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How Well Does Consumer-Based Brand Equity Align with Sales-Based Brand Equity and 

Marketing Mix Response? 

 

Abstract 

Brand equity is the differential preference and response to marketing effort that a product 

obtains because of its brand identification. Brand equity can be measured using either consumer 

perceptions or sales. Consumer-based brand equity (CBBE) measures what consumers think and 

feel about the brand, whereas sales-based brand equity (SBBE) is the brand intercept in a choice 

or market share model. This article studies the extent to which CBBE manifests itself in SBBE 

and marketing-mix response using ten years of IRI scanner and Brand Asset Valuator data for 

290 brands spanning 25 packaged good categories. The authors uncover a fairly strong positive 

association of SBBE with three dimensions of CBBE—relevance, esteem, and knowledge—but a 

slight negative correspondence with the fourth dimension, energized differentiation. They also 

reveal new insights on the category characteristics that moderate the CBBE–SBBE relationship 

and document a more nuanced association of the CBBE dimensions with response to the major 

marketing-mix variables than heretofore assumed. The authors discuss implications for academic 

researchers who predict and test the impact of brand equity, for market researchers who measure 

it, and for marketers who want to translate their brand equity into marketplace success.  

 

Key words: brand equity, consumer-based brand equity, marketing metrics, market share models, 

marketing mix elasticities.
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Brand equity is a central construct in marketing theory and practice. Firms invest 

considerable effort over many years to build the equity of their brands. They reap the benefits of 

that investment in product market and financial market outcomes and leverage their brand equity 

to introduce brand extensions. The academic literature has studied each of these phenomena: 

building brands and their equity (Keller 1993); the association of marketing spending with brand 

equity (Sriram, Balanchander, and Kalwani 2007; Stahl, Heitmann, Lehmann, and Neslin 2012); 

the product market outcomes of brand equity such as market share, price premium, revenue 

premium, and profit premium (Ailawadi, Lehmann, and Neslin 2003; Goldfarb, Lu, and Moorthy 

2009; Srinivasan, Park, and Chang 2005); the financial market outcomes of brand equity such as 

stock market returns, risk, and market value (Aaker and Jacobson 1994; Mizik and Jacobson 

2008; Rego, Billett, and Morgan 2009); and the factors that enhance or limit a brand’s ability to 

leverage its equity into brand extensions (Aaker and Keller 1990; Batra, Lehmann, and Singh 

1993; Bottomley and Holden 2001). Hence there is a rich literature on the antecedents and 

consequences of brand equity.  

However, what is brand equity and how is it measured? Perhaps the most widely accepted 

definition of brand equity is Keller’s (1998) conceptualization: the different preference and 

response to marketing effort that a product obtains because of its brand identification as 

compared to the preference and response if that same product did not have the brand 

identification. Although there are almost as many measures of brand equity as researchers and 

consultants working in this area, there are two broad measurement approaches: based on what 

consumers think and feel about the brand (consumer-based brand equity, hereafter “CBBE”) and 

based on choice or share in the marketplace (sales-based brand equity, hereafter “SBBE”). 

The rationale for perceptual measures is that brand equity resides in the hearts and minds 
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of consumers. Academics have proposed systems of constructs to measure CBBE. The most 

notable amongst them are Aaker’s Brand Equity Ten (Aaker 1996) and Keller’s (1993) CBBE 

system that later evolved into the CBBE Pyramid (Keller 2001). Over the years, several market 

research and consulting companies have developed their own CBBE constructs and measures. 

Some examples are Young & Rubicam’s Brand Asset Valuator (BAV), YouGov’s Brand Index, 

the Beliefs part of Millward Brown’s Brand Dynamics, Harris Interactive’s EquiTrend, the 

Attitudinal Equity component of IPSOS’s Brand Value Creator, and the Equity Engine model of 

Research International (now part of TNS). These systems use large scale consumer surveys to 

measure perceptions of brands along several dimensions. While each CBBE system has its own 

measures, they tap into many of the same or related dimensions, as pointed out by Keller (2001). 

Sales-based measures of brand equity are marketplace manifestations of these consumer 

perceptions. In line with Keller’s conceptualization, SBBE is the part of a brand’s utility that 

comes on top of the contribution of its objectively measured attributes and marketing mix. SBBE 

is generally measured by the brand intercept in a choice or market share model, also referred to 

as the “residual” approach to measuring brand equity. It has been estimated from self-reported 

choices in conjoint and survey data (Park and Srinivasan 1994; Srinivasan, Park, and Chang 

2005) and from actual brand choices and sales recorded in scanner data (Kamakura and Russell 

1993; Sriram, Balachander, and Kalwani 2007). Importantly, Keller (1998) has pointed out that 

the extant measures do not include an important aspect of brand equity – enhanced consumer 

response to the brand’s marketing mix. 

Despite the importance of brand equity in marketing theory and practice, and the fact that 

firms spend considerable sums of money to track CBBE and SBBE, no empirical study to date 

has systematically investigated the link of CBBE with SBBE or with marketing mix response. 
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The goal in this paper is to fill that gap by addressing the following research questions: 

1. What is the overall association between the major dimensions of CBBE and SBBE across 

product categories? 

2. How do category characteristics moderate this association?  

3. What is the association between the major dimensions of CBBE and consumer response to 

marketing mix variables of a brand? 

