
How Well Do Multi-objective Evolutionary
Algorithms Scale to Large Problems

Kata Praditwong and Xin Yao

Abstract— In spite of large amount of research work in multi-
objective evolutionary algorithms, most have evaluated their
algorithms on problems with only two to four objectives. Little
has been done to understand the performance of the multi-
objective evolutionary algorithms on problems with a larger
number of objectives. It is unclear whether the conclusions
drawn from the experiments on problems with a small number
of objectives could be generalised to those with a large number
of objectives. In fact, some of our preliminary work [1] has
indicated that such generalisation may not be possible. This
paper first presents a comprehensive set of experimental studies,
which show that the performance of multi-objective evolu-
tionary algorithms, such as NSGA-II and SPEA2, deteriorates
substantially as the number of objectives increases. NSGA-II,
for example, did not even converge for problems with six or
more objectives. This paper analyses why this happens and
proposes several new methods to improve the convergence of
NSGA-II for problems with a large number of objectives. The
proposed methods categorise members of an archive into small
groups (non-dominated solutions with or without domination),
using dominance relationship between the new and existing
members in the archive. New removal strategies are introduced.
Our experimental results show that the proposed methods
clearly outperform NSGA-II in terms of convergence.

I. INTRODUCTION

Multi-objective problems involve two sets of variables.
The first set is a set of decision variables (input of a particular
problem) and the second set is a set of objective functions or
objective values (output of the problem). Thus, the solutions
will be measured in a space of objective functions. One factor
that makes multi-objective optimisation very difficult is the
number of objectives to optimise. In this work, we consider
a large number of objectives optimised as a large problem.

Thus, Deb [2] suggests that the number of objectives
makes an impact on the difficulty of the optimisation prob-
lems. The dimensions of the objective space vary according
to the number of objectives. Moreover, Farina and Amato [3]
explained the rapidly growth of a non-dominated space when
a number of objectives increases. The factor makes difficulty
to an optimiser to find non-dominated solutions close to the
Pareto front.

Although many researchers have invented multi-objective
evolutionary algorithms (MOEAs), problem generators, and
performance measurements, the number of publications re-
lated to a large number of objectives is very small. Almost
all simulated results focus on two or three objectives [4].

Kata Praditwong and Xin Yao are with The Centre of Excellence
for Research in Computational Intelligence and Applications (CERCIA),
School of Computer Science,The University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK, (email:kxp,xin@cs.bham.ac.uk).

Behaviour of MOEAs solving high-dimensional problems is
still under investigation with convergence properties.

Khare et al. [1] have shown that the three algorithms
(NSGA-II [5], PESA [6] and SPEA2 [7]) solved problems
(DTLZ1, DTLZ2, DTLZ3 and DTLZ6 in [8]) up to 8
objectives. An important comparison in many objectives from
[1] is that the scalability of objectives in each algorithm
is different. PESA has powerful scalability while NSGA-II
has a lack of scalability in terms of convergence. Generally,
NSGA-II has performed well in two or three objectives [9]
and [10].

Purshouse and Fleming [9] mentioned ineffectiveness of
NSGA-II in large numbers of objectives. The results from
this study showed that NSGA-II performs very well in small
numbers of objectives but its performance is very poor
when the number objectives is large. Moreover, the large
population size cannot help NSGA-II to escape from poor
performance on large numbers of objective problems.

Hughes [10] compared efficiency of two approaches,
Pareto based and non-Pareto based ranking. Multiple Sin-
gle Objective Pareto Sampling (MSOPS) [11] has been
used, which is a hybrid method of the aggregation method
with evolutionary algorithm. Repeated Single Objective
(RSO) [10] is a single objective EA based on the weighted
min-max approach. In large number objectives, MSOPS and
RSO were better than NSGA-II but in small number of
objectives NSGA-II was better than MSOPS and RSO.

Kukkonen and Deb [12] proposed truncating non-
dominated solutions in large numbers of objectives problems
to improve efficiency of distribution of candidate solution.
Farina and Amato [3], [13], and [14] introduced the concepts
of fuzzy dominance and fuzzy optimality.

Köppen et al. [15] and [16] implemented fuzzification of
the Pareto dominance relation based on the fuzzy ranking
scheme [15]. The novel MOEA, Fuzzy-Dominance-Driven
GA (FDD-GA) [16] has been evaluated on the Pareto-Box
problem up to 15 objectives. FDD-GA outperformed NSGA-
II in large numbers of objectives but NSGA-II was superior
in a few objectives.

Köppen and Yoshida [17] modified NSGA-II using the
new measurement schemes instead of the crowding distance.
The new schemes identify that a solution is nearly-dominated
by another solution. There are three criteria:

• the number of better objectives;
• the magnitude of all better objectives; or
• a multi-objective approach based on the above criteria.

The comparison was provided up to 15 objectives. The novel
NSGA-II using the multi-objective approach was superior to

3959

1-4244-1340-0/07$25.00 c©2007 IEEE

the other two approaches but the multi-objective approach
uses more computational effort.

Wagner et al. [4] compared three approaches in MOEAs
on problems with many objectives. The first approach is the
Pareto-based algorithms such as NSGA-II [5], SPEA2 [7]
and ε-MOEA [18]. The second approach is the aggrega-
tion based methods, e.g. MSOPS [11] and RSO [11]. The
last approach is indicator-based MOEA such as indicator-
based EA (IBEA) [19] and S-metric Selection-Evolutionary
Multi-objective Optimisation Algorithm (SMS-EMOA) [20]
and [21]. ε-MOEA in Pareto-based approach was found to
generate good solution near to the Pareto front but the quality
of solutions is depended on the ε value. SMS-EMOA was the
best algorithm in terms of hypervolume.

