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ABSTRACT

The authors evaluate the performances of 11 AGCMs that participated in the Atmospheric Model In-

tercomparison Project II (AMIP II) and that were run in an AGCM-alone way forced by historical sea

surface temperature covering the period 1979–99 and their multimodel ensemble (MME) simulation of the

interannual variability of the Asian–Australian monsoon (AAM). The authors explore to what extent these

models can reproduce two observed major modes of AAM rainfall for the period 1979–99, which account for

about 38% of the total interannual variances. It is shown that the MME SST-forced simulation of the

seasonal rainfall anomalies reproduces the first two leading modes of variability with a skill that is compa-

rable to the NCEP/Department of Energy Global Reanalysis 2 (NCEP-2) in terms of the spatial patterns and

the corresponding temporal variations as well as their relationships with ENSO evolution. Both the biennial

tendency and low-frequency components of the two leading modes are captured reasonably in MME. The

skill of AMIP simulation is seasonally dependent. December–February (DJF) [July–August (JJA)] has the

highest (lowest) skill. Over the extratropical western North Pacific and South China Sea, where ocean–

atmosphere coupling may be critical for modeling the monsoon rainfall, the MME fails to demonstrate any

skill in JJA, while the reanalysis has higher skills. TheMME has deficiencies in simulating the seasonal phase

of two anticyclones associated with the first mode, which are not in phase with ENSO forcing in observations

but strictly match that of Niño-3.4 SST in MME.While the success of MME in capturing essential features of

the first mode suggests the dominance of remote El Niño forcing in producing the predictable portion of

AAM rainfall variability, the deficiency in capturing the seasonal phase implies the importance of local air–

sea coupling effects. The first mode generally concurs with the turnabout of El Niño; meanwhile, the second

mode is driven by La Niña at decaying stage. Multimodel intercomparison shows that there are good rela-

tionships between the simulated climatology and anomaly in terms of the degree of accuracy.

1. Introduction

The thermal contrast between the Eurasian continent

and the Indo-Pacific Ocean produces the powerful Asian–

Australian monsoon (AAM) system. The AAM region,

spanning from about 408 to 1608E and from 308S to

408N, covers one-third of the global tropics and sub-

tropics (Wang 2006). The economy and society across

the region are critically influenced by the evolution and

variability of the monsoon. The AAM climate exhibits

variability in a variety of time scales (e.g., Webster and

Yang 1992; Hu 1997; Lau and Nath 2000; Wang 2001;

Meehl and Arblaster 2002; Hu et al. 2003; Yu et al. 2004;

Zhou and Yu 2005, 2006; Yang and Lau 2006; Yu and

Zhou 2007; Zhou et al. 2008b). A better prediction of

the monsoon variation may greatly benefit this popu-

lated region.
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Unfortunately, numerical simulation of the AAM in-

terannual variability has been a challenge. For example,

the atmospheric general circulation models (AGCMs)

that participated in the Atmospheric Model Intercom-

parison Project (AMIP) show little predictability in the

all-Indian rainfall (Sperber and Palmer 1996). Kang

et al. (2002a) assessed the performance of 10 AGCMs in

simulating the climatological variations of summer

monsoon rainfall over the Asian–western Pacific region.

The model composite shows a reasonable performance

in reproducing the climatological intraseasonal oscilla-

tion of precipitation. However, an examination on the

tropical rainfall anomalies associated with the 1997/98

El Niño shows that most of the AGCMs have difficulty

in simulating the negative rainfall anomalies over the

Maritime Continent (Kang et al. 2002b). An assessment

on the ensemble simulations of AAM anomalies in 11

AGCMs during the unprecedented El Niño period,

September 1996–August 1998, shows that the simulated

anomalous Asian summer rainfall has a pattern corre-

lation considerably poorer than its counterpart in the

tropical central and eastern Pacific (Wang et al. 2004).

The long-term change of AAM rainfall is also difficult

to simulate with observational sea surface temperature

(SST) forcing (Zhou et al. 2008a).

The difficulty in simulating and predicting AAM

rainfall is partially related to the strategies of the

AGCM-alone simulation. Recent studies suggested that

local monsoon–warm pool ocean interactions should be

considered in the prediction of summer monsoon rain-

fall (Wang et al. 2003, 2004; Wu and Kirtman 2005;

Kumar et al. 2005). The poor performance in simulation

of Asian summer monsoon variability with AGCMs

forced by observed SST is attributed to the experi-

mental design, in which the atmosphere is forced to

respond to the specified SSTs, while in nature the SSTs

are also partly forced by the atmosphere (Wang et al.

2004). In the absence of the monsoon–ocean interac-

tion, the SST–rainfall correlations yielded by AGCMs

are at odds with observations in some portions of the

AAM domain (Wang et al. 2005).

Previous studies on the AAM predictability focused

on the total rainfall. Because of the chaotic internal

dynamics of the atmospheric motion, it is unrealistic to

demand the predictability of the whole climate evolution.