We address these research questions with widely used measures of CBBE and SBBE for a 

large set of consumer packaged goods (hereafter CPG) brands over time. Specifically, we 

combine ten years of annual CBBE data from Brand Asset Valuator (BAV) with ten years of 

weekly Symphony IRI scanner data from which we estimate the intercept measure of SBBE as 

well as marketing mix elasticities. We conduct the analysis for a total of 290 brands across 25 

CPG categories for which both SBBE and CBBE measures are available.  

We document several findings that are new to the literature and important for marketing 

practice. We find that three of the CBBE dimensions – Relevance, Esteem, and Knowledge, 

which are highly correlated with one another – have a positive association with SBBE, whereas 

the fourth dimension – Energized Differentiation – has a small negative association with SBBE. 

The association is moderated by category characteristics. The effect of Relevance, Esteem, and 

Knowledge on SBBE is stronger in categories with more social value and more choice difficulty 

reflected in lower concentration. In contrast, Energized Differentiation leads to higher SBBE in 

more hedonic categories and in more concentrated categories. The pattern of association between 

CBBE and marketing mix response varies by CBBE dimension and by marketing variable. We 

find that Relevance, Esteem, and Knowledge are associated with stronger advertising, price 

promotion elasticities, and feature/display elasticities but with lower distribution elasticities. 
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Energized Differentiation is linked with stronger advertising elasticities but with weaker price 

promotion elasticities. 

This analysis is important for both researchers and practitioners. Academic researchers use 

any of a variety of CBBE or SBBE measures that they happen to have access to, and, unless we 

have a good understanding of whether and how the different measures align, we have little idea 

whether the findings reported with one type of measure will hold up with another. Also, positive 

consumer perceptions are only useful to managers insofar as they translate into equity in the 

marketplace. As we will discuss later, both under- and over-achievement on SBBE compared to 

a brand’s CBBE should be treated as red flags for further diagnosis and action. This analysis also 

provides guidance on which dimensions of CBBE managers should prioritize depending on the 

nature of the category. Finally, although conventional wisdom says that CBBE results in stronger 

marketing mix elasticities, prior research has not put that wisdom to a comprehensive empirical 

test (Keller and Lehmann 2006). Our findings regarding how the different dimensions of CBBE 

affect each of the major marketing mix elasticities are new to the academic literature and help 

managers in adjusting their marketing mix to leverage their CBBE. 

Conceptual Background 

 Figure 1 presents the guiding conceptual framework for our research, as discussed next. 

<Insert Figure 1 about here> 
Measurement of CBBE 

 The CBBE measures that are compiled by industry sources cover a broad set of brands 

and categories and are based on large scale consumer surveys. A few have been used in 

academic studies. For instance, the EquiTrend measures have been related to stock performance, 

e.g., higher returns (Aaker and Jacobson 1994), lower idiosyncratic firm risk and cost of capital 

(Rego, Billett, and Morgan 2009), and better stock performance during the 2008 economic 
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downturn (Johansson, Dimofte, and Mazvancheryl 2012). The YouGov measures have also been 

related to stock returns and idiosyncratic risk (Luo, Raithel, and Wiles 2013). The BAV 

measures, which we employ in this paper, have recently been used in a more wide-ranging set of 

studies. Mizik and Jacobson (2008) show that BAV measures are associated with unanticipated 

changes in stock returns after controlling for changes in accounting rates of return. Stahl, 

Heitmann, Lehmann, and Neslin (2012) examine the effect of these CBBE measures on customer 

acquisition, retention, and profit margin in the automobile industry. Lovett, Peres, and Shachar 

(2013) show how they drive offline and online word-of-mouth. Hence, past research has 

established the relevance of BAV’s CBBE measures. It is the first and perhaps most widely used 

CBBE system, compiling the perceptions of tens of thousands of consumers each year on 

thousands of brands (bavconsulting.com). 

 Although BAV measures consumer perceptions on a large number of brand attributes, the 

company has identified four pillars – Energized Differentiation, Relevance, Esteem, and 

Knowledge – as the key dimensions to track a brand’s equity, in addition to an overall Brand 

Asset score.1 Variants of these dimensions exist in most other CBBE systems as well. The 

specific measures used by BAV are provided in Web Appendix A. We will examine how these 

dimensions are associated with SBBE and with marketing mix response.  

Energized Differentiation primarily measures a brand’s uniqueness and ability to stand 

out from competition, but also its ability to meet future consumer needs. Differentiation is 

something that marketers invariably strive for (e.g., Kotler and Keller 2015; Moon 2010). As 

Stahl et al. (2012, p. 47) note, it is the “mantra of marketing.”  

Relevance measures how appropriate a brand is for consumers and how much it fits into 

their lives. It is viewed by BAV as the source of a brand’s staying power (Mizik and Jacobson 
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2008). Keller (2001) equates it to consumer consideration in his CBBE pyramid and Aaker 

(2012) writes that becoming indispensably relevant in a category with “must have” 

characteristics and simultaneously making competitors irrelevant is a brand’s route to growth. 

Esteem measures how much people like the brand and hold it in high regard. Keller 

(2001) views it as positive quality and credibility perceptions. Similarly, quality and leadership 

are an important part of Aaker’s (1996) Brand Equity Ten measures. BAV encompasses both 

quality and popularity within Esteem and views it as third in the progression of a brand’s 

development, after Energized Differentiation and Relevance.  