Di Pierro et al [22] suggested the preference order-based
approach to deal with a problem in a large number of ob-
jectives. When all solutions are non-dominated, this method
decides which solution is chosen into the next generation.
The approach decreases the dimension of the objective space
and finds the non-dominated solutions in the reduced space,
called ’efficiency of order k’, or ’k-optimality’. The non-
dominated solution in the largest reduced space is classified
as a well solution.

This paper is organised as follows: Section 2 explains why
NSGA-II performed poorly for many objectives. Section 3
proposes the improved algorithm to solve the problems from
the previous section. Prior to the conclusions of this paper,
Section 4 gives results.

II. WHY NSGA-II PERFORMED POORLY FOR MANY

OBJECTIVES

Deb et al. [5] proposed Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) as the improved version of NSGA.
The process of NSGA-II can be illustrated as following. It
starts with initialising population Pt with population size N ,
and sets t to zero (t is the generation counter). The next
step is to evaluate all objectives in each individual. The
individual in the population is classified as small groups,
called a front (Fi, i = 1, 2, ...). Each front has a unique
identifier called a rank. Assigning a rank to each individual
is called as the non-dominated sorting. The best rank is
one. In each front, each individual is assigned the crowding
distance by the crowding sort. The detail of calculating the
crowding distance should be explained later. NSGA-II uses
crowded tournament selection to choose parent and apply
mutation and crossover to generate the offspring, Qt, with
N individuals. The crowded tournament selection should be
described later. Each offspring evaluates its own objectives.
In each generation, the parent Pt and the offspring Qt are
combined as Rt. Each individual is assigned a rank and
a crowded distance by the non-dominated sorting and the
crowding sort respectively. The new population Pt+1 collects
members of each front from the first front until it fulls. If the
new population has available space less than the remainder
member in the front, the members with the longest crowding
distance are included. The offspring is generated with the

same process as described before. When the last generation
finishes, the result is the individuals in Pt.

The crowding sort calculates and assigns a crowding
distance to each individual in all fronts. The crowding
distance of individual j is the summation of the distances
of neighbouring of j in all objectives. All distance values
are assigned to zero. For each objective, the members in Fi

are sorted in worse order of the mth objective. The distances
of the both ends Fi(1) and Fi(l) are infinity. For individual
k which is not the both ends, the difference of the objective
values of the neighbours (Fi(k− 1) and Fi(k +1)) is added
to the distance.

The crowded tournament selection starts with randomly
choosing two individuals, i and j. The selection uses a rank
as the first priority. It means that the selection always chooses
an individual in the better non-dominated front. When two
individuals are in the same front, the selection changes to
use the crowding distance as a criterion. The individual with
the longer distance is chosen as a parent.

The experiment in this section focuses on comparing
the number of objectives which are optimised by NSGA-
II, to the number of objectives of the test problem. The
four scalable problems are DTLZ1, DTLZ2, DTLZ3 and
DTLZ6 [8] which are minimisation problems. The number of
objective is increased from 4 to 8. The observation is values
of each objective in the initial and the final generations. This
is difference from other experiment which reports results in
terms of a performance metric of the obtained set. The other
point is measuring performance between the beginning and
the end of searching process.

The experiment in this section conducted NSGA-II with
the parameter setting from [1]. The population sizes of 4,
6 and 8 objectives were 100, 250 and 600 respectively. In
4 objectives of DTLZ1 and DTLZ2, there were 300 gener-
ations and in that of DTLZ3 and DTLZ6, 500 generations.
Furthermore, the number of generations in 6 and 8 objectives
was doubled.

The two operators used to create the new offspring were
the simulated binary crossover [23] and the polynomial muta-
tion [24]. Selecting the two operators is based on the studies
of real-valued genetic algorithm in [24]. Other parameters
for NSGA-II are used in this work as the same in [1].
The crossover and mutation probabilites equal 0.7 and 1.0/n
respectively, which n is the number of decision variables.
The distribution indices for crossover and for mutation are
15 and 20 repectively.

The experiment differs from the work from Khare et al [1].
Firstly, this experiment requires the value of each objective
at the beginning and the end rather than the performance
metrics of the obtained solutions. Secondly, all test problems
have been repeated independently 30 times. In previous
work [1], the data in six and eight objectives were averaged
only 10 runs. Finally, the statistical data of the comparison
have been provided.

The experiment collects the average values of each ob-
jective value of solutions in the initial population and the

3960 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

TABLE I

NSGA-II OPTIMISE PROBLEMS WITH FOUR OBJECTIVES. A

TWO-TAILED PAIRED T-TEST WITH 29 DEGREES OF FREEDOM

Obj 1 Obj 2 Obj 3 Obj 4
DTLZ1
Start 29.597 31.456 58.057 81.696
Final 0.709 0.882 0.948 0.854
T-Test 17.467 16.538 25.232 23.105
DTLZ2
Start 0.517 0.500 0.733 0.855
Final 0.402 0.407 0.403 0.424
T-Test 8.455 5.441 19.978 23.426
DTLZ3
Start 260.762249.680394.222405.940
Final 8.705 9.532 23.822 31.301
T-Test 26.277 23.077 37.462 25.963
DTLZ6
Start 3.420 3.334 4.698 5.252
Final 1.963 1.890 2.806 2.402
T-Test 20.815 17.875 27.327 48.570

obtained solutions in the final generation. From the tables I
to II, the data represents an average of 30 runs for each
objective. The bold-face font presents t-test values significant
values at 95% confidential level. This experiment uses a
paired t-test to compare the value of each objective in the
beginning and the final generations. The degrees of freedom
of a paired t-test is n−1, which n is the number of repeating
(in this work n = 30, 29 degrees of freedom).