Determining the predictability of AAM and identifying

the sources of predictability are of central importance in

seasonal prediction. A recent observational analysis has

identified two statistically distinguished modes of the

AAM: The first mode exhibits a prominent biennial

tendency and concurs with the turnabout of warming to

cooling in the equatorial eastern-central Pacific, and the

second mode leads the Pacific warming by 1 yr, pro-

viding a precursor for El Niño/La Niña development

(Wang et al. 2008a,b). It provides a new perspective of

the seasonal spatiotemporal structure for tropical bi-

ennial oscillation (Meehl and Arblaster 2002). The two

major modes provide useful metrics for gauging the

AAM system variability in climate models. Wang et al.

(2008b) evaluated the performances of 10 state-of-the-

art coupled climate models in predicting the observed

two major modes of AAM rainfall and found a rea-

sonable 1-month lead prediction.

The leading modes of the interannual variations of

AAM are likely more predictable than other higher

modes. While available analyses suggested that ocean–

atmosphere coupled models have excellent perfor-

mances in reproducing these leading modes (Wang et al.

2008b), how well the AGCM-alone models reproduce

these leading modes remains an open question. Previ-

ous analyses on the AGCM-alone experiments focused

on the total rainfall rather than the leading modes.

Some evidences suggest that both local and remote

SST forcing contribute to the generation of major cir-

culation anomalies associated with these leading modes

(Li et al. 2005, 2006). Therefore, it is important to assess

how well the AMIP-type AGCM simulation captures

the leading modes of the interannual variability of

AAM. This is the major purpose of present study. We

analyze the outputs of 11 AMIP II models to obtain

insights into this issue.

The rest part of the paper is organized as follows.

Section 2 describes the methodology and datasets. Sec-

tion 3 examines whether the major modes of the inter-

annual variability of AAM can be captured by AMIP

simulation. Section 4 discusses the difference of AMIP

simulation with reanalyses and fully coupled models.

The driving mechanisms of SST forcing to the AAM

leading modes are also discussed. Section 5 summarizes

the study.

2. The data and analysis procedure

a. The models and data

The data used in this study were derived from the

World Climate Research Programme’s (WCRP’s) Cou-

pled Model Intercomparison Project phase 3 (CMIP3)

multimodel dataset. The results of 11 AGCMs that were

driven by monthly historical SST and sea ice are exam-

ined. Table 1 shows a brief summary of these models.

Different horizontal/vertical resolutions were used in these

models. Documentations of the models are referred to the

Web site of the U.S. Department of Energy’s Program for

Climate Model Diagnosis and Intercomparison (PCMDI;

see http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php). In the
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present study, we focus on evaluating the model outputs

covering the period 1979–99. Note in WCRP’s CMIP3

multimodel dataset bank, the outputs of AMIP II ex-

periments are labeled with the names of corresponding

ocean–atmosphere coupled models. Some AGCMs do

not have specific names. For brevity, we use the names

of coupled models to represent the AGCM components

in the following discussion.

The verification datasets include 1) the Climate Pre-

diction CenterMergedAnalysis of Precipitation (CMAP)

data (Xie and Arkin 1997); 2) the National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) Reanalysis (hereaf-

ter, NCEP) data (Kalnay et al. 1996); 3) the NCEP/

Department of Energy (DOE) AMIP II Reanalysis

(hereafter, NCEP-2) data (Kanamitsu et al. 2002); and

4) the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (hereafter,

ERA-40) data (Uppala et al. 2005). The observational

850-hPa wind fields were obtained fromNCEP, NCEP-2,

and ERA-40. 5) The observational SST data are from the

Global Sea Ice and Sea Surface Temperature (GISST)

dataset (Rayner et al. 2003).

b. Analysis procedure

To depict the interannual variability of AAM system,

we apply the season-reliant EOF (S-EOF) analysis

method (Wang and An 2005). The S-EOF is capable of

depicting seasonally evolving anomalies throughout

a full calendar year. We adopt the concept of ‘‘monsoon

year’’ (Meehl 1987; Yasunari 1991), which spans from

the summer of year 0, referred to as July–August (JJA)(0),

to the spring of the following year (year 1), called March–

May (MAM)(1). A covariance matrix is constructed using

four consecutive seasonal mean anomalies for each year;

that is, the anomalies for JJA(0), September–November

(SON)(0), December (0)–February (1) [D(0)JF(1)], and

MAM(1) are treated as a ‘‘yearly block,’’ labeled year 0.

After the EOF decomposition is performed, the yearly

block is then divided into four consecutive seasonal

anomalies. Therefore, we obtain a seasonal pattern

of monsoon anomalies in each monsoon year for each

eigenvector.

Our analysis focuses on rainfall. We apply the S-EOF

analysis to both observed and simulated seasonal mean

rainfall anomalies, which are the departures from the

mean annual cycle derived from the period 1979–99.