Knowledge measures consumers’ awareness and understanding of what the brand stands 

for. Importantly, it is not just awareness of the brand but of its identity, which is built from the 

brand’s communications as well as from personal experience with the brand. BAV views it as the 

culmination of brand-building efforts, and, in line with that view, Keller (2001) associates it with 

brand resonance at the pinnacle of the CBBE pyramid. 

Measurement of SBBE 

 There is a long and well-established tradition in the literature of measuring SBBE as the 

brand intercept in a choice or market share model (e.g., Srinivasan 1979; Kamakura and Russell 

1993). Some models provide individual-level SBBE estimates (Rangaswamy, Burke, and Oliva 

1993; Park and Srinivasan 1994), but those are often based on conjoint or other survey-based 

data. Others use scanner panel choice data to provide segment-level estimates (Kamakura and 

Russell 1993), or store or market sales data to provide aggregate estimates (Sriram, Balachander, 

and Kalwani 2007; Goldfarb, Lu, and Moorthy 2009).  

Since the goal of this research is to assess the association between the most widely used 

CBBE and SBBE measures in a generalizable and externally valid way, we use national data for 
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a large number of categories and estimate SBBE as brand-specific intercepts in a market share 

attraction model. The model, which we describe in detail later, specifies a brand’s attraction as a 

function of its physical attributes, marketing mix, and other control variables.  

We next present our expectations about the association between CBBE and SBBE, about 

the category factors that moderate this association and about the link between CBBE and 

marketing mix elasticities. Table 1 summarizes these expectations in the form of numbered 

propositions that are referred to throughout the discussion. 

< Insert Table 1 About Here > 

Association between Consumer-Based Brand Equity and Sales-Based Brand Equity 

 Brands with high CBBE are more likely to get selective attention from consumers, be 

included in their consideration sets, be evaluated positively, and be chosen at the point of 

purchase (Hoeffler and Keller 2003). Hence, we expect a positive association between CBBE 

and SBBE overall, but not all the dimensions of CBBE may be equally associated with SBBE. 

Brands that rate high on Relevance, Esteem, and Knowledge have succeeded in developing a 

broad and deep appeal among consumers. These are the brands that many consumers believe are 

personally appropriate to them, think highly of, and understand well. Therefore, we expect that 

these three CBBE dimensions should be associated positively with SBBE (Proposition P1 in 

Table 1). Among the three, Relevance is closely associated with brand penetration, and 

Knowledge represents the pinnacle of CBBE. Therefore, we expect these two dimensions to be 

most strongly associated with SBBE.  

 The argument is different for Energized Differentiation. This CBBE dimension captures 

uniqueness and distinctiveness from other brands. But, as Stahl et al. (2012) note, this uniqueness 

may appeal strongly to some consumers but may not be to the liking of others. Indeed, Stahl et 
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al. (2012) find a negative effect of this dimension on customer acquisition and retention in the 

automobile industry. Also, the discrepancy hypothesis in psychology suggests that consumers 

like new things that are sufficiently different from familiar ones, but not if they are too different 

(Haber 1958; see Miller, McIntyre, and Mantrala 1993 for an example). Thus, although 

Energized Differentiation may generate word-of-mouth, especially online (Lovett, Peres, and 

Shachar 2013), and garner higher prices and margins (Stahl et al. 2012), we expect it is 

associated with lower levels of SBBE (P2). 

Category Moderators of the Association between CBBE and SBBE  

Consumers use strong brands as diagnostic cues to reduce risk and uncertainty and to 

obtain social and emotional benefits from their choices. However, as these risks and benefits are 

not equally important across product categories, the brand is not equally relevant to consumers’ 

decision process in different categories (Fischer, Völckner and Sattler 2010). We expect that 

CBBE should be more strongly associated with SBBE in categories where the brand is more 

relevant. In particular, the association should be stronger in categories with (a) more serious 

negative functional consequences of making the wrong choice; (b) higher information cost of 

making a choice, and therefore higher need to simplify choice; (c) higher symbolic or social 

value of the choice; and (d) higher experiential benefit from consumption (Fischer, Völckner and 

Sattler 2010; Laurent and Kapferer 1985; Steenkamp and Geyskens 2014). In line with these 

different roles that brands fulfil, we examine four category characteristics that may moderate the 

link between CBBE and SBBE.  

Functional Risk: This is the consumer’s subjective assessment of the risk that the product 

will not do its job if he/she makes the wrong choice in a category (Steenkamp and Geyskens 

2014). The risk may be higher in some categories because the consequences of the wrong choice 
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are perceived to be more serious (e.g., diapers or deodorant) or because there are stronger quality 

differences among products in the category (e.g., coffee). Other categories have less functional 

risk because differences in quality are not that consequential. For categories with higher 

functional risk, there is more at stake and consumers’ choices are more influenced by the brand’s 

promise (Erdem, Swait, and Louviere 2002; Fischer, Völckner and Sattler 2010). Hence we 

expect that CBBE will especially translate into SBBE for such categories. We expect that 

Relevance, Esteem and Knowledge will translate into SBBE more positively for high functional 

risk categories because these dimensions make the brand a familiar and appropriate choice 

(P1.1). However, differentiated brands can be perceived as risky. If a brand is really strong and 

differentiated on one aspect, the implication for consumers can sometimes be that it is not as 

good on other aspects (e.g., Keller, Sternthal, and Tybout 2002; Raghunathan, Naylor, and Hoyer 

2006). Therefore, we expect Energized Differentiation is less likely to translate into SBBE for 

high functional risk categories (P2.1).  

