide user-
friendly interfaces that allow the clinicians and the patients
to stay in contact (Pierleoni et al., 2014), adopting a sort of
telemedicine service that permits exchanging of information,
consulting service, and therapy adjustments. At the beginning,
patients, caregivers and medical staff should be trained to

use this technology, adopting educational strategies that could
increase the level of confidence with the proposed solutions.
Then, with automatic updates to a mHealth server, caregivers
and healthcare professionals can gain insights into overall
wellness of the subjects by analyzing the parameters from
multiple tests performed in a single day or monitoring and
evaluating the evolution of disease by analyzing the trends
in the parameters collected over longer periods of time. In
this direction, the recent EU PD_Manager Project (Rigas
et al, 2016) was targeted the development of a complete
mHealth PD management solution through Microsoft band
and Android application. The real-time (Ferrari et al., 2016)
and automated assessment of the performance of the patients
(Giuberti et al, 2015) is another cardinal point for the
development of an efficacious remote support and monitoring
system. It allows assessment of the status of the patients on
demand, evaluating also the eventual changes due to modification
in pharmacological or rehabilitative treatment, as well as
objective evaluation of the efficacy of the adopted therapy.
In fact, it is widely recognized that self-report assessments
can be limited by patients over- or under-reporting their
difficulties. Hence, more objective tests would greatly benefit the
clinical assessment of PwPD (Hubble et al., 2016). Finally, an
adequate monitoring and assistance system at home could reduce
the number of medical examinations in hospital, promoting
the empowering and the self-consciousness of the PwPD
in the management of their own disease, and stimulating
them to improve the performance in following a personalized
therapeutic pathway in developing specific models for home
monitoring.

As reported in Table 10, a significant limitation of most
studies reported in literature is the small dataset adopted
to test the technological solutions proposed (Figure2D).
The small sample size reduces the generalizability of
the results, which should be verified in a larger sample
(Mariani et al.,, 2013; Palmerini et al., 2013) and, specifically,
longitudinal and large sized validation is needed to prove
clinical applicability (Ghassemi et al., 2016) of the developed
technologies.

Another open issue in the analyzed works concerns the
optimal number of sensors to use for recording patient activities.
The literature has a lack of consensus regarding the optimal
number of sensors, and the optimal site for their placement,
for the assessment of PD motor symptoms (Fisher et al., 2016).
The sensors should guarantee that the subjects can perform the
movements without restrictions. If a reduction in the number
of sensors may lead to loss of potentially relevant information
(Pastorino et al., 2011), to avoid a high invasiveness of the system,
a restricted number of sensors must be used (Salarian et al., 2013),
because using up to three on-body sensors together with a phone
decreases the acceptance of the system (Mazilu et al, 2016).
Thus, a trade-off must be found and adopted. The acceptability
of the system would be considered, particularly for smart home
monitoring and long-term assessment of motor symptoms (Barth
et al,, 2011), when a prolonged use of the devices is required. In
this direction, recent studies (Arora et al., 2014; Kostikis et al.,
2015; Capecci et al., 2016; Ferrari et al., 2016) proposed the use of
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TABLE 10 | Limitations and opportunities.

TYPE Barriers/limitations Challenges and opportunities
Experimental Dataset High number of subjects must be recruited to validate the results of the studies.
Dataset Patients with mild impairments (HY = 1) should be investigated to promote early diagnosis.
Dataset Age-matched controls should be involved, because motor performance vary with age.
Technological Acceptability The system should be developed with consideration for patients’ requirements and needs.

Usability The system should be easy to use and eventually provide user-friendly interfaces both for clinician and
patients.

Portability and unobtrusiveness The system should be wireless and non-invasive for use at home or outdoors without limitations for the
patients. The number of sensors used and their placement over the body should address the trade-off
between accuracy in measurements and obtrusiveness.