The table I shows the average values of each objective
in test problems with 4 objectives. All objective values
in the final generation were lower than the values in the
start generation. Also, statistical data confirmed that the
differences of values in the beginning and the end were
significant. That means NSGA-II optimised all objectives in
small numbers of objectives.

The table II showed the convergence performance with test
problem having 6 objectives. From the table II, the problems
were classified into two groups according to the behaviour of
NSGA-II solving on them. The first group consisted of three
problems, DTLZ1, DTLZ2 and DTLZ3. NSGA-II optimised
only the two objectives (objectives 5 and 6) in the first
problem group. The second group contained only DTLZ6
that NSGA-II had a good optimisation in the three objectives
(objectives 4, 5, and 6). All comparisons were significantly
detected by the statistical test.

Also, NSGA-II showed similar behaviour in the 8 objec-
tive test problems and the detail showed in the table II. The
two objectives (objective 7 and 8) in DTLZ1, DTLZ2 and
DTLZ3 were optimised and the three objectives (objective
6, 7, and 8) in DTLZ6 were minimised. All difference
values between the beginning and the final generations were
statistical significant.

Generally, multi-objective optimisation will deal with con-
flicting objectives [25]. When one objective is minimising, an
other will be increasing. Ideally, an algorithm having a con-
vergence ability optimises all objectives. However, NSGA-
II has a limitation in terms of the scalability of objectives.
When a problem has 4 conflicting objectives, NSGA-II can

TABLE II

NSGA-II OPTIMISE PROBLEMS WITH SIX OBJECTIVES. A TWO-TAILED

PAIRED T-TEST WITH 29 DEGREES OF FREEDOM

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6
DTLZ1
Start 6.960 7.377 14.151 30.297 66.878 81.954
Final 56.998 62.711 60.945 50.623 23.924 9.116
T-Test -9.213 -10.241 -9.419 -3.377 7.77016.88841
DTLZ2
Start 0.218 0.211 0.350 0.538 0.746 0.833
Final 0.839 0.813 0.794 0.744 0.657 0.474
T-Test -38.276 -36.501 -34.969 -12.315 4.395 17.422
DTLZ3
Start 105.543112.313169.746279.882415.871 393.463
Final 352.681350.911349.280331.228299.592 138.178
T-Test -31.360 -29.589 -24.030 -4.101 8.846 21.252
DTLZ6
Start 1.673 1.684 2.491 3.515 4.675 4.930
Final 2.877 2.873 2.990 3.037 3.300 2.390
T-Test -27.083 -24.919 -12.967 8.755 30.328 33.406

TABLE III

NSGA-II OPTIMISE PROBLEMS WITH EIGHT OBJECTIVES. A

TWO-TAILED PAIRED T-TEST WITH 29 DEGREES OF FREEDOM

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8
DTLZ1
Start 1.608 1.755 3.312 7.117 16.025 35.038 65.037 73.920
Final 72.363 71.853 74.430 72.971 72.894 70.230 23.625 10.218
T-Test -52.385 -58.816 -55.251 -49.179 -33.897 -12.516 8.136 11.995
DTLZ2
Start 0.097 0.094 0.151 0.242 0.384 0.574 0.749 0.758
Final 0.880 0.879 0.860 0.873 0.826 0.795 0.740 0.634
T-Test -110.538 -78.751 -67.554 -60.537 -30.764 -17.827 0.390 4.8848
DTLZ3
Start 42.694 43.760 70.038113.023188.532293.582390.151379.992
Final 463.165 449.655447.713441.469407.489396.428344.299194.994
T-Test -87.972 -74.029 -68.255 -48.804 -28.410 -12.127 3.320 17.999
DTLZ6
Start 0.757 0.758 1.130 1.707 2.565 3.657 4.716 4.767
Final 2.665 2.648 2.690 2.688 2.778 2.847 3.049 2.451
T-Test -122.371-106.469 -75.095 -44.950 -9.400 34.919 52.160 60.519

optimise all of them. When the numbers of objective are 6
and 8, the algorithm can optimise only less than 4 objectives.
It concludes that when a number of objective is increased,
NSGA-II optimise a some of them for these testing problems.
It means that NSGA-II finds solutions far away from the real
Pareto front.

In NSGA-II evolving process, the convergence pressure is
used in only the non-dominated sorting because this proce-
dure uses the domination relation in the comparison. After
separating a population into small groups, this algorithm
assumes that all members in each group are equal in terms
of domination relation. Also, the crowding sort function
uses only the diversity estimator to decide which member
will be deleted. NSGA-II restricts to use the dominated
relation to indicate which new solution is non-dominated.
The requirement is that no existing member can dominate
the new one. However, the other knowledge is that the new
solution compares with existing members by dominating
them. There are two possible cases. The first case is that
new member can dominate any existing member. The second
case is that members cannot dominate each other. The quality

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3961

of both cases in terms of convergence should be different.
NSGA-II concerns only the knowledge to decide the non-
dominated solution and omits the other information. The non-
dominated solution that can dominate existing members has
a useful convergence (as shown in the next section).