Category Concentration: Brands serve as a way to simplify choice and reduce the 

information costs associated with choosing among a broad array of alternatives (Erdem and 

Swait 1998; Keller and Lehmann 2006). The concentration of a category reflects the array of 

alternatives most consumers choose from. When concentration is low, consumers are faced with 

many, smaller brands; they need cues to facilitate decision making in such crowded categories. 

Brands with high Relevance, Esteem and Knowledge provide these cues and can stand out in a 

crowded field. Hence we expect these three dimensions to be more positively associated with 

SBBE in less concentrated categories (P1.2). Conversely, consumers face a more manageable 

choice set in highly concentrated categories. They can compare alternatives more deliberately 

and extensively, which makes a brand’s uniqueness a more decisive factor in choice. Hence we 
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expect that higher category concentration will enhance the impact of Energized Differentiation 

on SBBE (P2.2). 

Social Value: One reason that consumers choose strong brands is because of their 

symbolic or social value (Fischer, Völckner and Sattler 2010; Laurent and Kapferer 1985; 

Steenkamp and Geyskens 2014). Social value may be higher in categories that are more visible 

to others (e.g., cigarettes) or are more often shared with others (e.g., beer). Consumers are more 

likely to value strong brands in categories that are high in social value, so higher levels of CBBE 

should more readily translate into SBBE in such categories (P1.3 and P2.3). We expect this 

positive moderating effect to hold especially for brands high on Esteem, Relevance and 

Knowledge because these brands are more likely to be recognized and respected by others.  

Hedonic Categories: Consumers also derive emotional value and enjoyment from brands. 

This is more important in hedonic categories, which are evaluated, chosen, and consumed 

primarily based on their sensory attributes and overall image rather than on individual, physical, 

attributes (Holbrook and Hirschman 1982; Voss, Spangenberg, and Grohmann 2003). 

Consumers process hedonic categories more holistically and therefore may rely on cues such as 

the brand (Melnyk, Klein, and Völckner 2012). Accordingly, we expect the association of CBBE 

with SBBE to be stronger in hedonic categories (P1.4 and P2.4). Among the CBBE dimensions, 

we expect that the impact of Energized Differentiation on SBBE will be particularly enhanced in 

hedonic categories, because differentiation allows brands to capitalize on the unique and 

personal multisensory sensations they offer.  

Link between CBBE and Marketing Mix Response 

As we noted previously, brand equity refers not only to consumer preferences and choice 

but also to more favorable marketing response. Hoeffler and Keller (2003) synthesize the 
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theoretical and conceptual mechanisms by which strong brands can get differential response to 

their marketing activities. Empirically, some researchers have examined whether brands with 

higher revenue premiums get better response to coupons and distribution (Slotegraaf, Moorman, 

and Inman 2003), price cuts (Ailawadi, Lehmann, and Neslin 2003), or have greater long-term 

promotion effectiveness (Slotegraaf and Pauwels 2008). Other work has studied how attitudinal 

metrics such as awareness and consideration mediate the effect of marketing actions on sales 

(Hanssens et al. 2014). However, none of them have studied the impact of CBBE dimensions on 

response to the major marketing mix variables at a brand’s disposal – regular price, promotional 

price discount, feature/display activity, advertising, and distribution. 

Price elasticity. Higher brand equity is expected to be associated with weaker price 

elasticity (e.g., Sivakumar and Raj 1997; Erdem, Swait, and Louviere 2002). On the other hand, 

high share or high quality brands tend to get a stronger response to price discounts (e.g., 

Blattberg and Wisniewski 1989; Sethuraman 1996). These studies highlight the importance of 

distinguishing between response to regular price changes and promotional price discounts. High 

CBBE brands are expected to be less sensitive to regular price changes over time and hence have 

lower (less negative) regular price elasticities. We expect that this holds for high Relevance, 

Esteem and Knowledge (P3) and for high Energized Differentiation (P4). 

However, high CBBE brands have a bigger pool of potential customers that can be 

attracted with their promotional price discounts. This especially applies for brands high on 

Knowledge, Relevance and Esteem, reflecting their strong and broad appeal. Those brands are 

expected to be associated with stronger (more negative) promotion price elasticities (P5). 

However, as we noted earlier, brands with high Energized Differentiation appeal only to specific 

segments. Other segments may not be persuaded to buy even on price promotion (P6).  
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Feature/Display elasticity. Following the same logic, brands high on Knowledge, 

Relevance and Esteem have a bigger potential pool of customers to attract through features and 

displays, leading to a stronger elasticity for these activities (P7). Conversely, features and 

displays will be less of a draw for highly differentiated brands (P8). 

Distribution elasticity. For distribution, the prediction is less clear cut. Certainly, strong 

brands have high distribution, but what are the returns to that distribution? Additional 

distribution points allow consumers to act on their preference to buy and more consumers prefer 

high equity brands. This suggests a stronger distribution elasticity for high equity brands. 

However, a hallmark of strong brands is consumers’ willingness to search for them. If consumers 

search for these brands and already buy them wherever they are available or switch to whichever 

flavors, sizes etc. a retailer stocks rather than buying a less preferred brand, then returns to 

additional distribution will be lower (Farris, Olver, and De Kluyver 1989). Hence, we do not 

predict a priori whether brands with high Relevance, Esteem and Knowledge have a stronger or 

weaker distribution elasticity (P9). 