Before performing S-EOF analysis, the data are linearly

detrended. We consider the AAM region extending

from 408E to 1608E, and 308S to 408N. We mainly pres-

ent the results of multimodel ensemble (MME).

3. The major modes of AAM variability in MME

AMIP simulation

a. The leading modes and the associated principal

components in MME

The observed leading modes of the AAM system are

revealed by applying the S-EOF analysis to CMAP

rainfall seasonal anomalies (1979–99). The seasonal evo-

lutions of the spatial patterns of AAM rainfall anomalies

associated with S-EOF1 are shown in Fig. 1a. Also

shown are the NCEP-2 850-hPa wind anomalies (vec-

tors), which are linearly regressed against the first

principal component (PC1). The spatial patterns of

leading modes resemble that of Wang et al. (2008b),

which used a different data length of 1981–2002. These

two leading modes serve as observational metrics in our

following model evaluations. To facilitate model com-

parison, we describe the main features of the dominant

modes here. The notable feature of S-EOF1 (Fig. 1a) is

two seasonal anticyclonic anomalies, the south Indian

Ocean (SIO) and the western North Pacific (WNP)

TABLE 1. Description of 11 atmospheric general circulation models.

Institute AGCM Resolution Name used in the discussion

Met Office (UKMO) HadGAM1 N96L38 HadGEM1

NCAR CAM3 T85L26 CCSM3

MRI — T42L30 CGCM2.3.2a

MPI ECHAM5 T63 L32 ECHAM5

Center for Climate System

Research (CCSR)

MIROC3.2(medres) T42L20 MIROC3.2(medres)

CCSR MIROC3.2(hires) T106 L56 MIROC3.2(hires)

INM — 4.08 lat 3 5.08 lon L21 INM-CM3.0

Institute of Atmospheric Physics (IAP) GAMIL 2.88 lat 3 2.88 lon L26 FGOALS-g1.0

National Aeronautics and Space

Administration (NASA) GISS

— 4.08 lat 3 5.08 lon L20 GISS-ER

GFDL — 2.08 lat 3 2.58 lon L24 GFDL AM2

CNRM — T42 L45 CNRM-CM3
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anticyclones (AC). During JJA(0), an anomalous AC

ridge extends from the Maritime Continent to the south-

ern tip of India with enhanced monsoon westerly extends

from India to the western Pacific. During SON(0), the

SIO AC anomalies and the zonal wind divergence

around the Maritime Continent are established. From

SON(0) to D(0)JF(1), the SIO AC slightly weakens,

meanwhile a new AC forms over the Philippine Sea.

From D(0)JF(1) to next MAM(1), the SIO and WNP

ACs remain but weaken.

Associated with the anomalous circulation patterns,

the dry and wet centers exhibit prominent seasonal evo-

lutions (Fig. 1a). During JJA(0), there are less rainfall

over the Maritime Continent and equatorial eastern

Indian Ocean. An enhanced rainfall is evident over

the equatorial western Pacific and the Philippine Sea.

During SON(0), the dry anomalies over the Maritime

Continent intensify and expand northward and east-

ward, which covers the Philippine archipelago and the

entire tropical South Asia; meanwhile, the western In-

dian Ocean becomes wetter than normal and a dipole

rainfall pattern develops in the tropical Indian Ocean.

During D(0)JF(1), the center of dry anomalies shifts to

the Philippine Sea. During MAM(1), the dry anomalies

decay rapidly and move further eastward with dry

center locating in the equatorial western Pacific. Rain-

fall increases in the tropical western Indian Ocean.

The spatial patterns of S-EOF2 in observation are

shown in Fig. 1b. A large-scale cyclonic anomaly forms

over the WNP in the summer to fall, followed by a

continuous southeastward movement and strengthening

through the following winter and next spring. Follow-

ing the seasonal evolution of the WNP cyclonic wind

anomalies, excessive rainfall occurs over the WNP in

JJA(0), and then shifts equatorward in SON(0). Dry

anomalies develop in the northern Indian Ocean and

South China Sea in D(0)JF(1), and over the eastern In-

donesia and northern Australia in MAM(1).

FIG. 1. Spatial patterns of the first S-EOFmode of seasonal precipitation anomalies from JJA(0) toMAM(1) (color

shading; mm day21) and the NCEP-2 850-hPa wind anomalies (vectors; m s21), which were linearly regressed against

the corresponding principal component. (b) Same as in (a) except for the second S-EOF mode.
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The time series of the PCs of the first and second

S-EOF modes of seasonal rainfall anomalies obtained

from CMAP data and AMIP simulation are shown in

Figs. 2a,b. The lead–lag correlation coefficients between

the two PCs and the Niño-3.4 SST anomalies are pre-

sented in Figs. 2c,d. The observed first mode shows a

maximum positive correlation coefficient that exceeds

0.9 with a Niño-3.4 SST anomaly (SSTA) in D(0)JF(1),

indicating that the first S-EOF mode concurs with El

Niño turnaround. The second mode shows a maximum

correlation coefficient (about 0.65) leading El Niño by

about one year, and a minimum negative correlation

coefficient (about 20.55) lagging the Niño-3.4 index by

about one year, signaling the transition from La Niña to

El Niño (Fig. 2d).