Long-term monitoring The system should ensure long-term operation. Long-term battery and low-power solutions have to be
adopted, especially for home-monitoring applications for advanced patients with motor fluctuations.

Measurements The system should provide quantitative, accurate, precise, objective, and reliable measurements of the
symptoms analyzed to actively support the clinician in diagnosis and management of the pathology.
The system should be able to recognize different stages of the disease as well as to evaluate changes due to
pharmacological treatments.

Clinical Availability for use in clinical practice - Accuracy, precision, reliability, and dependability of the system should be ensured.

- Objective support for clinical examination and assessment should be validated, complying with traditional

medical scales.

- Improvements for patients” management should be efficiently demonstrated.

smartphones that are equipped with inertial sensors. This device
is a common technological tool that does not require specific
technical capabilities for the use and is widely accepted and
usable, not only in healthcare infrastructures, but especially at
home, outdoors, and in the community.

Moreover, the features to extract from the inertial signals
and to provide to the clinical staff are a matter of debate.
Generally, they are selected by using statistical techniques such
as ANOVA or the Mann-Whitney test, which can identify
the features that best discriminate between different subjects’
groups (i.e., patients and HC). Even if this is mathematically
correct, the features proposed are not always easy to understand
by the clinicians. It is important, instead, to provide the
clinical staff with a reduced and comprensive set of features
to avoid misleading in clinical practice (Palmerini et al,
2011).

Finally, to provide automatic (almost real time) assessment
of the performances measured, recent works implemented
different machine learning approaches (Kostikis et al., 2015),
such as SVM (Patel et al., 2009), NaiveBayes, kNN, NCC, RF
(Reinfelder et al., 2015), decision tree (DT), and LDA (Barth
et al., 2011; Perumal and Sankar, 2016). All of these classifiers
were used to discriminate between PwPD and patients with
similar symptoms but different pathologies (e.g., subjects with
ET) (Surangsrirat et al., 2016) or to distinguish between PwPD
and HC, or to identify different stages of the disease, or to
evaluate the medication and DBS effects (Rissanen et al., 2011).
In various works, the Principal Component Analysis (PCA)
is implemented as well, generally for the dataset reduction
and feature selection (Palmerini et al, 2011; Parisi et al.,
2015), or for visual inspection analysis. In fact, the reduced-
dimensional system of the principal components could be used

for explorative analysis (e.g., for clustering subjects with the
same behavior) and to detect outlier subjects, which have a
performance very different from the average. This technique
is often used in combination with the discussed machine
learning techniques (Rissanen et al, 2009; Tien et al, 2010;
Giuberti et al., 2015; Parisi et al., 2015; Ghassemi et al,
2016).

Alternatively, a recent work proposed the use of deep learning
as a promising method to analyse wearable sensor data in place of
machine learning approaches (Eskofier et al., 2016). Advantages
of deep learning are (i) there is no need to rely on expert-
defined features that may or may not represent the information
content of the signal that is subjected to classification; (ii) the
analysis procedure resembles what human experts do, since
the whole signal segment is rated with one continuous and
clinical scale-like output; (iii) an adaptation of the network
to an individual patient is possible; (iv) deep learning based
frameworks, in particular, can be expected to produce better
results with the growing amount of data that will become
available. However, to manage these data, high quality labels
are required from clinical experts. Deep learning may provide
higher accuracy than machine learning (e.g., AdaBoost.M1, RE,
kNN, SVM) for correctly classifying symptoms and subjects,
but further and extended studies are required to validate this
theory.

In conclusion, this review provides a wide overview of
the technological solutions currently implemented for PD
applications. The rising idea from literature is to use unobtrusive
and accurate systems that could monitor the disease progression
since its beginning, throughout its development. Appropriate
technological solutions, in fact, could improve the management
of the PD, enhancing the QoL of PwPD, through an early
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and objective diagnosis of the pathology, as well as monitoring
the effects of the pharmacological therapy during the disease
progression.
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