Brands with high Energized Differentiation appeal to certain but not all consumers. These 

consumers already search for and buy these brands. Other segments may not be persuaded to buy 

these brands even with greater availability, reflected in a lower distribution elasticity (P10). 

Advertising elasticity. Brand equity is expected to make a brand’s advertising efforts 

more effective because consumers pay more attention to, react more positively to, and retain 

more information from the brand’s marketing (Hoeffler and Keller 2003). This means that a 

brand’s advertising efforts are more salient and impactful, and hence CBBE should be associated 

with higher advertising elasticities. We expect this to be the case for brands with high Relevance, 

Esteem and Knowledge (P11). 



15 
 

Although a smaller pool of consumers for brands with high Energized Differentiation 

suggests weaker advertising response, differentiated brands have unique selling propositions that 

can be effectively communicated through advertising. They may also be less prone to the 

interference that has been shown to hurt consumer memory of brands with a large number of 

associations (Meyers-Levy 1989), and hence we expect that these brands have stronger 

advertising elasticities (P12). 

Data 

Sample 

We analyze a large set of CPG brands across 25 product categories in the US. Annual 

data on the four CBBE dimensions are provided by BAV Consulting. Weekly store level scanner 

sales data to estimate SBBE and elasticities are obtained from the IRI Marketing Science dataset 

(Bronnenberg, Kruger, and Mela 2008). Monthly advertising (traditional media and online) are 

obtained from Kantar Media. A consumer survey is conducted on Amazon’s MTurk to obtain the 

three perceptual category characteristics (functional risk, social value, hedonic nature). 

The IRI data span the period from 2001 to 2011 while the BAV data span the period from 

2002 to 2012, so the empirical analysis covers the ten-year overlap period from 2002 to 2011. 

The sample selection is as follows. We start with all categories in the IRI dataset except for 

toothbrushes and photo film.2 We select the subcategories that comprise substitutable products 

and that are covered throughout the ten-year period. We separate ketchup and mustard, two 

condiment types, as two categories. We merge razors with blades and frozen dinners with frozen 

pizza as many of the same brands are in both categories. 

Next, we define and select brands in each category. Although the UPC description file in 

the IRI dataset has a field for the brand name, that field is rather narrow. For example, it has 

separate values for Folgers, Folgers Café Latte, Folgers Coffee House, Folgers Select, and 
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several other variants of Folgers coffee, whereas BAV tracks Folgers Coffee as a whole. 

Therefore, we first code all the variants of each brand in each category into their parent brand.3 

In most cases this coding is consistent with BAV’s brand definition. In the instances where 

BAV’s definition is more disaggregate, we follow that, e.g., in separating Coke from Diet Coke 

and Budweiser from Bud Light. We rank brands according to their market share, and include 

those that jointly account for at least 90% of category sales. Further, we delete brands with less 

than two years of consecutive data and categories with fewer than three brands. This results in 

441 brands across 25 categories. BAV data are available for 290 of these brands (see Table 2). 

<Insert Table 2 About Here> 

We note that some brands exist in multiple CPG categories, having expanded from their 

primary category (e.g., Kraft cheese) into additional ones (e.g., Kraft mayonnaise). Similarly, 

some brands have expanded into CPG categories from outside the grocery channel (e.g., 

Starbucks coffee). Consequently, the CBBE measures for these brands reflect equity built in their 

primary markets, while the SBBE measures reflect equity built in secondary markets into which 

they have extended. We flag all such cases with a Secondary Market indicator variable, so that 

this can be controlled for in the empirical analysis. 

Category characteristics 

Market concentration is operationalized as the total share of the top four brands in the 

category and is computed from the IRI data (Tirole 1988). For the remaining three moderators, 

which are perceptual constructs, we conducted an online survey of 752 US respondents on 

MTurk. Respondents first indicated how often they made a purchase in each of the 25 categories 

and then rated all categories they had purchased at least once in the past two years on two of the 

three constructs. To avoid overburdening respondents, we used two items per construct (details 
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are in Web Appendix B). Table 2 includes means of the category characteristics. 

Method 

We obtain SBBE and marketing mix elasticities for each brand in each category using a 

market share model estimated with IRI data. Then we examine the association of the four 

dimensions of CBBE with SBBE, test for the moderating effect of the four category 

characteristics, and study the link between CBBE and marketing mix elasticities. 

Market Share Model Specification 

We use a multinomial logit (MNL) attraction model for market share (Cooper and 

Nakanishi 1988; Fok, Franses, and Paap 2002). The model is estimated for each of the 25 

categories, using data aggregated up to the national brand-week level. The attraction model has 

several benefits. It is easily linearized and estimated; it is logically consistent with market shares 

between 0 and 1 and adding up to 1; and it captures cross effects between brands. It is an 

aggregate analog of the individual brand choice model from which SBBE can be estimated as the 

time-varying brand-specific intercept.  

We expand this model in several ways to obtain valid estimates of SBBE and marketing 

mix elasticities. We include both the physical search attributes of a brand and its marketing mix 

variables as explanatory variables (Goldfarb, Lu, and Moorthy 2009; Kamakura and Russell 

1993; Sriram, Balachander, and Kalwani 2007). Hence, the brand-year-specific intercept reflects 

the attraction attributable to the brand name after controlling for these observables, i.e., SBBE.  

We use the differential-effects version of the MNL model, allowing not only the intercept 

but also the marketing mix coefficients to be brand specific. Also, brands may strategically set 

their marketing mix in response to unobserved demand shocks. In particular, they may respond 

to anticipated season-induced changes in demand. Although seasonal effects are more likely to 
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occur in sales data than in market share data, we use quarterly dummies with brand-specific 

coefficients, to mitigate this source of endogeneity.  