The seasonal evolution of S-EOF1 in MME well re-

sembles the observation (Fig. 3a). For the rainfall

anomalies associated with S-EOF1, the anomalous pat-

terns from JJA(0) toMAM(1) are well simulated, with a

pattern correlation larger than 0.65. Larger correlation

coefficients (0.75–0.81) are found during SON(0) and

D(0)JF(1), suggesting that, during the developing phase

of ENSO, the models have acceptable performances in

capturing the rainfall anomalies over the Maritime

Continent and western Pacific. During the decaying

phase of ENSO, that is, MAM(1), the resemblance of

MME with the observation decays rapidly, indicating

the weakening tendency of SST forcing in causing

rainfall anomalies over the Maritime Continent.

The seasonal evolutions of SIO and WNP ACs are

also reasonably captured in MME. The well simulated

features include the anomalous AC ridge extending

from Maritime Continent to the southern tip of India in

JJA(0), the zonal wind divergence around the Maritime

Continent during SON(0), the WNP AC over the Phil-

ippine Sea during D(0)JF(1) and its persistence up to

MAM(1).

A deficiency ofMME lies in the SIOAC. The simulated

SIO AC during SON(0) is weaker than that in reanalysis.

From SON to DJF, the SIO AC slightly strengthens and

responds with delay to ocean forcing, which is contrary to

the observation. The reason for this deficiency will be

elaborated in the following discussion section.

The pattern of S-EOF2 in MME is shown in Fig. 3b.

The seasonal evolution of WNP cyclonic anomalies is

well captured. Following the evolution of anomalous

circulation, the rainfall anomalies from SON(0) to

MAM(1) are simulated reasonably, with map correla-

tion coefficients ranging from 0.56 to 0.81 (Fig. 3b).

However, the JJA(0) pattern is poorly simulated, hav-

ing a pattern correlation of 0.41. The reason is largely

due to the lack of significant SSTA forcing in the tran-

sitional phase of ENSO. In the following fall to spring,

FIG. 2. Principal components of (a) the first and (b) the second

S-EOF modes of seasonal precipitation anomaly obtained from

CMAP observation (black thick solid), MME (red thick solid),

reanalysis datasets (colored thin solid lines), and each model

simulation (thin dotted coloring). (c) Lead–lag correlation coeffi-

cients between the first S-EOF principal component and the Niño-

3.4 SST index. (d) The same as in (c) except for the second S-EOF

principal component. Observation (black thick solid), MME (red

thick solid), reanalysis datasets (colored thin solid lines), and each

model (thin dotted coloring).
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that is, SON(0), D(0)JF(1) and MAM(1), the anomaly

patterns of S-EOF2 are simulated well. Nevertheless,

while the MME reasonably captures the observed rain-

fall anomaly patterns, its amplitudes of rainfall anom-

alies are generally weaker than the observations. This

is expected, since working with ensembles increases

the correlation but decreases the amplitude (Li 1999;

Zhou and Yu 2004).

The temporal variations of the leading modes are also

well simulated in MME (Fig. 2a). The correlation co-

efficient between the observed and simulated PC time

series is 0.95 (0.85) for S-EOF1 (S-EOF2; Figs. 2a,b).

Furthermore, Fig. 2c indicates that the MME reason-

ably captures the observed overall relationship between

ENSO and AAM. In addition, as shown in Fig. 2b, the

spread among the models in PC2 is larger than that in

PC1, suggesting the first mode has a higher reproduci-

bility than the second mode.

In summary, the MME reproduces faithfully the

major features of two observed leading modes of the

interannual variability of AAM seasonal rainfall, sug-

gesting in case the SST anomalies are predictable, the

dominant modes of the interannual variability of AAM

are highly reproducible.

b. Multimodel intercomparisons

To show the differences of AMIP models in simu-

lating the leading modes of the interannual variability of

AAM, it is useful to evaluate the performance of each

individual model. The results of three reanalysis data-

sets, namely, the ERA-40, NCEP, and NCEP-2, are also

FIG. 3. Same as Fig. 1 but for AMIPMME. Spatial pattern correlations of rainfall anomalies with the observation are

marked at the upper-right corner of each panel.
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compared. We use correlation coefficients to assess the

skills of both the spatial patterns (Fig. 4a) and PCs (Fig.

