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1. Introduction 

Real business cycle models have recently been applied to settings in 

which equilibria 
1 

are suboptimal. In most models the solutions are 

approximated using some type of linearization with little attention being 

given to the accuracy of the approximation. There exists some work (see, for 

example, Christian0 (1989) and Rebel0 and Rouwenhorst (1989)) concerning the 

accuracy of linear and log-linear approximations in models where competitive 

equilibria are optimal but none that we are aware of for suboptimal cases. 

Generally, the approximations in optimal environments are quite good when the 

variance of the forcing process is small but deteriorate as the variance 

increases. Since accuracy depends on the variance of the underlying shocks, 

it is natural to ask whether similar approximation methods would perform as 

well in suboptimal settings where there may be a great deal more variation in 

the shocks. For example, effective tax rates are quite variable over time as 

are monetary shocks. 

In this paper we investigate three different approximation methods in 

the context of a neoclassical model with a production tax and compare their 

solutions with solutions obtained from a discrete state space solution to the 

Euler equations of the model. In using discrete state space methods we adopt 

a very fine grid on capital and trust that the solution is arbitrarily close 

to the true solution. For cases where a closed form solution exists, the 

state space solution was roughly within two hundredths of one percent of the 

true solution. 

1 
For example, Baxter and King (1989) analyze an equilibrium business cycle 

model with a production externality. Cooley and Hansen (19891, and 

Eichumbaum and Singleton (1987) examine the implications of a cash-in-advance 

constraint in a real business cycle model. Models concerning fiscal policies 

are analyzed by Aiyagari, Christiano, and Eichumbaum (19901, Baxter and King 

(19901, Braun (19881, Mao (19901, McGrattan (19881, and Wynne (1987). King, 

Plosser and Rebel0 (1988b) give other examples in which equilibria are 

suboptimal. 



The three approximation methods examined are the linear and log-linear 

approximations analyzed by Christian0 and the log-linear approximation of 

King, Plosser, and Rebel0 (KPR) (1988a). We also consider a variant of the 

KPR procedure which linearizes the system around the level (instead of log) 

of the steady state. The approximate solutions are compared along a number 

of dimensions in order to understand the strengths and weaknesses of each. 

First we compare the policy functions for output, capital, consumption, 

investment, labor hours, and real interest rates and analyze them both 

visually and by a probability weighted difference in the values of the 

functions. This latter metric indicates how important the differences in the 

policy functions are for generating impulse responses and autocovariance 

functions. We then extend the comparison to the frequency domain and examine 

the coherence of the data generated from the approximate solutions with those 

generated from the true solutions. Doing so allows us to see how well the 

solutions match up by frequency. 

These experiments produce a number of interesting results. First none 

of the approximation methods dominate the others. Generally they are all 

fairly accurate at solving for output, the capital stock, and labor hours. 

The KPR procedure does a good job in terms of consumption and real interest 

rates, but is not very accurate in terms of investment. 
2 

Therefore, if one 

were primarily interested in analyzing the effect of taxes on investment, 

their procedure is not recommended. On the other hand the two approximation 

methods studied by Christian0 replicate investment quite accurately, but 

perform much more poorly in terms of consumption and real interest rates. 

These procedures might, therefore, be inappropriate for analyzing the welfare 

effects of tax policies. 

2 
The alternative KPR procedure, which linearizes the system around the level 

of the steady state, approximates the investment function quite accurately. 

2 



The paper is organized as follows. In section 2 we briefly describe the 

model and the approximation methods. Section 3 presents some empirical 

evidence regarding the behavior of tax rates in the U.S. In section 4 we 

compare the policy functions while in section 5 we extend comparisons to the 

frequency domain. Section 6 contains a brief summary and conclusions. 

2. The Model 

A. General Description 

The economy is composed of three entities: firms, individuals, and the 

government. As in Brock and Mirman (19721, Coleman (1989). and Dotsey (1990) 

firms face an inelastic supply of capital Kt from individuals and combine it 

with labor N t to produce output, Yt, via a constant return to scale 

production technology F(Kt, Nt). Output is taxed at the rate tt. The tax 

rate is given by an exogenous statistical process t 
t 

= (l-p)t* + pttel + et, 

where e 
t 

is an i.i.d. random variable and t* is the unconditional mean of the 

tax rate. We impose the condition lpl < 1 so that the tax process is 

stationary. With perfect competition firms pay each factor its after-tax 

marginal product. Formally, 

rt 
= (l-rt)Fk(Kt, Nt), (la) 

Wt 
= (l-rt)Fn(Kt, Nt), (lb) 

where Fk and Fn are the marginal product of capital and labor, respectively, 

rt 
is the after-tax rental rate on capital, and w 

t 
is the after-tax real wage 

rate. 

Individuals maximize expected lifetime utility subject to a set of 

intertemporal budget constraints. Specifically, the individual solves the 

following problem: 

3 



w t 
max 

EO [ 
c B uG,, it) , 1 o<p<1. 

t~,,i,,~,,E,,,~ t=o 

subject to 

c t + kt+l 5 (l-S)i;, + rtEt + wtGt + Trt for all t, 

it + Et = 1 for all t, 

k. is given, 

where c t is consumption, it is leisure, Et is capital, and Trt is per capita 

lump sum rebates of all tax proceeds which equal rtF(Kt, Nt). The attached 

bars indicate variables at the individual level. In this problem, the agent 

takes the pricing function wt and rt as given as well as the economy-wide 

capital Kt and labor N 
t* 

The information set at time t over which expectations are conditioned is 

assumed to contain current and past values of all decision variables and 

prices as well as the current tax rate. Agents, however, do not know future 

tax rates. It is assumed that capital depreciates at the rate 0 5 6 5 1 and 

agents are endowed with one unit of time each period. 

The government randomly taxes production and redistributes all taxes via 

a lump sum rebate. We, therefore, concentrate on the compensated effects of 

taxes. 'Otherwise (1-rt) could be interpreted as a multiplicative technology 

shock and the model would correspond to those already examined by Christian0 

(1989) and Rebel0 and Rouwenhorst (19891. Equilibrium is achieved when 

aggregate demand equals aggregate supply: 

Yt 
= F(Kt, Nt) = Ct + Kt+l - (l-6)Kt (2) 

with kt = Kt and Et = Nt. 

Using the first-order conditions for the individual, the equilibrium 

conditions and the conditions describing competitive factor payments, the 

solution to the competitive equilibrium of the model economy involves finding 

4 



policy functions 
Kt+l 

= G(Kt, rt) and Nt = H(Kt, rt) that solve the following 

Euler equations: 

uc[F(Kt,Nt) 

I3 Et C 

+ (l-6)Kt - Kt+l, 1-Nt] = 

uJF(K~+~,N~+~I + W-d)Kt+l- Kt+2, l-Nt+ll x 

[(l-~t+l)Fk(Kt+l, N t+l) + (l-S)1 1 (3a) 

and 

ul[F(Kt,Nt) + (l-6)Kt - Kt+l, 1-Ntl 

= (l-tt)Fn(Kt,NtI, (3b) 

u IF(Kt,Nt) + (l-d)Kt - Kt+l, l-N& 
c 

where u and u 
C 

1 denote the marginal utility of consumption and leisure, 

respectively. Equation (3a) states that in equilibrium the individual is 

indifferent between consuming one extra unit of goods today and investing it 

in the form of capital and consuming tomorrow. Equation (3b) states that the 

rate of substitution of consumption for leisure in a given period must equal 

the cost of leisure, which is the after-tax wage rate. Essentially we are 

trying to find the functions G(Kt, t,) and H(Kt, t,) that are fixed points of 

the system (3a) and (3b). Coleman (1989) analyzes the restrictions on 

preferences and technology that guarantee existence and uniqueness of 

solutions to problems of this type. 