We also control for potential endogeneity due to other unobserved shocks, using 

Gaussian Copulas that directly model the joint distribution of the potentially endogenous 

regressors and the error term through control function terms (Park and Gupta 2012). The copula 

method does not require instrumental variables, and hence is particularly useful when valid 

instruments are hard to find (Rossi 2014). That is the case in our setting, where we have five 

potentially endogenous marketing mix variables measured at the national level for more than 400 

brands from 25 categories. With a normally distributed error term, an identification requirement 

for the Gaussian Copula method is that the endogenous regressors are not normally distributed. 

In our application, Shapiro-Wilk tests at p < .10 confirm this for 99% of the cases. 

We estimate the smoothing constant for advertising stock, which we define below along 

with all the other model variables. Finally, we account for serial correlation by applying the 

Prais-Winsten correction (Greene 2012). Thus, the complete model for the M brands (where M 

can vary over time to accommodate brand entry or exit) in each category is as follows: 

MSbt = Abt∑ AjtMj=1  
(1) 

Abt = exp(∑ αby · DumYeartyy∈Yb + βb1RegPricebt + βb2PriceIndexbt +βb3FDbt + βb4Distrbt + βb5AdStockbt + ∑ γalAttrbala,l +∑ κbq−1Quarterqt4q=2 + ∑ ωkbCopulakbtk + εbt)  

(2) 

 
where we drop the category index c to simplify exposition and: 

MSbt  = Unit market share of brand b in week t; 
 
Abt  = Attraction of brand b in week t; 
 
αby  = Brand- and year-specific intercept for brand b in year y; 



19 
 

 
DumYearty =  Indicator variable, equal to 1 if week t is part of year y, 0 otherwise; 
 
RegPricebt  = Regular price of brand b in week t, deflated by the appropriate Consumer 

Price Index to account for category-wide price changes; 
 
PriceIndexbt  = Actual price of brand b in week t divided by its regular price to measure its 

promotional price discount; 
 
FDbt    = Intensity of feature and/or display support for brand b in week t; 
 
Distrbt   = Total distribution of the Stock Keeping Units (SKUs) of brand b in week t; 

 
AdStockbt   = Smoothed advertising spending or Advertising Stock of brand b in week t 

where AdStockbt = λ AdStockb,t-1 + (1-λ) Advertisingbt; 
 
Attrbal   = Fraction of the SKUs of brand b that have attribute level l for attribute a; 
 
Quarterqt   = Quarterly dummy for quarter q = 1 if week t is in quarter q, 0 otherwise, and 

mean-centered at the brand level; 
 
Copulakbt  = Gaussian copula (control function term) for marketing mix variable k of 

brand b in week t to control for potential endogeneity of the variable; and 
 

bt    = Normally distributed error term for brand b in week t. 
 

The market shares, attributes, and marketing mix variables in the model are aggregated 

up to the national brand-week level from store-level SKU data. The aggregation procedure and 

the variable operationalization are in Web Appendix C. We note that the model distinguishes 

between regular and promotional price through two separate variables, RegPrice and PriceIndex 

respectively. FD captures the additional effect of feature/display support over and above the 

impact of a promotional price discount. The Distr variable measures the percentage of SKUs on 

the shelf that belong to the brand, thus incorporating both distribution breadth and the depth of 

the product line in distribution. The number of attribute variables differs across categories as the 

number of attributes and the levels of each attribute varies (for details, see Web Appendix D). 

The Gaussian copula for each marketing variable Xbt, for brand b in week t is: Copulabt  =
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Φ−1(H(Xbt)), where Φ-1 is the inverse distribution function of the standard normal, and H(·) is 

the empirical cumulative distribution function of Xb. Finally, the brand-year intercepts measure 

SBBE, and are estimated for all years Yb for which data on brand b are available. 

Model Estimation 

The attraction model for a category can be written as a system of M equations. Because 

shares add to one, the dependency across equations reduces the rank of the system to M-1. For 

estimation, the system can be normalized by geometric mean-centering (Cooper and Nakanishi 

1988), or with respect to a base brand (Bronnenberg, Mahajan and Vanhonacker 2000). Both 

approaches are mathematically equivalent, and we use the latter for computational ease (Fok, 

Franses, and Paap 2002).  

To linearize model (1), we take its logarithm for each of the M brands. Next, we subtract 

a base brand B from both sides of each of the other M-1 equations. The base brand is selected as 

the brand with the most observations. We estimate this system of M-1 seemingly unrelated 

equations for each category using Feasible Generalized Least Squares (FGLS): log (MSbtMSBt) = ∑ (αby − αBy) · DumYeartyy∈Yb + βb1RegPricebt − βB1RegPriceBt +βb2PriceIndexbt − βB2PriceIndexBt + βb3FDbt − βB3FDBt + βb4Distrbt −βB4DistrBt + βb5AdStockbt − βB5AdStockBt + ∑ κbq−1Quarterqt4q=2 +∑ γal(Attrbal − AttrBal)a,l + ∑ (ωkbCopulakbt − ωkBCopulakBt)k + εbt − εBt.  
(3) 

The yearly intercepts for the base brand (αBy) are normalized to zero for identification. 