4b) for the two major modes. In Fig. 4, the CMAP

is used as the ground ‘‘truth’’ for comparison. TheMME

is better than each individual model. Among the 11

AGCMs, the leading modes derived from ECHAM5

and Hadley Centre Global Environmental Model version

1 (HadGEM1) models are generally better than those

derived from other models. Six models, namely, the Me-

teorological Research Institute (MRI) Coupled General

Circulation Model version 2.3.2a (CGCM2.3.2a), the

Centre National de Recherches Météorologiques Cou-

pled Global Climate Model version 3 (CNRM-CM3), the

Goddard Institute for Space Studies Model E-R (GISS-

ER), Community Climate System Model, version 3

(CCSM3), and the Model for Interdisciplinary Research

on Climate 3.2, high-resolution and medium-resolution

versions [MIROC3.2(hires) and MIROC3.2(medres)],

show comparable performances, with map correlation

coefficients ranging from 0.4 to 0.6. Two models, namely,

the Institute of Numerical Mathematics Coupled Model,

version 3.0 (INM-CM3.0) and Flexible Global Ocean–

Atmosphere–Land System Model gridpoint version 1.0

(FGOALS-g1.0), have low map correlation coefficients

ranging from 0.2 to 0.4. The performances of AGCMs in

deriving the second mode are generally poorer than those

in deriving the first mode. A number of models, namely

INM-CM3.0, FGOALS-g1.0, and MIROC3.2(medres),

have pattern correlation coefficients less than 0.2. Four

models, namely, CCSM3, CNRM-CM3, GISS-ER, and

CGCM2.3.2a, have map correlation coefficients ranging

from 0.25 to 0.41.

In terms of temporal evolution (Fig. 4b), most models

show considerably high temporal correlation coeffi-

cients for both two major modes. The correlation co-

efficients for S-EOF1 are generally higher than those for

S-EOF2: The correlation coefficients for S-EOF1 range

from 0.8 to 0.9, while those for S-EOF2 range from 0.55

to 0.85. Three models, namely, CNRM-CM3, INM-

CM3.0, and FGOALS-g1.0, have temporal correlation

coefficients less than 0.4.

The leading modes derived from theMME simulations

are comparable to those derived from reanalysis datasets.

This is seen in both the spatial patterns and the temporal

evolutions. The leading modes derived fromGeophysical

Fluid Dynamics Laboratory Atmosphere Model version

2 (GFDLAM2), HadGEM1, and ECHAM5 simulations

are comparable to, or even slightly better than, those

derived from the reanalysis datasets. These three

models also show considerably higher spatial and tem-

poral correlation coefficients than any other model for

both two major modes.

c. Fractional variance accounted for by the leading

modes

The percentage variance accounted for by the first six

eigenvalues of the S-EOF analysis of AAM rainfall is

shown in Fig. 5. The unit standard deviation of the

sampling errors associated with each percentage eigen-

value is also shown. The S-EOF1 (S-EOF2) accounts for

27.4% (10.6%) of the total variance. According to the

rule of North et al. (1982), the observed first two leading

modes are well distinguished from each other in terms

of the sampling error bars, and hence are statistically

FIG. 4. Comparison of the performances of the AMIPMME, individual simulations, and three

(NCEP, NCEP-2, and ERA-40) reanalysis datasets against the observed (CMAP) two domi-

nant S-EOF modes of seasonal mean precipitation anomalies. The abscissa and ordinate rep-

resent, respectively, correlation coefficients between the observed and simulated (reanalyzed)

anomalies for the first and second modes. (a) The spatial correlation skill of eigenvector and

(b) the temporal correlation skill of principal component.
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significant. The first two modes derived from MME

have similar levels of statistical significance as the ob-

served counterparts; namely, the S-EOF1 (S-EOF2)

accounts for 30.3% (12.5%) of the total variance. Table 2

shows how the percentage variances accounted for by

the first two major modes vary among different models,

as well as observational dataset and reanalysis datasets.

The fractional variance derived from MME is higher

than any individual model.

The power spectrum density distributions and corre-

sponding red noise of the first and second PC time series

are shown in Fig. 6. In the observation, the first mode

has a major spectral peak on 2.5 yr and a secondary peak

around 4–6 yr. The MME captures both the quasi-

biennial (2.5 yr) and low-frequency (4–6 yr) peaks rea-

sonably. In the second mode, both the observation and

MME show low-frequency spectral peaks around 5 yr,

but the simulated variances are larger than the obser-

vation. The observed second mode also has a minor

peak around 2.8 yr, which is partly captured by MME.

d. Seasonal dependence of the skill in AMIP

simulation

The MME has a reasonable performance in capturing

the leading modes of AAM rainfall variability. Since the

statistics shown above are done for the total four con-

secutive seasons, in order to understand the mechanism

it is useful to compare the skills during four seasons. We

show the pattern correlation coefficients for four sea-

sons in Fig. 7. For S-EOF1 ofMME, themap correlation

coefficients are 0.65 for JJA, 0.75 for SON, 0.81 for DJF,

and 0.66 for MAM. The skill is the highest (lowest) in

winter (summer). For S-EOF2 of MME, the map cor-

relation coefficients are 0.41 for JJA, 0.56 for SON, 0.62

for DJF, and 0.81 for MAM. The result of spring is the

best, while that of summer is still the worst. This validates

Wang et al. (2004)’s argument that treating the atmos-

phere as a response to SST forcing may inherently be

unable to correctly simulate the summermonsoon rainfall

variations. The neglect of atmospheric feedback leads to

the poor performance ofAMIP simulation in reproducing

TABLE 2. The percentage variances accounted for by the first two

major modes in observation and simulations.