Throughout the paper we employ a Cobb-Douglas production function:, 

Yt = F(Kt, Nt) = Kta Ntl-a, 0 < a < 1, (4) 

and a constant relative risk aversion (CFWA) utility function: 

Ct9 Ltl-' ]l-lr - I }, if (r > o and (r s I, (5) 

8 In Ct + (l-9) In Lt, if (r = 1, 

where 0 < 8 < 1. Note that the CRRA utility function is unbounded from below 

and does not meet one of Coleman's assumptions. However, the discrete state 

5 



space algorithm we use shows no dependence on the starting values and always 

converges to the same solution, indicating that unique solutions are 

obtained. 

B. Various approximations 

The rest of the section discusses various approximation methods for 

solving the dynamic equilibrium of the above model. These methods include 

the linear and log-linear approximations analyzed by Christian0 and the 

linear and log-linear approximations of King, Plosser, and Rebelo. The 

discrete state space method is also discussed. 

linear approximation (LIN) 

Under the LIN approximation a first order Taylor expansion of the system 

(3a)-(3b) is taken around the nonstochastic steady state values of capital, 

labor hours, and one minus the mean of the tax rate. 
3 

This procedure yields 

a system that is linear in the levels of Kt, Nt, and (l-rt). It should be 

pointed out that in an optimal setting where there is no tax, this procedure 

is identical to the conventional quadratic-linear approximation where the 

constraints of the maximization problem are linearized while the objective is 

approximated by a quadratic function. This is so because both methods yield 

identical Euler equations. Christian0 (1989) examined the performance of the 

quadratic-linear approximation in an optimal setting. 

The policy functions for capital and labor hours that solve the linear 

system are (see Appendix A) 

K 
t+1 

=G 
lincKt' 

1-tt) = Al0 + All Kt + Al2 (l-t,), 

Nt 
=H lin(Kt, 1-rt) = A20 + A21 Kt + A22 (l-t,), 

(6a) 

(6b) 

3 
The linearization could also be taken around the mean of the tax rate, t*. 

However, our experience indicates that the performance of the approximation 

using this procedure is worse than using l-t*. 

6 



where the coefficients A ij (i = 1,2, j = 0,1,2) are complicated functions of 

the underlying parameters of the economy and the coefficient Al1 is less than 

one in absolute value. 

Using these two decision rules, the policy functions governing output, 

consumption, investment, and the real interest rate, Rt, can be determined. 

They are 

Yt 
= F(Kt, Hlin(Kt, l-r+ 

Ct 
= FMt, Hlin(Kt, 1-rt)) + Cl-6)Kt - Glin(Kt, l-t& 

It 
=G 

lin(Kt' 
1-rt) - (14)Kt, 

(7) 

(8) 

(9) 

Rt = 

ucICt,l-Hlin(Kt,l-rt)l 

- 1. (10) 

6 Et{Uc[Ct+l’l-Hlin(Kt+l’l-rt+l)l} 

The conditional expectations of the marginal utility of consumption, needed 

to compute the real interest rate, can be calculated using the probability 

structure implied by the tax process. 

log-linear approximation (LOG) 

The LOG procedure is similar to the LIN procedure except that the system 

is linearized around the logarithm of the nonstochastic steady state values 

of capital, labor and one minus the tax rate. Again, in an optimal setting 

this procedure is identical to the quadratic-linear approximation mentioned 

earlier. Specifically, let kt = In Kt, nt = In Nt and $t = ln(l-rt), then 

the decision rules for kt+l and nt are given by (see Appendix A) 

kt+l 
=G 

log(kt' @t) = B10 + Bll kt + B12 @,, (lla) 

“t 
=H log(ktv $1 = B20 + B21 kt + J322 $9 (lib) 

where the coefficients B ij (i = 1,2, j = 0,1,2) are complicated functions of 

7 



the underlying parameters of the economy and the coefficient Bll is less than 

one in absolute value. 

The policy functions for output, consumption and investment are 

Yt 
= F(Kt, exp[H 

logCk 
t’ c$,)lL (12) 

Ct 
= F(Kt, exp[H 

logCkt' 
$,)I) + Cl-6)Kt - exp[G log(ktt $1 I. (13) 

It 
= exp[G log(kt, $11 - (l-alKt. (14) 

The derivation of the real interest rate proceeds from equation (101. 

The King, Plosser, and Rebel0 approximation (KPR) 

A common feature of the LIN procedure and the LOG procedure is that both 

approximate the solutions for capital and labor around the nonstochastic 

steady state (either in level or in log), and then use the law of motion for 

capital and the equilibrium condition to construct the implied functions for 

investment and consumption. While this procedure ensures that the market 

clearing condition is satisfied over the entire state space, it does not 

necessarily imply a more accurate approximation. By construction, the policy 

functions for capital and labor are linear, but consumption, investment, 

output and the real interest rate are not linear in the state variables. 
4 

As in the LOG procedure, the linearization under the KPR approximation 

is taken around the logarithm of the nonstochastic steady state. But the KPR 

approximation yields a system of linear decision rules, including capital and 

labor as well as other variables that are of interest. This is achieved by 

linearizing not only the first-order conditions (3a) and (3b), but also the 

equilibrium condition (2) and other relevant identities. Thus, for example, 

the decision rules for output and investment are obtained by linearizing the 

production function and the law of motion for capital, and the decision rule 

4 
Note that the investment function is linear under the. LIN procedure. 

8 



for consumption is obtained by linearizing the market-clearing condition. By 

construction the decision rules for capital and labor will be identical to 

those under the LOG procedure. 
5 

Since the solutions are linear in the state 

of the system, the KPR procedure permits fast and easy calculation of impulse 

responses and theoretical moments. This advantage, however, is achieved at 

the cost that the equilibrium condition is not strictly maintained. Details 

of the KPR approximation can be found in King, Plosser and Rebel0 (1988a) and 

the accompanying technical appendix. 

There is an alternative version of the KPR approximation that turns out 

to be important. This alternative procedure linearizes the system around the 

level (instead of log) of the steady state as in the LIN approximation. The 

resulting policy functions for capital and labor (and investment) will be 

identical to those under the LIN procedure. As will be seen later the chief 

difference between the two KPR approximations is the investment function. In 

the following we label the original KPR procedure as KPRl and the alternative 

version as KPR2. 

C. Discrete State Space Method (DSS) 

The basic idea of the discrete state space method is to approximate the 

policy functions on a finite number of grid points over the state space. The 

policy functions are constructed so that the first-order conditions and the 

equilibrium conditions of the underlying economic problem are satisfied over 

the discrete space. This method is based on a technique proposed by Coleman 

(1989) who established existence and uniqueness of fixed points to problems 

of this type. Technical details of our numerical algorithm are presented in 

Appendix B. Here we briefly sketch the procedure. 
6 

- 

5 
Since the production function is Cobb-Douglas in our example, the decision 

rule for output is also identical under the two approximations. 

6 
Our procedure is somewhat different from that of Coleman. In particular, we 

9 



The numerical policy functions for capital and labor can be obtained by 

iterating on (3a) and (3b) using the conventional successive approximation 

technique. Starting from an initial guess for capital (usually, a constant 

function1 we first used (3b) to solve the implied function for labor, which 

is substituted into (3a) to obtain an equation that depends only on capital. 