To back out SBBE for the base brand, we use the assumption of the attraction model that the 

total attraction across brands is constant over time, leading to brand b’s SBBE in year y:  

SBBEby = { 1M (αby(M − 1) − ∑ αb′yb′≠b ) if b ≠ B− 1M ∑ αbyb                                   if b = B (4) 
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We compute the corresponding standard errors using the delta method. 

To select the advertising smoothing constant λ for the AdStock variable, we use a grid 

search on the interval [0, .9] in increments of .1 that yields the best likelihood. As equation 3 

shows, all other parameters in the system of equations are directly estimated, including the 

brand-specific marketing mix response coefficients. From these coefficients, we compute each 

brand’s marketing mix elasticities as follows (Cooper and Nakanishi 1988, p. 33): 

 ηXb = ∂MSbt∂Xbt XbtMSbt = βb(1 − MSb̅̅ ̅̅ ̅̅ )Xb̅̅ ̅, (5) 

where MSb̅̅ ̅̅ ̅̅  and Xb̅̅ ̅ are brand b’s average market share and marketing instrument X, respectively. 

Second-stage Analysis for the CBBE-SBBE link and the CBBE-Elasticity Link 

We estimate the market share model across all brands to ensure good coverage of each 

category and valid estimates of SBBE and marketing elasticities. After estimating this model, we 

run a second-stage analysis to test the link between the SBBE and elasticity estimates on the one 

side and CBBE on the other side. We use the estimates from eq. (4) and eq. (5) as dependent 

variables and regress them on CBBE and other relevant covariates (more details are given 

below). In the second-stage analysis, we use WLS to account for the uncertainty in the SBBE 

and elasticity estimates from the first stage. We also use conservative clustered standard errors to 

account for the fact that each brand contributes multiple observations to the SBBE model. This 

two-stage approach is in line with an established tradition in the marketing literature (e.g., Nijs et 

al. 2001; Srinivasan et al. 2004; Steenkamp et al. 2005).4 

Results 

Market Share Model Estimates 

Table 3 summarizes the marketing mix elasticities obtained across the 441 brands in 25 

product categories. The weighted averages of the elasticities have the expected signs and their 
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meta-analytic Z-statistics (Rosenthal 1991) are significant. The relative magnitudes of the mean 

regular price elasticity (-.79) and the promotional price elasticity (-2.59) are in line with meta-

analytic results (Bijmolt, van Heerde, and Pieters 2005). The mean Feature/Display elasticity is 

significant though it appears small (.02). Note, however, that this effect is over and above the 

effect of promotional price cuts which are captured by the price index variable. The mean 

advertising elasticity equals only .001, consistent with prior research (Sriram, Balachander, and 

Kalwani 2007; Sethuraman, Tellis, and Briesch 2011; Van Heerde et al. 2013). In Web Appendix 

E, we summarize elasticity estimates and advertising smoothing constants  by category.  

<Insert Table 3 About Here> 

Previous research (Ataman, Van Heerde, and Mela 2010) has reported higher elasticities 

for distribution breadth than ours (.40), but we note that their measure of distribution is 

%Product Category Volume (PCV) whereas we use a brand’s total distribution (Web Appendix 

C). Total distribution elasticity is expected to be lower than the elasticity for Brand PCV because 

an increase in a brand’s total distribution often adds SKUs to an existing assortment in stores, 

some of the sales of which are cannibalized from existing SKUs of the brand. On the other hand, 

an increase in %PCV adds stores that previously did not stock any SKUs of the brand. 

Overall, therefore, the elasticities have face validity and are consistent with prior 

research. We note that the copula correction terms are statistically significant in 70% of the cases 

(1427 out of 2046 at p<.10), underscoring the importance of dealing with endogeneity. 

The Association between CBBE and SBBE 

Figure 2 shows the association between CBBE and SBBE in the most recent year of the 

data (2011) for two categories with a large number of brands – beer and laundry detergent. Beer 

is more hedonic and high on social value, while detergent is less hedonic and high on functional 
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risk. To provide a general overview, Figure 2 uses BAV’s composite Brand Asset score for 

CBBE; we will examine its dimensions in detail below. In this and subsequent analyses, 

measures are standardized across brands in each category to allow comparability. To underscore 

the difference between a brand’s SBBE and its market share, Figure 2 also plots the Brand Asset 

score against market share. 

< Insert Figure 2 About Here > 

Figure 2 illustrates the coverage of the data, the overall positive association between 

CBBE and SBBE, and the face validity of various brand positions. Several well-known brands 

achieve high scores on both CBBE and SBBE, e.g. Budweiser and Bud Light for beer, and Tide 

and Arm & Hammer for laundry detergents. Others, like Bass Ale and Surf score low on both 

CBBE and SBBE. We also note that the highest market share brands are not necessarily the ones 

with the highest SBBE, a point to which we will return shortly. 

<Insert Table 4 About Here> 

Correlations. Table 4 shows correlations between the SBBE and CBBE measures across 

the 2423 brand-year observations in the sample. As expected, the pattern of association of CBBE 

dimensions with SBBE is bifurcated, with three dimensions – Relevance, Esteem, and 

Knowledge – showing a similar pattern and Energized Differentiation showing a very different 

pattern. In line with proposition P1, we find moderate positive correlations (ranging between .35 

and .53) of SBBE with the first three CBBE dimensions. Energized Differentiation has a small 

negative correlation with SBBE (-.14), in line with P2.  