Data S-EOF 1 (%) S-EOF 2 (%)

CMAP 27.4 10.6

NCEP 23.8 9.7

NCEP-2 18.3 8.9

ERA-40 17.6 11.1

CNRM-CM3 21.6 11.0

GISS-ER 18.8 11.1

FGOALS-g1.0 18.9 11.9

INM-CM3.0 19.9 11.8

MIROC3.2(hires) 18.7 8.6

MIROC3.2(medres) 18.9 11.8

ECHAM5 22.0 15.1

CGCM2.3.2a 24.7 13.3

CCSM3 18.8 9.4

HadGEM1 15.9 10.8

GFDL AM2 19.0 12.0

Model ensemble 31.3 12.8

FIG. 5. Percentage variance (%) explained by the first six S-EOF

modes of seasonal precipitation anomalies obtained from (a)

CMAP and (b) MME simulation. The bars represent one std dev

of the sampling errors.
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the dominant modes of summertime AAM rainfall vari-

ability. In addition, the relative better skills during winter

(DJF) and transitional seasons (SON andMAM) indicate

that the ocean-driving mechanism partly works during

these seasons; namely, the atmospheric feedback to ocean

is weak and it is more reasonable than JJA to treat the

atmosphere as a response to ocean forcing.

A good spatial pattern correlation does not always

indicate a good intensity. We further measure the in-

tensities of simulated dominant modes by the root-

mean-square (rms) of rainfall anomalies (figures not

shown). The rms ofMME is significantly lower than that

of individual model, suggesting that the MME tends to

underestimate the total variance while it successfully

captures the observed spatial pattern and temporal ev-

olution of the dominant modes. In addition, we have

examined the relationship between the dominant modes

and the accuracy of model climatology (figures not

shown). The results indicate that an accurate climatol-

ogy usually coincides with a good anomaly pattern as-

sociated with the first mode during all seasons except for

JJA. The skill of simulated second mode is proportional

to the skill of corresponding climatology of individual

model. Themodels with a larger (smaller) climatological

mean rainfall than the observation generally simulate

larger (smaller) rainfall anomalies than the observation.

TheMMEhas the highest degree of accuracy of both the

climatology and the anomaly.

4. Discussion

a. The difference of AMIP simulations with fully

coupled models

The above analyses show that the MME SST-forcing

simulation could partly capture the first two leading

modes of interannual rainfall variability over the AAM

domain. How about the skills of AMIP models in sim-

ulating the total rainfall change?We show the correlation

FIG. 6. The power spectrum density (solid line) and red noise (dashed line) of (a) the first and

(b) the second S-EOF principal component of seasonal precipitation anomaly obtained from

(top) CMAP observation and (bottom) MME simulation.
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of rainfall anomalies between the observation and the

MME in Fig. 8. Although the first two leading modes

account for 38% of the total variance, the fractional

variance vary with location and season. We show per-

centage variance of rainfall anomalies accounted by the

first leading mode in Fig. 8 as contours. The region

having significant positive correlations coincides well

with that having large fractional variance. During JJA,

there are significant positive correlations over the Mari-

time Continent, equatorial eastern Indian Ocean, and

subtropical western Pacific. The first major mode ac-

counts for over 40% of the total variance over these

regions. The skill over the WNP, the South China Sea,

and the Bay of Bengal is low, which is consistent with

Wang et al. (2005) and may be resulted from the neglect

of air–sea feedback. From SON to DJF and next MAM,

the seasonal variations of regions covered by significant

positive correlations generally follow those of the re-

gions having large fractional variance accounted by the

first major mode. The consistency indicates that the first

mode covers a large portion of the predictable part of

total rainfall.