The resulting equation is then used to solve a new function for capital over 

the discretized space. This function is taken to be the new starting point 

for the next iteration. The process continues until the policy function for 

capital converges. Once the optimal solution for capital is obtained, other 

variables can be easily derived. 

In general, the accuracy of the DSS method depends on the number of grid 

points being used. In this paper we adopt 2500 points for the capital stock. 

These grids are defined over the ergodic set of capital, which is smaller 

than its feasible set. 
7 

In our numerical procedure, we approximate the set 

by first solving the problem over the feasible set using coarse grids. The 

implied ergodic set is then used in the second run (or the third run if 

necessary) to define a new range for capital. The process continues until 

the number of grids contained in the ergodic set exceeds 90 percent of the 

number of grid points being used. This procedure yields a very smooth policy 

function that is close to the true policy function. For example, for cases 

where a closed form solution exists (see Dotsey (199011, the numerical policy 

functions are within two hundredths of one percent of the true solutions. 
8 

restrict the range of the policy function for capital to lie on capital grids 

while Coleman does not. 

7 
Intuitively, the ergodic set of capital is a set of numbers {KI K I K 5 K) 

such that its complement has probability zero. This means that once capital 

falls into this set, it stays there forever and never moves out. In our 

example, since the function G(K, T) is increasing in K and decreasing in t, 

the lower bound of the ergodic set, K, is the stationary point of G(K, t) 

where T is the highest tax rate, and the upper bound i? is the stationary 

point of G(K, ~1 where E is the lowest tax rate. 

8 
The metric we use to measure the distance between the approximate solution 

10 



3. The Tax Process 

As mentioned earlier, the tax process in our model economy is assumed to 

follow a first order autoregressive process. In this section we provide some 

empirical evidence on the time series behavior of tax rates in the U.S. This 

information will be used to formulate a finite state Markov chain for the tax 

rate in order to implement the discrete state space solution algorithm. 

The data we used to characterize the'behavior of tax rates in the U.S. 

are the effective tax rates on corporate investment compiled by Auerbach and 

Hines (1988). According to one of their measures, the effective tax rates 

vary from 0.036 to 0.605 in the period of 1953 to 1985, with mean and 

variance equal to 0.4 and 0.02, respectively. 9 
A simple regression reveals 

the following result: 

=t 
= 0.06 + (;. W)T~-‘. R2 = 0.55, SE = 0.1, DW = 2.05 

(0.061 . 

where the standard errors of estimates are indicated in parentheses. 

Given the empirical evidence, we choose a five state Markov chain to 

approximate the tax process with the first order autocorrelation coefficient, 

P, set to 0.8. The approximation method we used was proposed by Rebel0 and 

Rouwenhorst (1989). This approximation generates a family of one parameter 

Markov processes that have a binomial stationary distribution. The single 

parameter of this family, rr', determines the AR(l) coefficient of the process, 

which is 2x-1, but does not influence other moments of the distribution. We 

and the true solution is the absolute percentage deviations weighted by the 

stationary probability of capital and tax. Later we also use an alternative 

metric to measure the distance. 

9 
Auerbach and Hines computed several tax rates measures, taking into account 

the firm's expectations of the tax reform. The measure we employed is based 

on the assumption of variable reform probability with a low adjustment cost 

of investment. This measure is less persistent than other measures. We drop 

the 1986 observation, which has -45% effective tax rate. 

11 



briefly summarize their method below. 

Let M be the number of states of the process. The transition matrix of 

a two-state process, lT 
2' 

is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IT2 = lRR liR . 
[ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

The recursive procedure to determine the transition probability of a M-state 

process, 
TTM* 

is to, first, compute a matrix P, (j = 3;*.,M) according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

L 

‘0 

P =lC 
j-l - 

j 
0' 0 

where 0 is a (j-1)x1 vector of zeros. To obtain the transition matrix Il., 
3 

divide P 
j 

by two except the top and bottom rows to restore the requirement 

that conditional probabilities sum to one. 
10 

In addition to the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, we wish also to limit other moments of 

the tax process, especially, its mean, variance and the range over which it 

varies over the sample period. However, given the number of states being 

used, one can choose only two out of the three parameters. Our experiments 

indicate that the performance of various approximations is not sensitive to 

the specification of mean, so we choose to limit the variance and the range. 

Specifically, the tax rate is assumed to take five equal-distance values over 

0.06 and 0.63 with variance equal to 0.02. The mean of the tax rate implied 

by this choice is 0.35. 

10 
With p = 0.8, the transition matrix of a five-state process is given by 

.6561 .0081 .0009 .0729 0001 -2916 .6804 .1476 .0244 .0036 .0486 .6886 .2214 .0486 .2214 .0036 .1476 .6804 .2916 .0244 .OOOl .0009 .0729 .6561 .0081 
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4. Comparison of Policy Functions 

The parameterization used in comparing the various approximation methods 

with the discrete state space procedure is to let a = 0.3, 6 = 0.05, p = 0.96 

and 8 = 0.3. The benchmark value for (r is set to 1. Later we also consider 

the cases of Q = 2 and 10 in order to understand the effects of increasing 

the curvature of the utility function. The parameterizations chosen are well 

within the values used in the real business cycles 

steady state labor supply of 0.18 and a real interest 

literature and imply a 

rate of 4.2 percent. 

A. General Characteristics of the Performance of Various Approximations 

We first compare the relative accuracy of the approximations by looking 

at the difference between the policy functions. To make the graphs of the 

policy functions readable we only display them for two interior points of the 

tax rate (i.e., T = 0.21 and 0.49). This range covers about 87 percent of 

the simulated tax rates. 

Figures (la), (lb), (1~) and (Id) contain graphs of the policy functions 

((r = 11 for the four approximation methods, plotted against those produced by 

the DSS procedure. These functions are plotted over the approximate ergodic 

set of capital which contains more than 2300 grid points. As can be seen, 

all four approximations produce policy functions for output, capital, and 

labor hours that are close to those generated by the DSS method. Regarding 

consumption, the KPRl and DSS policy functions are almost identical. The 

KPR2 procedure (i.e., the one that linearizes around the level of the steady 

state) also performs relatively well. This is not true of either the LIN or 

LOG approximations. In fact, the policy function for consumption under these 

two procedures is not monotonic in the tax rate, which is counter intuitive. 

The LOG and LIN (and KPR2) approximations match the policy function for 

13 



investment reasonably well, but here the KPRl procedure performs poorly. l1 In 

particular, the KPRl solution exhibits large deviations from the DSS solution 

near the boundaries of the ergodic set. The market clearing condition is 

apparently violated. Note also that the KPRl solution prevents investment 

from becoming negative when tax rates are high. 
12 

Regarding the real interest rate, both KPRl and KPR2 appear to generate 

good approximations while LOG does not match at all. Since the real interest 

rate depends on the marginal utility of consumption, a poor approximation to 

consumption under the LOG procedure translates into a poor performance of the 

real interest rate. The LIN solution appears to perform better than the LOG 

solution, but it is still worse than the KPR approximations. 

This simple visual inspection while indicative of the relative strengths 

and weaknesses of the various approximation procedures can also be somewhat 

misleading. The greatest departures from the DSS solutions usually occur 

near the boundaries of the ergodic set. If these areas of the state space 

are only reached with low probability then the deviations of the approximate 

solutions may not be very important. To investigate the importance of the 

observed disparities in the approximate solutions from those generated by the 

DSS procedure we weighted the differences by the stationary (unconditional) 

probability of landing at the particular point in the state space. This 

limiting distribution is approximated by a frequency count of capital and 

taxes calculated from a sample path of 2000 observations generated by the DSS 

procedure. This process is repeated 100 times in order to compute the 

average errors. The results of this experiment are given in Table la where 

all numbers represent the probability weighted percentage errors in the 

11 
Recall that the KPR2 procedure generates the same investment function as the 

. LIN procedure. 