III. IMPROVED MOEAS

The main concepts of the proposed methods are separating
non-dominated solutions and handling them in different
ways. The new method distinguishes some non-dominated
solutions from others by comparing a new solution with the
existing members. Moreover, the truncation avoids removing
the better members of the archive. Thus, the proposed
methods differ from NSGA-II in terms of separating the new
members into two types and restricting the members that are
removed. This research concentrates on the alternative way to
preserve the convergence. To make unbiased comparison, the
density estimation of the proposed methods is the crowding
distance, the same with NSGA-II.

Normally, a population is used to evolve the candidate
solutions. However, the proposed methods use the external
population, called an archive, to store the non-dominated
solutions from beginning of searching process. In these
proposed methods, the non-dominated solutions are divided
into two types by comparing with the members of the archive.
The first type is a non-dominated solution which cannot
dominate the archive members called the non-dominated
solution without domination. The other type is the solution
with domination which dominates an archive member. The
member with domination is essential because it will give a
useful convergence. Thus, it can be a member in an archive
for the next generation. The members that will be truncated
can only be new members without domination and existing
members. The number of proposed methods is four from the
number of combination of choosing deleted member from a
set of members without domination or existing members.

Algorithm 1 Collecting Non-dominated Solutions for Four
Algorithms

1: for i = 1 to sizeof(archive) do
2: member(i).Dflag = 2
3: end for
4: for i = 1 to popsize do
5: if ind(i) is non-dominated solution then
6: if no member can dominates ind(i) then
7: Set ind(i).Dflag = 0
8: if ind(i) dominates a member then
9: Set ind(i).Dflag = 1

10: Delete dominated member
11: end if
12: Add ind(i) to archive
13: end if
14: end if
15: end for

This is the design of the four proposed algorithms. Col-
lecting non-dominated solutions as shown in the algorithm 1

is the common part of the four algorithms. The target of
this module is to collect the non-dominated solution from
the population and deleting the dominated member from the
archive. Firstly, the variable Dflag of all members is assigned
to two. This means that all members are in the archive before
the collection procedure. Next, this procedure gets a solution
from the population one by one. The solution compares with
the remainder in the population using dominated relationship.
If it is a dominated solution, it is discarded. Otherwise, it
compares with all members in the archive. If no member
in the archive can dominate the new solutions, the Dflag of
the new solution is assigned to zero. This means that the
new solution becomes a new member in the archive. Next,
if the new member can dominate a member in the archive,
the dominated member of the archive is deleted and Dflag of
the new member is set to one. This means that it is the new
member with domination. Finally, the new member is added
into the archive. For the removal procedure, each method has
its own strategy.

Algorithm 2 Method A
1: if sizeof(archive) > capacity then
2: for i=1 to sizeof(archive) do
3: if member(i).Dflag == 0 then
4: Put member(i) into trunc pop
5: Delete member(i) from archive
6: end if
7: end for
8: Perform the Crowding-sort on trunc pop
9: repeat

10: Delete member with the shortest distance from
trunc pop

11: until sizeof(archive)+sizeof(trunc pop) == capacity

12: Combine trunc pop to archive
13: end if

The removal strategy of method A as explained in the
algorithm 2 is executed when the number of members of the
archive is more than capacity of the archive. The removal
process finds the members with a Dflag variable which
contains zero value. This means that the member without
domination moves the archive into the temporal population,
called trunc pop, to which crowding distance sorting is
applied. The crowding distance sorting calculates the distance
for all members of the temporal population. The member
with the shortest distance is removed until the total size of
the archive and the temporal population equals the capacity.
Finally, the remaining member of the temporal population is
added into the archive.

The removal strategy of method B as shown in the
algorithm 3 is similar to the process of the method A. The
difference is separating members from the archive to the
temporal population in line 3 in the algorithm 3. In that line,
the temporal population consists of two types, the members
without domination (the value of Dflag is zero) and the
existing members (value of Dflag is two). The main point

3962 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Algorithm 3 Method B
1: if sizeof(archive) > capacity then
2: for i=1 to sizeof(archive) do
3: if (member(i).Dflag == 0) OR (member(i).Dflag ==

2) then
4: Put member(i) into trunc pop
5: Delete member(i) from archive
6: end if
7: end for
8: Perform the Crowding-sort trunc pop
9: repeat

10: Delete member with the shortest distance from
trunc pop

11: until sizeof(archive)+sizeof(trunc pop) == capacity

12: Combine trunc pop with archive
13: end if

is to apply crowding distance calculation into different sets.
The remainder parts of the method B use the same process
in the method A.

Algorithm 4 Method C
1: if sizeof(archive) > capacity then
2: Perform the Crowding-sort on archive
3: for i=1 to sizeof(archive) do
4: if member(i).Dflag == 0 then
5: Put member(i) into trunc pop
6: Delete member(i) from archive
7: end if
8: end for
9: repeat

10: Delete member with the shortest distance from
trunc pop

11: until sizeof(archive)+sizeof(trunc pop) == capacity

12: Combine trunc pop with archive
13: end if

The method C modifies the order of processes in the re-
moval strategy. In the algorithm 4, the removal strategy starts
with assigning the crowding distance for all members in the
archive. The next step is separating members of the archive
to the temporal population. Only members which their Dflag
value is zero are moved into the temporal population. The
distance of members of temporal population is the distance
which is assigned before separating. The distance in the
method C is calculated in the members of archive before
separating but the distance in the method A is calculated
among the members in the temporal population. This is
the main difference between the two methods. The deletion
uses the shortest crowding distance as criteria. Finally, they
combine the archive and the temporal population.