The above comparison shows that the resemblance of

the simulated dominant modes with the observed one

does not contradict with the previous claim that ocean–

atmosphere coupling is critical for modeling the mon-

soon rainfall. The MME has deficiency in producing the

intensity of rainfall anomalies, which may be partly due

to the limitation of AMIP simulation in reproducing the

seasonal phase of circulation patterns. The rainfall

anomalies over the AAM domain are dominated by the

seasonal varying SIO and WNP ACs. We compare the

strength of tropical SIO and WNP ACs in MME with

that in the reanalysis. We compute the anticyclonic

vorticity anomalies for SIO in the region of 58–208S,

608–1008E and for WNP in the region of 58–208N, 1208–

1608E. In the reanalysis, the anomalous SIO AC begins

in JJA(0), develops rapidly and reaches its peak in

SON(0), and then decays over the next two seasons

(Fig. 9a). The WNP AC begins in SON(0) and rapidly

develops in D(0)JF(1), attains its peak in the following

spring MAM(1), and then persists through the next

summer (Fig. 9a). A comparison with the Niño-3.4 SST

anomaly suggests the evolutions of SIO and WNP ACs

FIG. 7. Same as Fig. 4a but for four seasons: (a) JJA, (b) SON, (c) DJF, and (d) MAM.
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are not strictly in phase with ENSO forcing. Wang et al.

(2000) showed that the western and eastern pacific SST

anomalies contribute about equally to the WNP AC.

The mechanism was discussed in detail by Wang and

Zhang (2002). In AMIP simulation, however, the sea-

sonal evolutions of both SIO and WNP ACs strictly

match that of Niño-3.4 SST, implying that they are

largely driven by remote ENSO forcing (Fig. 9b). In

coupled models, the SIO (WNP) AC peaks in fall (next

spring), which is not exactly in phase with ENSO forcing

(Wang et al. 2008b). This difference reflects the effects of

local air–sea coupling, which can modify the atmospheric

response to remote oceanic forcing. The strengths of

two ACs in MME are also different from those of the

reanalysis that are associated with deficiencies in the

simulated intensities of rainfall anomaly.

In addition, the skill of AMIP simulation in repro-

ducing the first mode is seasonally dependent: DJF

has a better pattern correlation with the observation

than JJA, with 0.85 versus 0.61. This seasonal difference

suggests that the local monsoon–warm pool ocean in-

teraction should be more active (inactive) during JJA

(DJF). This hypothesis is also supported by the signifi-

cant positive correlations over the WNP during DJF

shown in Fig. 8c. Wang et al. (2000) showed that given

local western Pacific SST forcing the WNP AC can be

partly reproduced during DJF. During transitional sea-

sons such as SON and MAM, the impact of local air–sea

interaction on the first S-EOF mode should be less than

that during JJA, as evidenced by the better pattern

correlations between the observation and the simula-

tion (see Fig. 7).

b. The difference of AMIP simulations with

reanalysis data

Our analysis suggests that the MME has comparable

skills with the reanalysis in capturing the observed

leading modes of interannual variability of AAM. The

reanalysis datasets include at least a part of the coupling

effects, because the models are updated continuously

every 6–12 h with observed wind, pressure, and tem-

perature data, which themselves are the result of both

the real SST forcing and the real atmosphere–ocean

feedbacks. Therefore, the reanalysis results are at least

partially driven by the real coupling and in a way may

be considered as if they were produced from some-

what incomplete coupled models. If ocean–atmosphere

coupling is critical for modeling the monsoon rain-

fall as claimed previously, the reanalysis results should

have better skills than the AGCMs in simulating the

interannual variability of the total rainfall. To verify

this argument, the correlation pattern of rainfall anom-

alies between NCEP-2 and CMAP are shown in Fig. 10.

In comparison with Fig. 8, the reanalysis shows com-

parable skills over the tropical regions, where are domi-

nated by the major modes of interannual variability.

FIG. 8. The spatial pattern of correlation coefficients between the observed and AMIPMME

simulated rainfall anomalies. Only correlations statistically significant at the 10% level are

shaded. The percentage variance accounted by the first major mode is shown as contours, which

start from 30% with an interval of 20%. (a) JJA, (b) SON, (c) DJF, and (d) MAM.

1 MARCH 2009 ZHOU ET AL . 1169



Over the extratropical ocean and land areas, however,

the reanalysis is far better than the MME. Significant

positive correlations are evident in the WNP and South

China Sea in JJA, where the MME barely demonstrates

any skill. Since the reanalysis data contain information

from both the one-way forced leading modes and the

atmospheric feedback from the 6–12-h updating cycle,

the better total skill over these regions means that the

gain due to the atmospheric feedback adequately com-

pensates the deficit related to the one-way SST forcing.

c. The forcing mechanism of S-EOF2

Previous analysis suggested that the remote El Niño

forcing, the monsoon–warm pool ocean interaction, and

the influence of the annual cycles are three fundamental

factors for understanding the physics of the leading

modes (Wang et al. 2008a). Given that in the AMIP-

type simulation the atmosphere is purely forced by

SST variation, the well-captured part of the first mode

should come from the remote El Niño forcing as well as

local SST forcing. We have calculated the correlations

of seasonal SST anomalies with the PC1. The associated

SST anomalies in MME simulation are nearly the same

as the observation (figures not shown), confirming the

above hypothesis.

Our question here is for the second S-EOF mode.