12 
This result is due to the fact that the KPRl approximation expresses all 

variables in .terms of the log (except the real interest rate), implying that 

the level must be positive. 

14 



policy functions. The estimated standard deviation of the mean is indicated 

in the parenthesis. 

Looking at panel A ((r = 1). it is clear that the policy functions for 

investment and the real interest rate are the most difficult functions to 

approximate. The two KPR procedures, which appear to perform well in terms 

of the real interest rate, generate a weighted error of more than 50 percent 

from the DSS solution. Also, even though the LOG approximation appears to 

perform poorly with respect to consumption the weighted differences are not 

very large. In order to illustrate more clearly the relative merits of each 

approximation scheme a symbol is utilized to indicate improvement (+I or 

deterioration (-1 as one moves from the LOG or the LIN approximation to the 

corresponding KPR approximations. In general, KPRl is better with respect to 

consumption and the interest rate but worse in terms of investment. This 

result is consistent with the figures presented before. Note, however, that 

the performance of consumption deteriorates as one switches from LIN to KPR2. 

One final observation, which deserves closer examinations, concerns the 

performance of the investment function when (r = 1. Contrary to the visual 

impression from the graphs of the policy functions, the KPR2 (or LIN) 

approximation generates a surprisingly larger error for investment than does 

the KPRl approximation. This result is in part due to the metric we use. 

However, it also results from the fact that the KPR2 approximation is 

particularly vulnerable to some areas of the state space that generate small 

values for investment. In order to see this more clearly we present in Table 

lb some detailed information on the errors of investment, concentrating on 

two areas of the state space that have positive probability. It is clear 

from this table that although the KPR2 investment is more accurate than the 

KPRl investment in most regions of the state space, its performance worsens 

dramatically when the true investment is small in absolute value. Even 

15 



though this area of the state space is reached with low probability, such 

outliers will dominate the weighted errors. As the value of (r increases this 

anomaly disappears. 

The above discussion suggests that the metric we used is sensitive to 

the scale of the DSS solutions. In order to isolate this problem we employed 

the mean absolute error, which is scale independent, to measure the distance 

between the approximate solutions and the DSS solutions. This distance was 

divided by the "length" of the DSS solution in order to normalize the unit. 
13 

The results using this metric are summarized in Table lc. Again, the figures 

reported are the average mean absolute errors based on 100 simulations. It 

is clear from this table that except for investment the relative accuracy of 

the four approximations is the same as before. Here, both LIN and LOG are 

more accurate than KPRl in terms of investment, which is consistent with the 

graphs of the policy functions. It appears that on average KPR2 has a better 

performance than the other approximations according to this metric. 

B. Performance on the Time Domain 

To further see how important the discrepancies in the policy functions 

are, we compared the correlation matrices generated by each procedure for the 

case of c = 1. A Monte Carlo simulation which involves 100 repetitions of 

the model economy was conducted. The results of this experiment are given in 

Table 2 where all figures reported are the average correlation coefficients. 

As expected the discrepancies between correlation coefficients generated by 

LIN and LOG involving interest rates are noticeable, while those involving 

13 
For example, the mean absolute error of the policy function for capital is 

K~r{Pr[K,rlxlGi(K,r)-G(K,r)l} 1 KZrPr[K.rlxlG(K,r)l, 

where Pr[K,ri is the joint probability of K and T, G(K,z) is the DSS solution 

and Gi(K,r) (i = KPRl, KPR2, LOG, LIN) is the approximate solution. 
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investment under KPRl are also fairly large. The correlation coefficients 

generated by KPR2 are well within 10 percent of those generated by the DSS 

solutions, 
14 

so by this standard KPR2 has the best performance. 

One aspect suggested by the graphs of the policy functions is that the 

various approximations to the policy functions should be closer to those 

generated by the DSS procedure as the ergodic set of capital becomes smaller. 

To check this conjecture we reduced the variance of the tax process from 0.02 

to 0.002 and reexamined the weighted differences. They generally fall by at 

least one order of magnitude and there are no significant differences in the 

correlation coefficients. These last results agree strongly with those of 

Christian0 (1989) who found that the accuracy of the approximations was 

sensitive to the variance of the technology shock. 

C. A Statistical Test: The Den Haan-Marcet Statistic 

One final comparison between the various approximation procedures was 

performed. It involves checking whether the approximate solutions satisfy 

the orthogonality conditions implied by the Euler equations. We employ a 

procedure suggested by Den Haan and Marcet (1989) to perform such a test. 
15 

. 1  

141n addition to the sample moments we also computed the theoretical moments 

implied by the KPR2 solutions. The theoretical correlations among endogenous 

variables are almost identical to the figures in Table 2. 

i5Let c t+l be the Euler equation residual, which in our example is given by 

&t+l = f3 [ 
(C t+lKt)-c (1 - 6 + rt+i) (wt+i/wtl 

(I-e)(d) 

1 
_ 1 

This expression is obtained by substituting into (3a) the factor payments and 

the labor/leisure decision implied by (3b). The Den Haan-Marcet statistic 

for testing the orthogonality condition Et[ct+ll = 0 is given by m = 

it m~z,l [Xz’z & -t-t t~Il-l[Zgtgzl~, where 2 is a vector of the OLS estimates in a 

regression of ct+l on an "instrumental" vector zt, which includes variables 

contained in the information set at time t. This statistic has an asymptotic 

chisquared distribution with degree of freedom equal to the dimension of the 
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The results are summarized in Table 3. It is clear that for all cases under 

consideration none of the approximation methods satisfy the Euler equations. 

The probability values (i.e., the tail area) of the test statistic are close 

to zero and very significant. The statistics for the DSS solutions, however, 

are small, indicating that the orthogonality conditions are satisfied by the 

DSS solutions. 

D. Increasing the Curvature of Utility Function 

We mentioned earlier that the accuracy of approximations is sensitive to 

the variance of shocks. We now examine another type of perturbation which 

has important implications on the relative accuracy of linear approximations. 

Specifically, we are interested in the accuracy results with respect to the 

parameter governing relative risk aversion. The results reported in Table la 

and lc show that as the value of (r rises the solutions for quantities under 

each of the approximation schemes become closer to those generated by the DSS 

procedure. The reason for this result is that as agents become more risk 

averse they try harder to smooth consumption and leisure and this tendency to 

smooth becomes the dominant aspect of behavior. Essentially as the (r value 

gets large all solution procedures tend to be driven by this motive and 

converge to the same quantity solutions. In fact, our experiments indicate 

that the variances of all the quantities decrease as the 6 value increases. 
16 

Although quantities become more accurate the performance of the interest 

rate actually deteriorates as the (r value increases. This result is driven 

vector z 
-t- 

The value of m should be "small" if the orthogonality condition 

is satisfied. In our test, the vector gt is chosen to include a constant and 

2 lagged values of consumption growth (Ct+l/Ct), the rental rate rt+l and the 

wage growth (w~+~/w~). 

16 
For example, as c increases from 1 to 10, the variances of consumption and 

capital decrease-from 0.040 and 0.19 to 0.035 and 0.15, respectively. Other 

quantities also exhibit declining variability as the (r value increases. 
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by two potentially offsetting forces. Recall that the real interest rate is 

a function of the marginal utility of consumption, the magnitude of which is 

in part controlled by the parameter Q and in part controlled by the point at 

which the function is evaluated. Given the assumed utility function, the (ex 

post) real interest rate, 
e 

which can be approximated by rt E ln(l+rF), will 

involve a term that captures the growth of consumption multiplied by (r. 