The removal strategy of the method D duplicates the
process of the method C and modifies a separating part.
The strategy begins with calculating crowding distance for
all members of the archive. The modified part is that the

Algorithm 5 Method D
1: if sizeof(archive) > capacity then
2: Perform the Crowding-sort on archive
3: for i=1 to sizeof(archive) do
4: if (member(i).Dflag == 0) OR (member(i).Dflag ==

2) then
5: Put member(i) into trunc pop
6: Delete member(i) from archive
7: end if
8: end for
9: repeat

10: Delete member with the shortest distance from
trunc pop

11: until sizeof(archive)+sizeof(trunc pop) == capacity

12: Combine trunc pop with archive
13: end if

TABLE IV

SOLUTIONS AND THEIRS OBJECTIVE VALUES

Solution f1 f2 Status
J 1.06.0a member in archive
K 3.23.7a member in archive
L 3.53.1a member in archive
M 5.02.0a member in archive
N 3.13.8a member in archive
O 3.43.0a member in archive
U 2.06.0a new solution
V 4.02.5a new solution
W 2.74.2a new solution
X 3.03.3a new solution
Y 3.32.7a new solution
Z 6.01.0a new solution

temporal population consists of members without domination
and existing members. The deleting part and the combining
part are the same as in method C. The detail is shown in the
algorithm 5.

A. Example

This is an example of collecting and removing members
in the archive. The detail is in the table IV. This problem is
a bi-objective minimisation. The capacity of the archive, or
population size in NSGA-II, is six.

1) NSGA-II: The NSGA-II combines both the existing
members and the new solutions. Then, it uses the non-
dominated sorting to classify the combined population into
fronts. The non-dominated solutions belong to the first front.
The members in the first front are J, M, V, W, X, Y,
and Z. The number of member in the first front overflows,
thus deleting the excessive members is depended upon the
crowding distance. The crowding distances of all members
are shown in the table V. Finally the solution with the
shortest crowding distance is deleted. In this example, the
victim is the solution Y.

2) The Four Methods: The four methods use the same
collection procedure. In the example, the new solution X
dominates K and N, also the solution Y dominates L and
O. Thus, the solutions X and Y are the new members with

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3963

TABLE V

SOLUTIONS AND THEIRS CROWDING DISTANCE VALUES FOR NSGA-II

SolutionCrowding distance
J ∞

M 3.5
V 2.4
W 4.7
X 2.1
Y 1.8
Z ∞

domination. The solutions V, W and Z are the new member
without domination. The new solution U is discarded because
it is dominated by the existing member J. The existing
members in the archive before the collection process are J
and M. Now, the archive has seven candidate members, but
its capacity is six. Thus, one member is deleted. Each method
has its own finding the victim. The deleting processes are
explained in the following:
Method A: The method A starts with keeping the new mem-
ber with domination (X and Y) and existing members (J and
M) in the archive before deleting the further members. The
remain members (W, V, and Z) are moved to the temporal
set for truncation. The crowding sort function is applied
to the members (W, V and Z). The crowding distances of
the solutions V, W, and Z are 6.5, infinity and infinity,
respectively. The solution V is deleted because it has the
shortest distance. The archive collects solutions W and Z.
Method B: The method B collects only the new members
with domination (X and Y) into the archive and applies the
crowding sort function to the remainder. The temporal set
consists of five members (J, M, V, W, and Z). The distances
of J, M, V, W, and Z are infinity, 3.5, 4.5, 6.5 and infinity,
respectively. The solution M, the member with the shortest
distance, is removed. The other members(J, W, V, and Z) are
added into the archive.
Method C: Method C calculates the crowding distance to all
members. The results are in the table V. Next, the archive
gets the new members with domination (X and Y) and the
existing members (J and M). The remaining members (V, W,
and Z) should be truncated. The distances of solutions V, W
and Z are 2.4, 4.7 and infinity. The solution V is deleted
because of the shortest distance and the solutions W and Z
are combined with the archive.
Method D: The method D assigns the crowding distance
to all members as shown in table V. Only the new members
with domination (X and Y) are in the archive. The truncation
set consists of solutions J, M, V, W, and Z. The solution V
with the shortest distance is deleted. The archive collects
solutions J, M, W, and Z.

IV. EXPERIMENT AND RESULT

The aim of the experiment is to compare convergence
efficiency of the archives of the proposed algorithms with
NSGA-II. Firstly, the experiments executed NSGA-II which
produced the offspring of every generation as output files
(including the initial population and the population in the

final generation in the files). The number of test problems
(DTLZ1, DTLZ2, DTLZ3 and DTLZ6) was six objectives.

The population size is 250 individuals (the same numbers
from the previous experiment) and the generation number
is 200. From our experiment, the convergence metric was
improved during 200 generations and it was changed a little
bit after 200 generations. Other parameters used the same
values from the previous experiment. To control other factors,
NSGA-II performed and saved the offspring of each genera-
tion as files and the proposed ideas used offspring from the
files to make their own archives. In other words, all methods
are not complete algorithms to solve the problem. They are
only archiving algorithms without a generator. Finally, five
final archives and the starting archive were measured with the
convergence metric and the diversity metrics. The experiment
was repeated 30 times for each problem.

The measurement consisted of a metric of convergence,
metrics of diversity. The convergence metric is proposed by
Deb and Jain [26]. This metric computes the average of the
smallest normalised Euclidean distance of all points in the
obtained Pareto front to the reference set. In these problems,
the Pareto fronts are known.

The concept of diversity metrics [26] is calculating dis-
tribution of projection of obtained solutions on an objective
axis. The objective axis is divided into small areas according
to a number of solutions. The diversity measurement is
successful if all small areas have one or more representa-
tive points. The number of areas with representative point
indicates a quality of diversity metric.