Since the S-EOF2 leads ENSO by 1 yr, it is usually

regarded as a precursor for El Niño/La Niña develop-

ment (Wang et al. 2008a). The success of MME in re-

producing the major features of S-EOF2 indicates the

dominant role of ocean forcing. Since the second mode

exhibits a spectral peak centered at 5 yr, we show the

seasonal evolution of associated SST anomalies from

JJA(21) to MAM(1) in Fig. 11. A typical evolution

from La Niña to El Niño is evident. Since the only

source of AAM rainfall reproducibility in AMIP run

comes from the SST forcing, we suggest that the

S-EOF2 may be a response to La Niña forcing at de-

caying stage, although it statistically appears as a pre-

cursor for El Niño development. As JJA(0) is the

central transitional phase from La Niña to El Niño, the

lack of significant anomalous SST forcing leads to a

poor skill of MME in capturing the rainfall anomalies.

From SON(0) to D(0)JF(1) and MAM(1), the gradually

intensified SST anomalies associated with the develop-

ment of El Niño contribute to the well-captured part of

rainfall anomalies associated with S-EOF2.

5. Conclusions

Previous observational analysis has identified two

statistically distinguished modes of AAM that represent

the highly predictable part of AAM variability. To an-

swer the question whether these leading modes can be

captured by AGCM with prescribed SST forcing, 11

AGCMs that participated in the AMIP, which used

observational SST to drive AGCMs for the period

1979–99, are evaluated by comparing with the obser-

vation. The main findings are listed below.

FIG. 9. Seasonal variations of the anomalous SIO anticyclonic

vorticity averaged over the region of 58–208S, 608–1008E, and the

anomalousWNP anticyclonic vorticity averaged over the region of

58–208N, 1208–1608E. The sign of WNP vorticity is reversed for

easy comparison. Shown also are the regressed Niño-3.4 SST

anomalies with respect to the first principal component of the

S-EOF mode. (a) NCEP-2; (b) AMIP MME.
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1) TheMME of AMIP simulation captures most part of

the realistic features of the spatial structure, seasonal

evolution, temporal variations, and the relationship

with ENSO in terms of the two major modes of

AAM rainfall. The MME reasonably estimates both

the biennial tendency and low-frequency of the

leading modes. While the first mode generally con-

curs with the turnabout of El Niño, the second mode

is a response to La Niña forcing at decaying stage.

2) The prominent feature of the first leading mode of

AAM variability is two seasonal anticyclonic anom-

alies, the SIO and the WNP ACs. There exists a

phase shift in the simulated first dominant mode. The

seasonal evolution of both SIO and WNP ACs in

AMIP simulation strictly matches that of El Niño

remote forcing, while in observation it is not abso-

lutely in phase with ENSO forcing. The reasonable

part of AMIP simulation in reproducing the main

features of the first leading mode indicates the dom-

inance of remote El Niño forcing in driving interan-

nual variability of AAM, meanwhile the deficiency of

AMIP simulation in reproducing the seasonal phase

of SIO and WNP ACs suggests the essential role of

ocean–atmosphere coupling.

3) The first two leading modes of the interannual vari-

ability of AAMmainly reflect rainfall variations over

the tropical regions, especially the Maritime Conti-

nent, tropical eastern Indian Ocean, and western

Pacific. The MME reasonably captures the two ma-

jor modes, with results comparable to or even slightly

better than those of reanalysis in the tropical regions.

Since the two modes explain a high variance of the

tropics, the MME presents a high skill in reproduc-

ing the total rainfall variability in the region. Over

the extratropical western North Pacific and South

China Sea, where ocean–atmosphere coupling may

be critical for modeling the monsoon rainfall, the

MME shows barely any skill, but the reanalysis has

higher skill because of the inclusion of part of ocean–

atmosphere coupling from the 6–12-h updating

cycle.

4) The performance of AMIP simulation in reproduc-

ing the leading modes of AAM rainfall is seasonally

dependent. The skills of DJF, SON, and MAM are

better than that of JJA. This seasonal difference

suggests that treating the atmosphere as a response

to ocean forcing in DJF and transitional seasons is

more reasonable than that in JJA.

5) The MME shows comparable or even slightly better

skill than the reanalysis in capturing the tropical

signals associated with the two major modes. Al-

though the superiority of MME relative to reanalysis

data may stem from the ensemble technique, the

GFDL AM2, HadGEM1, and ECHAM5 models are

superior to other AGCMs in capturing the leading

modes ofAAM.Accuratemodel climatology generally

FIG. 10. The spatial pattern of correlation coefficients between the observed and NCEP-2

reanalyzed rainfall anomalies. Only correlations statistically significant at the 10% level are

shaded. The percentage variance accounted by the first major mode is shown as contours, which

start from 30% with an interval of 20%. (a) JJA, (b) SON, (c) DJF, and (d) MAM.
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coincides with good anomaly patterns associated

with the leading modes.
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