Thus, the accuracy of the interest rate will depend on the performance of 

consumption as well as the value of C. It is clear that although consumption 

becomes closer to the true solution as the value of (r gets large, this gain 

may be outweighed by the higher (r value which makes the utility function more 

concave. 

E. A "Nearly" Permanent Tax Process 

The policy functions displayed in figures (la)-(ld) indicate that the 

various approximations perform relatively well around the stationary point of 

the capital stock. That is, for any given tax rate the approximate solutions 

are close to the DSS solutions around the corresponding stationary value of 

capital. This observation suggests that the four approximations might yield 

relatively more accurate solutions if tax shocks are permanent. To check 

this conjecture we increased the value of p from 0.8 to 0.999. Although the 

shocks are not permanent in this case, they are highly persistent. 

In Table 4 we report the approximation errors for the case of c = 1. It 

is clear that, regardless of the metric used, all the approximate solutions 

exhibit substantial improvement over those generated by a less persistent tax 

shock. Again, this result stems from the fact that for a highly persistent 

tax shock the realized values for capital will be heavily concentrated on the 

surrounding area of the stationary points, and 'as pointed out before, all the 

approximation procedures are fairly accurate around these stationary points. 
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In figure le we plot the frequency distribution of the capital stock for p = 

0.8 and 0.999, respectively. As can be seen, while the distribution has the 

usual bell shape when p = 0.8, it degenerates to three mass points when p = 

o.999.17 

One notable difference when p = 0.999 is that LOG performs better than 

KPRl in terms of consumption, which should be interpreted with caution. This 

result implies only that the LOG approximation is more accurate than the KPRl 

procedure around the stationary point of capital. It says nothing about the 

fit of the policy function over the entire state space. In fact, the policy 

function for consumption under LOG in this case is similar to the graph shown 

in figure lb. Thus, if one were interested in the response of consumption to 

tax shocks, the LOG procedure will still yield a misleading transition path 

even though the stationary point is closer to the true solution. 

5. Frequency Domain Comparison 

In this section we extend the comparison to the frequency domain and 

examine the coherence function between realizations generated by the discrete 

state space solutions and those produced by the various approximations. This 

analysis allows us to compare the goodness of fit by frequency. 

The coherence between the DSS solutions and the approximate solutions 

were estimated using a standard time series method. For each variable, a 

sample path of 1000 observations were generated from each solution procedure. 

These data were then used to estimate the coherence over the frequency [O,nl 

(i.e., cycles per period). A window of width 50 was utilized to smooth the 

17 
The distribution of capital is simulated from a sample path containing 2000 

observations, starting from the mean tax rate at the initial date. Because 

of the high persistence in shocks the realizations never visit either of the 

two boundary points of the tax support. If more observations were generated, 

then the realized tax rates might cover the entire space, in which case the 

distribution of capital will concentrate on five stationary points. 
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spectral and cospectral densities needed to compute the coherence function. 

The results of this experiment are presented in figure 2, which are 

consistent with the material reported in the previous section. 'Recall that 

LOG and KPRl produce identical solutions for capital, labor, and output while 

LIN and KPR2 produce identical solutions for capital, labor, and investment. 

Therefore, some of the curves overlap in the figure. In general, all four 

approximations have a coherence of greater than 99 percent with respect to 

output, capital, and labor hours. Some systematic differences do exist, but 

their magnitudes are trivial. The two KPR methods approximate interest rates 

and consumption quite well while both LIN and LOG generally account for about 

50 percent of consumption and the real interest rate generated by the DSS 

procedure. Notice that both LIN and LOG perform poorly with respect to these 

two variables at high frequencies (short cycles). Regarding investment, both 

LIN and LOG show a high degree of coherence while KPRl's coherence with DSS 

is noticeably lower. On balance, our experiment suggests that KPR2 seems to 

have the best performance in this regard. 

6. Summary and Conclusions 

In this paper we have investigated several approximation methods widely 

being used in the literature to solve for dynamic equilibria. These methods 

generally work quite well in models where the underlying forcing process has 

small variance. However, for models in which dynamics are driven by fiscal 

or monetary shocks, which have exhibited substantial variations over time, 

these approximation methods may not be very accurate. The findings of this 

paper generally support this conjecture. 

Although our example is somewhat limited in scope, we believe that our 

experiments provide some useful guidelines on how to select an approximation 

scheme given the model that is being studied. In general, the approximation 
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methods we investigated are all fairly accurate in terms of capital, output, 

and labor hours, but fail to some extent with regard to other variables. The 

linear KPR approximation (KPR2) performs relatively well on all dimensions 

compared to the other approximation procedures. The log-linear KPR 

approximation (KPRI) is not very accurate in terms of investment, so if one 

were primarily interested in the effects of taxes on investment, this 

procedure is not recommended. Both the LIN and LOG approximations perform 

poorly in terms of consumption and the real interest rate, so these 

procedures might not be appropriate for analyzing the welfare implications of 

tax policies. 

One of the disadvantages frequently raised by many researchers regarding 

the discrete state space method is that it is costly to implement. This is 

certainly true for models in which the state space has large dimensions. But 

if the problem on hand is relatively small and one is not certain about the 

accuracy of the linear approximations, then the discrete state space method 

is an inexpensive and feasible procedure. There are many "tricks" that can 

be used to speed up the computation as well as to improve the accuracy. Our 

implementation of the algorithm takes an average of 6 to 10 CPU minutes to 

solve the.problem on a standard mainframe computer. Considering the accuracy 

gain one might achieve, this cost is tolerable. 
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Appendix A 

This appendix sketches the procedures for deriving the policy functions 

for capital and labor hours under both the LIN and LOG approximations. 

LIN Procedure 

To conserve on notation, rewrite the Euler equations (3a) and (3b) as 

follows: 

.dKts Kt+l. Nt) = B Et[h(Kt+l, Kt+2, Nt+l, l--~~+~)l, (Al) 

q(Kt. Kt+l, Nt) = w(Kt, Nt, I--T& 

where 

g(Kt.Kt+l'Nt) = uclF(Kt,Nt) + (l-cS)Kt - Kt+l, l-N& 

t+1 - K 

(A21 

h(K 
t+l’Kt+2’Nt+l’l-Tt+l 

I) = uc[F(Kt+l,Kt+l) + (l-6)K 

r (l-r t+l)Fk(Kt+l.Nt+l) + (l-a)], 

t+2' l-Nt+ll x 

qMt'Kt+l'Nt) = 

ulIF(Kt,Nt) + (l-d)Kt - Kt+l, l-N& 

uc[F(Kt,Nt) + (l-6)Kt - Kt+l, l-Nt]' 

w(Kt’Nt, I-rt) = (l-rt)Fn(Kt,Nt). 

Let K* and N* be the nonstochastic steady state values of capital and hours 

worked and t* the unconditional mean of t 
t* 

With the Cobb-Douglas technology 

(4) and the CRRA preferences (51, it can be shown that at the steady state, 

(l-a)(l-r*) 
N* = and K* = A1'(l-a) Ns 

8 

(i-e)(i-aA)/ + Cl-a)(l-t*) 

where A = ap(l-t*)/[l-f3(1-611. For subsequent derivations, it is convenient 

to define et = Kt - K*, fit = Et- N* and 1 - T, = (l-rt) - (l-t*) for all t. 