The authors [1] have divided diversity metrics into two
cases according to the reference set. Diversity metric1 as-
sumes that the algorithm is able to search to the real Pareto
front. The project plan of diversity metric1 is based on the
real Pareto front. For diversity metric2, the reference front is
an obtained front instead of the real Pareto front.

Table VI displays the average values of the performance
metrics of all runs and the table VII shows the statistical
test values of differences between the initial populations
and the obtained solutions from each algorithm. The values
with the bold front face are significantly different at 95%
confidential level. A statistical test in this experiment used the
paired t-test because the four proposed methods received the
input from NSGA-II. Thus, all of them are not independent.
From these tables, the performance metrics at starting point
were used as the criteria. The algorithms were divided into
two groups. The first group contained methods A and C
which had the convergence metric and the diversity metric1
better than the metrics of solutions in starting point. In
DTLZ2, the statistical tests of the convergence metric were
not detected as shown in the table VII. Thus, the methods
A and C maintained the convergence in the same level with
the starting archive. However, they were poor in the diversity
metric2.

The second group had NSGA-II, the methods B and D.
This group had the better diversity metric2, but they were
poor in the convergence metric and the diversity metric1. The

3964 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

TABLE VI

AVERAGE VALUES OF PERFORMANCE METRICS IN SIX-OBJECTIVE

PROBLEMS

Metric Problem Start NSGA-II A B C D
Convergence DTLZ1234.542 319.594209.148 338.322208.243 337.537
Metric DTLZ2 0.737 1.611 0.753 1.649 0.752 1.653

DTLZ3976.2881139.736881.6331196.717896.2151197.381
DTLZ6 9.585 10.048 9.501 10.063 9.534 10.064

Diversity DTLZ1 0.233 0.202 0.260 0.221 0.267 0.218
Metric1 DTLZ2 0.514 0.491 0.496 0.522 0.512 0.523

DTLZ3 0.092 0.127 0.169 0.130 0.181 0.131
DTLZ6 0.134 0.073 0.140 0.077 0.139 0.078

Diversity DTLZ1 0.372 0.422 0.427 0.440 0.431 0.438
Metric2 DTLZ2 0.691 0.734 0.680 0.762 0.695 0.763

DTLZ3 0.522 0.551 0.427 0.565 0.452 0.568
DTLZ6 0.628 0.685 0.612 0.706 0.618 0.712

TABLE VII

STATISTICAL TEST OF PERFORMANCE METRICS IN COMPARISON OF

ALL ALGORITHMS AND STARTING POINT. A TWO-TAILED PAIRED

T-TEST WITH 29 DEGREES OF FREEDOM, N: NSGA-II

Metric Problem Start-N Start-A Start-B Start-C Start-D
Convergence DTLZ1-17.026 6.225-17.764 6.877-17.321
Metric DTLZ2-55.589 -1.208-61.157 -1.135-63.445
(Minimisation) DTLZ3-19.518 8.756-27.121 7.759-27.070

DTLZ6-30.330 9.240-34.854 7.070-35.281
Diversity DTLZ1 7.365 -4.886 2.101 -6.485 2.972
Metric1 DTLZ2 6.215 4.222 -2.177 0.331 -2.478
(Maximisation) DTLZ3 -7.298-17.526 -8.297-20.140 -8.951

DTLZ6 15.490 -1.689 15.919 -1.367 14.999
Diversity DTLZ1-14.391-14.584-14.733-13.308-15.060
Metric2 DTLZ2-11.181 2.346-18.534 -0.989-19.654
(Maximisation) DTLZ3 -7.292 21.804-11.432 18.985-11.341

DTLZ6-25.148 6.006-43.113 4.042-40.264

comparison in the second group was significant differences
as shown in the statistical data in the table VII.

The statistical comparison of the proposed methods and
NSGA-II is shown in table VIII. It is certain that the methods
A and C were better than NSGA-II in the convergence metric
and the diversity metric1 with a statistical significance. The
diversity metric2 of obtained sets of NSGA-II was more
desirable than the sets of solutions from the methods A
and C. The methods B and D were better than NSGA-II
in both the diversity metrics, but they were low quality in
the convergence metric.

Moreover, table VIII displays the comparison that made
more substantial evidence to compare the two best algorithms
(methods A and C). According to the convergence metric,
both algorithms were comparable because each algorithm had
better result for 2 problems. The statistical values showed
that the two algorithms had the same convergence in DTLZ1
and DTLZ2. Thus, the method A was slightly better than
the method C. However, the method C was better than the
method A in terms of diversity metrics for the four problems.

The experiment shows the evidence that the non-
dominated solutions were not equal in the convergence to
the Pareto front. The proposed methods attempted to classify
the solutions according to quality of the convergence and to
maintain them in different ways. The MOEAs have different
ways to choose a set of solutions. The archive preserved

TABLE VIII

STATISTICAL TEST OF PERFORMANCE METRICS IN COMPARISON OF

THE PROPOSED METHODS WITH NSGA-II(N) AND COMPARISON OF

METHODS A AND C. A TWO-TAILED PAIRED T-TEST WITH 29

DEGREES OF FREEDOM

Metric Problem N-A N-B N-C N-D A-C
Convergence DTLZ1 15.820 -5.876 16.126 -5.265 0.557
Metric DTLZ2 36.543-12.126 37.766-12.728 0.263
(Minimisation) DTLZ3 20.454-19.941 19.420-18.683 -3.467

DTLZ6 44.303 -3.659 35.742 -3.609 -5.274
Diversity DTLZ1-13.872 -6.788-13.623 -5.270 -2.138
Metric1 DTLZ2 -1.186-16.884 -5.011-15.379-11.117
(Maximisation) DTLZ3-10.606 -2.080-13.053 -1.960 -5.519

DTLZ6-18.919 -2.088-18.721 -2.755 0.922
Diversity DTLZ1 -1.371 -6.223 -1.670 -3.614 -0.975
Metric2 DTLZ2 11.875-13.758 7.825-13.331 -8.362
(Maximisation) DTLZ3 35.549 -7.710 34.020 -6.961 -9.813

DTLZ6 30.089-14.696 29.927-19.317 -5.429

the non-dominated solutions with more convergence such
as the methods A and C. This fact made that their own
convergences were improved. However, the archive of the
methods B and D collect the wrong types. Thus, they found
the obtained solutions away from the real Pareto front. In the
convergence, the main factor preventing a better convergence
was the existing members because they have information
accumulated from the beginning of the process.

The diversity metrics closely relate to the truncation
method when an archive overflows. A main aim of truncation
design is deleting excessive members from the archive. How-
ever, the remainder solutions after the truncation operator
can represent the non-dominated front as close to the Pareto
front and cover the entire front with a well spread. Thus,
a latent issue for truncation is to select a representative
subset of members in the archive. In the other words, it
tries to delete other points near the representative. From the
experiment, the best concept of maintaining diversity is to
keep well non-dominated solutions (non-dominated solutions
with domination and existing members) before truncation
(as the method C does). The diversity should be calculated
in the whole set of non-dominated solutions. For example,
the method A applied crowding-sort to the subset of non-
dominated solutions that are collected in this generation. The
representative from the truncation of the method A is not
useful because some members are discarded. The method
C estimated the crowding distance with the entire set of
non-dominated solutions. Thus, the diversity values of the
method C was better than the diversity of the method A.
More investigation is needed to improve the diversity.

V. CONCLUSIONS

Many MOEAs break down in dealing with problems with
a large number of objectives. This paper shows how and
why this happens using NSGA-II. Based on our experimental
study and insight as to why NSGA-II failed, several new
improvements were proposed. The new ideas are focused on
maintenance of non-dominated solutions in archive. NSGA-
II was interesting in how to find non-dominated solution

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3965

from population. However, non-dominated solution can be
classified into solutions with domination or without dom-
ination. Our proposed methods use classification of non-
dominated solutions to maintain the archive. The proposed
new methods perform significantly better than NSGA-II on
problems with many objectives. The new methods classify
the non-dominated solutions in the archive into several
groups and maintain them in different ways. Non-dominated
solutions with domination can become members of the
archive immediately. Also, an archive keeps non-dominated
solutions without domination and a removal strategy applies
if an archive overflows.

However, this paper is only the first step in the investi-
gation of MOEAs on problems with a large number of ob-
jectives. The concept of classifying non-dominated solutions
in this paper is new. It needs to be evaluated on more test
problems. It also needs to be incorporated with other MOEAs
other than NSGA-II. This is a simple way to fix NSGA-II.
Finding better solutions would be to different algorithms, e.g.
Two-Archive algorithm [27] or ε-MOEA [18].

REFERENCES

[1] V. Khare, X. Yao, and K. Deb, “Performance Scaling of Multi-
objective Evolutionary Algorithms,” in Evolutionary Multi-Criterion
Optimization. Second International Conference, EMO 2003, ser. Lec-
ture Notes in Computer Science, vol. 2632. Faro, Portugal: Springer,
April 2003, pp. 376–390.

[2] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Chichester, UK: John Wiley & Sons, 2001.

[3] M. Farina and P. Amato, “On the Optimal Solution Definition for
Many-criteria Optimization Problems,” in Proceedings of the NAFIPS-
FLINT International Conference’2002. Piscataway, New Jersey: IEEE
Service Center, June 2002, pp. 233–238.

[4] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, Aggregation-, and
Indicator-Based Methods in Many-Objective Optimization,” in Evo-
lutionary Multi-Criterion Optimization, 4th International Conference,
EMO 2007. Matshushima, Japan: Springer. Lecture Notes in Com-
puter Science Vol. 4403, March 2007, pp. 742–756.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multi-Objective Genetic Algorithm-NSGA-II,” IEEE Transactions On
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[6] D. W. Corne, J. D. Knowles, and M. J. Oates, “The Pareto Envelope-
based Selection Algorithm for Multiobjective Optimization,” in Pro-
ceedings of the Parallel Problem Solving from Nature VI Conference,
ser. Lecture Note in Computer Science, no. 1917. Paris, France:
Springer, 2000, pp. 839–848.

[7] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” in EUROGEN 2001. Evo-
lutionary Methods for Design, Optimization and Control with Appli-
cations to Industrial Problems, K. G. et al., Ed., Athens, Greece, 2002,
pp. 95–100.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Test
Problems for Evolutionary Multi-Objective Optimization,” Computer
Engineering and Networks Laboratory (TIK), Swiss Federal Institute
of Technology (ETH), Zurich, Tech. Rep. TIK-Report No.112, July
2001.

[9] R. C. Purshouse and P. J. Fleming, “Evolutionary Multi-Objective
Optimisation: An Exploratory Analysis,” in Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003), vol. 3. Can-
berra, Australia: IEEE Press, December 2003, pp. 2066–2073.