Now, taking a first order Taylor's approximation to equations (Al) and 

(A21 around K*, N* and (l-t*) yields the following linear system: 
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+ g* ii 
si Kt 2 t+1 + g; N”t = 

/3 Et[hf Et+1 + h; Et+2 + h; fit+1 + hl; Cl-;,+,)I, (A3) 

+ q* ir 
4; Kt 

2 t+l + q; it = w; iT, + w; Gt + w; G,), (A4) 

where gf, h!, q;, and UT are the partial derivatives of the corresponding 

functions with respect to the i 
th 

argument evaluated at K*, N* and t*. In 

deriving (A3) and (A4), use has been made of the fact that g* = ph* and q* = 

w* at the steady state. 

Equations (A3) and (A4) jointly determine capital Et+l and labor Et for 

the given states Et and Gt. To solve the system, observe from (A4) that 

iit = p; Et - p;. ft+l + p; (Gt), (A5) 

where p; = (WY - q;)/(qj - wz), ps = q;/(qz - wz) and p3 = w;/cq; - w;,. 

Now, updating (A5), taking conditional expectations and substituting it and 

the resulting Et(st+l ) into equation (A3) produces an "expectational" second 

order difference equation in Et: 

Et(Et+2) + a it+1 + b it = c (l-Gtl, (A6) 

where 

a = [p(h; + hj p;) + g* 
3 P.2 

* - $1 / 6th; - h; p;), 

b = -(gi + gj pi) / B(h; - hj pi', 

c = [g; p; - /3(h; + h.; p;)pl /P(h; - hj, p;). 

Using standard methods (e.g., Sargent (1979)). the above difference 

equation yields a solution for l?t+l as follows: 

C 

ic = x1 if, + (1-Q (A7) 
t+1 

hl+a+p 

where h 
1 

is the "stable" root (i.e., jh 1 < 1) of the characteristic equation 
1 
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A2 + ah + b = 0. 
18 

Substituting (A71 into equation (A51 produces 

C 

N"t 
= (pi - P; $1 Kt + 'p; - 

hl+a+p 

P;) (1-Q (~81 

Rewriting (A7) and (A8) in terms of Kt+i and Nt yields the policy functions 

(6a) and (6bl in the text. 

LOG Procedure 

The LOG procedure is identical to the LIN procedure except that the 

linearization is taken around the logarithm of the steady state values of Kt, 

Nt and (l-t,). Specifically, let kt = In Kt , nt = In Nt and 4, = ln(l-rt), 

then the Euler equations that correspond to (All and (A21 can be expressed as 

follows: 

g(kts kt+lt n,) = P EtIK(kt+lB kt+2, nt+l, $,,,)I, (A91 

6(kt. kt+l. n,) = ;(kt. nt, 4~~1, (A101 

where the functions 2, h, q and w are defined analogously except that capital 

letters are replaced by their exponential representations (e.g., Kt = exp(ktl 

etc.) and (l-rt) = exp(4,). We use different notation for these functions to 

emphasize the fact that the points at which these functions are evaluated are 

different from those under the LIN approximation. 

Define Et = kt - k*. f;, =n t - n* and St = 4, - 9' and following the 

same procedure as before, we obtain a similar difference equation in Et: 

Et(k"t+21 + a ct+i + b k, = c St, 

where 

(All) 

18 
With the Cobb-Douglas production function and the CRRA utility function, it 

can be shown that the coefficient b in equation (A6) is greater than one and 

that one of the roots of the characteristic equation is unstable and the 

other is stable. This property is also discussed in King, Plosser and Rebel0 

(1988a). Choosing the stable root amounts to imposing a transversality 

condition for which an equilibrium solution must satisfy. 
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and pi = (;i - ,i)/(,; - Gz), P; = $'(ljj - ;;) and pz = $/(i; - ;z). Since 

the utility function and the production functions are evaluated at different 

points, the values of the coefficients a, b and c are different from those of 

equation (A6). 

The capital stock kt+l that solves equation (All) is 

i; = Xl i;, + 
C 

t+1 
i1 + a + p 

7,. (A12) 

Again, xl is the stable root of the characteristic equation h2 + ah + i = 0. 

The corresponding policy function for Gt is 

~=(p; -N c 
“t -Pp1) kt+ G;-;\ +a+p P;, St. 

1 

(A13) 

Rewriting (A12) and (A13) in terms of kt+l and nt yields the policy functions 

(lla) and (lib) in the text. 
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Appendix B 

In this appendix we describe the numerical method we used to solve the 

problem in the text. Mathematical background for this method can be found in 

Coleman (1989) (see, also, Baxter, Crucini and Rouwenhorst (1990)). 

Let K' = G(K,-c) and N = H(K,'L-) be the policy functions that solve (3a) 

and (3b) where for notational brevity the unprimed variables denote variables 

at time t and single primes denote variables at time t+l. To solve for G and 

H, we first obtain from (3b) a solution for labor, denoted fi(K,t,K'), for any 

given triple of K, t and K'. 
19 

The value of this function is used first to 

eliminate labor from (3a) and second, to avoid unnecessary discretization of 

the labor space. Once the optimal solution for capital is determined, the 

labor decision can be uncovered by the relation H(K,r) t fi[K,t,G(K,t)l. To 

solve for G(K,t) we introduce a mapping, T, which operates on the function G 

and is defined recursively by (3a). Formally, this mapping is given by 

uc F[K,H(K.t)] + (l-8)K - TG(K,t), 
[ 

I-H(K,t) 
I 

= 

BE uc 
I[ 

F{TG(K,r),H[TG(K,t),r'l)+oTG(K,r)-G[TG(K,~),~']. l-H(TG(K,t).t'] 

3 
x 

(l-r')F,(TG(K,~),HITG(K,r),r'l) + (l-6) . (Bl I 

Equation (Bl) is obtained from (3a) with capital and labor replaced by the 

appropriate functions. For example, the end-of-period capital at time t+l is 

given by G[TG(K,r),r'l. Note that TG is an argument of G. The function H, 

which appears also in (Bl), should be interpreted as the function fi evaluated 

at appropriate points (e.g., H(K',T') = ~[TG(K,t),t',G(TG(K,z),t')l, etc.). 

The expectation on the right side of equation (Bl) is taken over values of T' 

conditional on t. In section 3, we describe a method to approximate the 

conditional distribution of t. 

19 
Note that (3b) is an algebraic equation, which can be easily solved using 

standard methods such as the Newton-Raphson procedure. 
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,The operator defined by (Bl) maps a function G to another function TG. 

The fixed point of this mapping (G = TG), which exists under regularity 

conditions (see Coleman (1989a)). is the equilibrium solution for capital. 

The DSS procedure we use approximates this function by iterating on (Bl) 

using the standard successive approximation algorithm. Starting from a given 

function, say, Go, this algorithm first searches a new function G1 = TG" that 

solves equation (Bl) for all possible pairs of K and t. The values of G are 

restricted to lie on the fixed grid points of capital. If Gl is not equal to 

GO. then the function G1 is taken as the new starting point and the process 

continues. This procedure generates a sequence of policy functions {GJ) that 

uniformly converges to the fixed point of the functional equation (Bl) (see 

Coleman (1989) ). Let cj = suplGj(K,t)-Gj-' (K,t)l be the posterior error at 

step j. Then the iteration stops when cJ is a small number, at which point 

GJ(K,r) is taken to be a numerical approximation to the policy function for 

. 

capital. Associated with Gj is a policy function HJ for labor, obtained by 

substituting GJ into the function fi. Once capital and labor are determined, 

other quantities and prices can be derived. 

There are a number of ways to improve the efficiency of the algorithm. 

For example, starting from a zero function, the sequence of functions {GJ) 

generated by (Bl) is monotonic and increasing (see Coleman (1989)), so it is 

not necessary to evaluate both sides of (Bl) over the entire state space in 

order to find the new policy function. The monotonicity of the functional 

operator defined by (Bl) greatly speeds up the computational algorithm. 
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Table la 

Probability-Weighted Percentage Errors in Policy Functions 

(Tax Process: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.8) 

Log-Linear Approximation Linear Approximation 

Y 

K 

N 

C 

I 

R 

Y 

K 

N 

C 

I 

R 

Y 

K 

N 

C 

I 

R 

LOG KPRl LIN 

Panel A: cr = 1 

KPR2 

1.15 (0.001 

1.43 (0.001 

1.64 (0.00) 

2.96 (0.011 

118.86 (6.05) 

383.16(18.94) 

[Ol 1.15 (0.00) 1.95 (0.00) 

(01 1.43 (0.00) 1.51 (0.01) 

[Ol 1.64 (0.00) 2.77 (0.01) 

[+I 1.35 (0.001 1.98 (0.011 

[-I 137.78 (7.81) 252.8OC43.92) 

[+I 76.24 (3.53) 141.27 (6.11) 

Panel B: (r = 2 

[+I 1.34 (0.011 

101 1.51 (0.011 

[Ol 2.77 (0.011 

i-1 2.99 (0.02) 

(01 252.8Ot43.42) 

[+I 52.28 (3.08) 

1.10 (0.00) 

1.17 (0.00) 

1.58 (0.01) 

2.41 (0.01) 

86.09 (5.62) 

494.28t63.28) 

0.97 (0.011 (01 0.97 (0.00) 0.96 (0.011 

0.75 (0.001 (01 0.75 (0.001 0.64 (0.001 

1.40 (0.01) IO1 1.40 (0.01) 1.37 (0.01) 

1.44 (0.00) [+I 0.69 (0.00) 0.92 (0.00) 

21.42 (0.48) t-1 22.02 (0.55) 14.92 (0.62) 

420.49C36.761 [+I 159.41(14.78) 512.39(47.42) 

tOI 1.10 (0.00) 1.25 (0.00) 

(01 1.17 (0.00) 1.05 (0.01) 

LOI 1.58 (0.01) 1.78 (0.00) 

[+I 1.06 (0.001 1.50 (0.011 

[-,I 110.74 (3.23) 73.08 (1.81) 

[+I 100.79(11.55) 159.61(16.85) 

Panel C: (r = 10 

[Ol 1.26 (0.01) 

101 1.05 (0.011 

to1 1.78 (0.00) 

r-1 2.48 (0.01) 

(01 73.08 (1.81) 

I+1 100.20(14.01) 

t-1 1.48 (0.01) 

[Ol 0.64 (0.01) 

to1 1.37 (0.001 

f-1 1.89 (0.01) 

101 14.92 (0.62) 

[+I 87.07 (7.80) 

Note: 1. The percentage error is calculated according to: 

100 x KZt{Pr[K,rlxl [Gi(K,~)-G(K,r)l/G(K,r) I), 

where Pr[K,tl is the stationary probability of K and r, Gi(K,rl 

is the approximate solution and G(K,t) is the DSS solution. 

2. Figures reported are the average percentage errors calculated from 

100 simulations of the model. Each simulation generates from the 

DSS procedure 2000 observations of K and t which are used to 

approximate the joint distribution of K and t. The estimated 

standard deviation of the mean of percentage errors is indicated 

in the parenthesis. 
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Table lb 

Detail Information on the percentage Errors of Investment 

State 

(r, 

K 

(2) 

0.49 0.6426 -0.0277 

0.49 0.6567 -0.0295 

0.49 0.6662 -0.0311 

0.63 0.1422 0.0016 0.0047 0.0937 -0.0230 0.7602 

0.63 0.1497 -0.000001 0.0042 418.9136 -0.0238 2380.1079 

0.63 0.1567 -0.0011 0.0038 0.2158 -0.0245 1.0173 

DSS 

Investment 

13) 

KPRl KPR2 

% error I % error 

(5) (6) (7) 

Panel A 

0.0026 0.0546 

0.0025 0.0542 

0.0024 0.0538 

Panel B 

-0.0304 0.0047 

-0.0318 0.0038 

-0.0328 0.0028 

Note: The first two columns indicate the state of the economy and the 

third column lists the values of the DSS investment for the 

corresponding states. Columns (4) to (6) list the values of 

investment and the probability weighted errors for KPRl and KPRZ, 

respectively. 
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Table lc 

Probability-Weighted Absolute Errors in Policy Functions 

(Tax Process: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.8) 

Log-Linear Approximation Linear Approximation 

LOG 

.Oll (.OOOl 

013 (.OOO) 

:015 (.OOO) 

.029 (.OOO) 

201 (.OOOl 

:334 (.OOll 

:011 010 (.OOOl (.OOOl 

.014 (.OOO) 

.023 (.OOO) 

:298 182 (.OOll (.OOO) 

[Ol 

ro1 
LOI 

I’; 

[+I 

LOI 
101 

[Ol 
[+I 
[-I 

[+I 

KPRl 

Panel A: cr = 1 

LIN KPR2 

.Oll (.OOO) .020 (.OOOl 

:015 013 (.OOO) (.OOOl .024 .013 (.OOO) (.OOOl 

.013 (.OOOl .019 (.OOO) 

:092 619 (.002) (.OOOl :277 192 (.OOO) (.OOl) 

Panel B: (r = 2 

[+I 

[Ol 
[Ol 

1-l 

[Ol 

[+I 

.012 (.OOOl 

:024 013 (.OOOl (.OOO) 

.029 (.OOO) 

.192 (.OOO) 

.125 (.OOO) 

:011 010 (.OOO) (.OOO) .014 .OlO (.OOO) (. 0001 

.014 (.OOO) .017 (.OOOl 

.OlO (.OOOl .014 (.OOOl 

:092 399 f.000) (.OOl) :249 153 (.OOO) (.OOl) 

Panel C: (r = 10 

[+I 
lOI 

ro1 
t-1 
ro1 

I+1 

:010 011 (.OOOl (.OOOl 

.017 (.OOOl 

-024 (.OOO) 

.153 (.OOO) 

.109 (. 000) 

009 (.OOO) 

:007 (.OOO) 

.012 C.000) 

.014 (.OOOl 

135 (.OOOl 

:374'(.001) 

[Ol 

(01 

[Ol 

[+I 

r-1 
[+I 

.009 (.OOO) .OlO (.OOO) 

.007 (.OOOl .006 (.OOOl 

.012 (.OOOl .012 (.OOO) 

.007 (.OOO) .009 (.OOO) 

.156 (.OOO) 114 

.112 (.OOOl :446 

(.OOO) 

(.OOll 

1-I 

to1 

ro1 
.[-I 
101 

[+I 

013 (.OOO) 

:006 t.000) 

.012 (.OOOl 

.018 (.OOO) 

.114 (.OOOl 

.lll (.OOO) 

Note: 1. The absolute error is calculated according to: 

K~r(Pr[K,rlxlGi(K,r)-G(K,t)l} / ,EtPr[K,,zlxlG(K,t)l, 
, 

where Pr[K,tl is the stationary probability of K and t, Gi(K,t) 

is the approximate solution and G(K,t) is the DSS solution. 