[10] E. J. Hughes, “Evolutionary Many-Objective Optimisation: Many
Once or One Many?” in 2005 IEEE Congress on Evolutionary
Computation (CEC’2005), vol. 1. Edinburgh, Scotland: IEEE Service
Center, September 2005, pp. 222–227.

[11] ——, “Multiple Single Objective Pareto Sampling,” in Proceedings of
the 2003 Congress on Evolutionary Computation (CEC’2003), vol. 4.
Canberra, Australia: IEEE Press, December 2003, pp. 2678–2684.

[12] S. Kukkonen and K. Deb, “A Fast and Effective Method for Pruning
of Non-dominated Solutions in Many-Objective Problems,” in Parallel
Problem Solving from Nature - PPSN IX, 9th International Conference,
ser. Lecture Notes in Computer Science, no. 4193. Reykjavik, Iceland:
Springer-Verlag, September 2006, pp. 553–562.

[13] M. Farina and P. Amato, “Fuzzy Optimality and Evolutionary Mul-
tiobjective Optimization,” in Evolutionary Multi-Criterion Optimiza-
tion. Second International Conference, EMO 2003. Faro, Portugal:
Springer. Lecture Notes in Computer Science. Volume 2632, April
2003, pp. 58–72.

[14] ——, “A fuzzy definition of “optimality” for many-criteria optimiza-
tion problems,” IEEE Transactions on Systems, Man, and Cybernetics
Part A—Systems and Humans, vol. 34, no. 3, pp. 315–326, May 2004.

[15] M. Köppen and R. Vicente-Garcia, “ A Fuzzy Scheme for the Ranking
of Multivariate Data and its Application,” in Fuzzy Information, 2004.
Processing NAFIPS ’04. IEEE Annual Meeting of the, June 2004, pp.
140–145.

[16] M. Köppen, R. Vicente-Garcia, and B. Nickolay, “Fuzzy-Pareto-
Dominance and Its Application in Evolutionary Multi-objective Op-
timization,” in Evolutionary Multi-Criterion Optimization. Third In-
ternational Conference, EMO 2005. Guanajuato, México: Springer.
Lecture Notes in Computer Science Vol. 3410, March 2005, pp. 399–
412.

[17] M. Köppen and K. Yoshida, “Substitute Distance Assignments in
NSGA-II for Handling Many-Objective Optimization Problems,” in
Evolutionary Multi-Criterion Optimization, 4th International Confer-
ence, EMO 2007. Matshushima, Japan: Springer. Lecture Notes in
Computer Science Vol. 4403, March 2007, pp. 727–741.

[18] K. Deb, M. Mohan, and S. Mishra, “Evaluating the ε-Domination
Based Multi-Objective Evolutionary Algorithm for a Quick Computa-
tion of Pareto-Optimal Solutions,” Evolutionary Computation, vol. 13,
no. 4, pp. 501–525, Winter 2005.

[19] E. Zitzler and S. Künzli, “Indicator-based Selection in Multiobjective
Search,” in Parallel Problem Solving from Nature - PPSN VIII. Birm-
ingham, UK: Springer-Verlag. Lecture Notes in Computer Science Vol.
3242, September 2004, pp. 832–842.

[20] M. Emmerich, N. Beume, and B. Naujoks, “An EMO Algorithm Using
the Hypervolume Measure as Selection Criterion,” in Evolutionary
Multi-Criterion Optimization. Third International Conference, EMO
2005. Guanajuato, México: Springer. Lecture Notes in Computer
Science Vol. 3410, March 2005, pp. 62–76.

[21] B. Naujoks, N. Beume, and M. Emmerich, “Multi-objective Opti-
mization using S-metric Selection: Application to three-dimensional
Solution Spaces,” in 2005 IEEE Congress on Evolutionary Computa-
tion (CEC’2005), vol. 2. Edinburgh, Scotland: IEEE Service Center,
September 2005, pp. 1282–1289.

[22] F. di Pierro, S.-T. Khu, and D. A. Savi, “An Investigation on Preference
Order Ranking Scheme for Multiobjective Evolutionary Optimization,”
IEEE Transactions On Evolutionary Computation, vol. 11, no. 1, pp.
17–45, 2007.

[23] K. Deb and A. Kumar, “Real-coded Genetic Algorithms with Sim-
ulated Binary Crossover: Studies on Multimodal and Multiobjective
Problems,” Complex Systems, vol. 9, pp. 431–454, 1995.

[24] K. Deb and M. Goyal, “A Combined Genetic Adaptive Search (Ge-
neAS) for Engineering Design,” Computer Science and Informatics,
vol. 26, no. 4, pp. 30–45, 1996.

[25] R. C. Purshouse and P. J. Fleming, “Conflict, Harmony, and Inde-
pendence: Relationships in Evolutionary Multi-criterion Optimisation,”
in Evolutionary Multi-Criterion Optimization. Second International
Conference, EMO 2003. Faro, Portugal: Springer. Lecture Notes in
Computer Science. Volume 2632, April 2003, pp. 16–30.

[26] K. Deb and S. Jain, “Running Performance Metrics For Evolutionary
Multi-Objective Optimization,” Indian Institute of Technology, Kanpur,
India, Tech. Rep. KanGAL Report Number 2002004, May 2002.

[27] K. Praditwong and X. Yao, “A New Multi-objective Evolutionary
Optimisation Algorithm: The Two-Archive Algorithm,” in Proceedings
of the 2006 International Conference on Computational Intelligence
and Security, Y.-M. Cheung, Y. Wang, and H. Liu, Eds., vol. 1,
Guangzhou, China, 2006, pp. 286–291.

3966 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