2. Figures reported are the average squared errors calculated from 

100 simulations of the model. Each simulation generates from the 

DSS procedure 2000 observations of K and t which are used to 

approximate the joint distribution of K and T. The estimated 

standard deviation of the mean of absolute errors is indicated 

in the parenthesis. 
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DSS 

LOG 

KPRl 

Table 2 

Correlation Matrices: (r = 1 

7 

1.000 

-0.985 

(0.000) 

-0.712 

(0.002) 

-0.975 

(0.000) 

-0.747 

(0.001) 

-0.901 

(0.001) 

-0.510 

(0.005) 

t 

1.000 

-0.406** 

(0.006) 

-0.984 

(0.000) 

-0.709 

(0.002) 

-0.970 

(0.000) 

-0.730 

(0.002) 

-0.876 

(0.001) 

Y 

1.000 

0.816 

(0.001) 

0.923 

(0.000) 

0.846 

(0.001) 

0.822 

(0.001) 

0.358 

(0.005) 

Y 

1.000 

0.308* 

(0.006) 

0.821 

(0.001) 

0.912 

(0.000) 

0.828 

(0.002) 

0.800 

(0.001) 

T 

1.000 

-0.984 

(0.000) 

-0.709 

(0.002) 

-0.970 

(0.0001 

-0.741 

(0.001) 

Y 

1.000 

0.821 

(0.001) 

0.912 

(0.000) 

0.845 

(0.0011 

K 

1.000 

0.541 

(0.002) 

0.993 

(0.0001 

0.348 

(0.0011 

-0.210 

(0.003) 

K 

1.000 

0.522 

(0.0021 

0.971 

(0.0001 

0.345 

(0.001) 

N 

1.000 

0.584 

(0.001) 

0.970 

(0.000) 

0.683 

(0.004) 

N 

1.000 

0.560 

(0.002) 

0.939 

(0.001) 

C I R 

1.000 

0.392 1.000 

(0.001) 

-0.173 0.803 1.000 

(0.003) (0.002) 

C I R 

1.000 

0.325" 1.000 

(0.002) 

-0.094*** 0.503** -0.196* 0.729 1.000 

(0.005) (0.006) (0.005) to.0041 

K N C I R 

1.000 

0.522 1.000 

(0.002) 

0.993 0.558 1.000 

(0.0001 (0.002) 

-0.627*** 0.537*** 0.130*** 0.745** 0.158*** 1.000 

(0.005) (0.005) (0.004) to.0041 (0.004) 

-0.529 0.374 -0.196 0.706 -0.164 0.651** 1.000 

(0.004) (0.004) (0.002) (0.003) to.0021 (0.003) 
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LIN 

KPR2 

Note: 

t 

1.000 

-0.977 

(0.0001 

-0.719 

(0.002) 

-0.974 

(0.000) 

-0.726 

(0.002) 

-0.901 

(0.001) 

-0.359** 

(0.008) 

T 

1.000 

-0.986 

(0.0001 

-0.719 

(0.002) 

-0.974 

(0.0001 

-0.743 

(0.0011 

-0.901 

(0.001) 

-0.535 

(0.004) 

Y 

Table 2 (continued) 

K N C I R 

1.000 

0.831 1.000 

~0.002) 

0.910 0.544 1.000 

(0.0011 (0.0021 

0.851 0.986 0.558 1.000 

(0.001) (0.0001 (0.002) 

0.799 0.346 0.975 0.364 1.000 

(0.001) (0.001) (0.000) (0.002) 

0.200*** -0.129*** 0.474*** -0.185* 0.564** 1.000 

Y 

1.000 

0.825 

(0.001) 

0.923 

(0.0001 

0.845 

(0.001) 

0.815 

(0.0011 

0.386 

(0.004) 

(0.004) 

K 

1.000 

0.544 

(0.002) 

0.999 

(0.000) 

0.346 

(0.001) 

-0.202 

(0.002) 

(0.0091 (0.005) (0.011) 

N C I R 

1.000 

0.574 1.000 

(0.001) 

0.975 0.380 1.000 

(0.000) (0.001) 

0.711 -0.167 0.848 1.000 

(0.003) (0.002) (0.002) 

1. Figures reported are the average of 100 repetitions; each repetition 

contains 1000 observations generated by each solution procedure. 

2. The estimated standard deviation of the mean of correlation 

coefficients is indicated in the parenthesis. 

3. * = % difference h 10 % and s 20 %. 
** = % difference > 20 % and i 30 %. 
*** = % difference > 30 %. 
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Table 3 

The Den Haan-Marcet statistic for testing the orthogonality conditions 

6 DSS LOG KPRl LIN KPR2 

1 9.13 237 

(0.24) (0. % (0.001 (0.2, (0. El 

2 8.33 263 

(0.30) (0. :A, (0.001 (0. i% (0. o":, 

10 6.94 

(0.4 3) 

Note: The statistic (degree of freedom = 7) is computed based on a 

realization of 1000 observations, generated by each solution 

procedure. The probability value (i.e., the tail area) of 

the test statistic is indicated in the parenthesis. Test 

results are the same for smaller sample size and larger 

degree of freedom (i.e., more lags used to form instruments). 

Table 4 

Probability-Weighted Errors in Policy Functions ((r = 1) 

(Tax Process: p = 0.9991 

Log-Linear Approximation Linear Approximation 

LOG 

:076 190 C.0131 (.004) 

.272 (.@18) 

2:328 138 (.OlOI t.100) 

1.331 f.058) 

.002 (.OOO) 

001 (.OOO) 

1003 (.OOO) 

001 (.OOO) 

:017 C.001) 

.Oll (.OOOI 

KPRl LIN 

Panel A: Percentage Errors 

[Ol 190 

:076 

C.013) 803 

1:616 

C.082) 

IO3 f.004) C.240) 

to1 272 f.018) 1.141 C.116) 

1-l :390 C.036) 1.839 C.222) 

1-l 4.510 t.275) 34.869C5.042) 

[+I .825 C.041) 14.811(2.033) 

Panel B: Absolute Errors 

101 002 (.OOOl .008 (.OOl) 

(01 :001 (.OOOl 011 (.002) 

101 003 (.OOO) :011 (.OOll 

1-l :004 (.OOO) .016 (.OOZI 

t-1 023 

:007 

(.OOl) .231 C.032) 

I+1 (.OOO) -147 (.0201 

KPR2 

[+I . 191 C.0151 
[Ol 1.616 C.240) 

[O] 1.141 C.116) 

[-I 2.735 (.300) 

[O] 34.869(5.042) 

[+I 8.647 c.714) 

[+I * 002 (.OOO) 

(01 011 C.002) 

ro1 :011 (.OOl) 
L-1 024 (0.02) 

101 :231 f.032) 

[+I . 086 C.007) 

Note: Figures reported are the average errors calculated from 100 

simulations of the model. Each simulation generates from the DSS 

procedure 2000 observations of K and t which are used to approximate 

the joint distribution of K and t. The estimated standard deviation 

of the mean errors is indicated in the parenthesis. 
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Figure la: Policy Functions (DSS vs. LIN) 

(P arameters: 0 = 1, variance of 7 = 0.02) 
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Figure 1 b: Policy Functions (DSS vs. LOG) 

(P arameters: 0 = 1, variance of 7 = 0.02) 
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Figure lc: Policy Functions (DSS vs. KPRI) 

(P arameters: D = 1, variance of 7 = 0.02) 
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Figure Id: Policy Functions (DSS vs. KPRZ) 

(P arameters: cr = 1, variance of 7 = 0.02) 
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Figure le: Distribution of Capital 

CT = 1, p = 0.8 
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Figure 2: Coherence (DSS vs. LIN, LOG, KPRI and KPR2) 

(P arameters: c7 = 1, variance of 7 = 0.02) 
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