The CBBE dimensions have more positive correlations with market share than they do 

with SBBE. For instance, Relevance and Esteem have correlations of .56 and .55 with market 

share. This finding makes sense. SBBE is the “residual” attraction of a brand after controlling for 
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its physical attributes, its marketing mix, and its marketing mix response, whereas market share 

is the joint result of all these elements. To the extent that high CBBE brands are of higher 

quality, have a more attractive marketing mix, and have stronger response to it, CBBE should be 

more positively associated with market share than with SBBE. 

Principal Component Analysis. Before we estimate the second-stage models, we need to 

account for the high correlations between some of the CBBE dimensions that could cause 

multicollinearity. Therefore, we conduct a principal component analysis to reduce them to a 

smaller number of orthogonal components. We extract the two principal components with 

eigenvalues greater than one, capturing 89% of the variance in the four dimensions. As the 

correlation pattern in Table 4 suggests, the first component has very high loadings of Relevance 

(.93), Esteem (.95) and Knowledge (.88), and a low loading of Energized Differentiation (.02). In 

line with Mizik and Jacobson (2009), we name this component “Relevant Stature” (RelStat). The 

second CBBE component has a very high loading of Energized Differentiation (.99) and low 

loadings of Relevance (.14), Esteem (.07) and Knowledge (-.11), and we label it “EnDif”. We 

use these principal component scores in the rest of the analysis.5 

Category Moderators of the Association between CBBE and SBBE 

  To test the link between the CBBE dimensions and SBBE and the moderating influence 

of the category characteristics, we regress SBBE on the two CBBE principal components, the 

four category characteristics, and their interactions with the CBBE components. In addition, we 

use the Secondary Market indicator variable to account for brands that have extended into new 

domains from the ones where their CBBE is built, as discussed earlier. A benefit of such 

extensions is that firms can leverage their brand equity instead of building it from scratch in a 

new market. However, the SBBE for brands operating in – from their perspective – secondary 
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categories is likely to be lower than would be expected based on the CBBE in their primary 

categories. Therefore, we expect this variable to have a negative coefficient. 

The regression model for SBBE of brand b in year y is: SBBEby = δ0 + δ1RelStatby + δ2EnDifby + δ3RelStatby×C4c + δ4EnDifby×C4c + δ5RelStatby×Hedc + δ6EnDifby×Hedc + δ7RelStatby×FuncRiskc +δ8EnDifby×FuncRiskc + δ9RelStatby×Socialc + δ10EnDifby×Socialc +δ11SecMktb + δ12C4c + δ13Hedc + δ14FuncRiskc + δ15Socialc + uby. 

(6) 
 

where RelStat and EnDif are the two CBBE principal components, C4 is Category 

Concentration, Hed is the perception of how hedonic the category is, FuncRisk is the perceived 

functional risk of the category, Social is the perceived social value of the category, and SecMkt 

is the dummy variable for whether the brand is in a secondary domain. 

We mean-center the category characteristics so that the coefficients of the CBBE 

principal components can be interpreted as their effects at average values of category 

characteristics. Because SBBEby is an estimated parameter, we use Weighted Least Squares 

(WLS) to estimate equation 6. The weight is the inverse of the standard error of SBBÊby divided 

by its standard deviation to account for the standardization applied by category. We use robust 

clustered standard errors since there are multiple observations per brand. 

Table 5 shows the model results. The CBBE components and category moderators 

explain 47% of the variance in SBBE, and most of the effects are consistent with the 

propositions in Table 1. Relevant Stature has a positive effect on SBBE (δ̂=.52, p<.01, P1 

supported). This is enhanced by a category’s social value (δ̂=.29, p<.10, P1.3 supported) but 

reduced for more concentrated categories (δ̂=-.50, p<.10, P1.2 supported). Thus, the greater the 

social signaling value of a category and the more fragmented it is, the more readily the status of a 

brand translates into SBBE. We also find that the more hedonic the category, the smaller the 
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effect of Relevant Stature on SBBE (δ̂ =-.09, p<.05, P1.4 not supported). We do not find a 

significant role for the category’s perceived functional risk (P1.1 not supported).  

<Insert Table 5 About Here> 

Energized Differentiation has a small significant negative main effect (δ̂=-.08, p<.05), P2 

supported). However, there are two category characteristics with positive moderating effects. 

Energized Differentiation pays off more in terms of SBBE in more concentrated categories 

(δ̂=.72, p<.01, P2.1 supported), in line with the argument that if a category has a few big brands, 

consumers can better ascertain and appraise a brand’s unique aspects. Energized Differentiation 

also has a more positive SBBE effect for more hedonic categories (δ̂=.13, p<.01, P2.4 

supported), consistent with the notion that for these categories, consumers are better able to 

appreciate and hence choose unique brands. We do not find evidence for the moderating roles of 

functional risk and social value (P2.1 and P2.3 not supported). 

Table 5 shows that brands that have extended into secondary domains have lower SBBE 

than what would be expected based on their primary market CBBE (δ̂=-.59, p<.01). The main 

effects of the category characteristics are not significant, which is to be expected because the 

dependent variable is standardized by category. 

The Association between CBBE and Marketing Mix Elasticities 

Table 6 shows the estimates from the WLS regression models for the five marketing mix 

elasticities. The explanatory variables are the two CBBE principal components: RelStat and 

EnDif. As before, all variables are standardized by category.  

<Insert Table 6 About Here> 

 As expected (see Table 1), higher scores on Relevant Stature are associated with more 

positive advertising (δ̂=.07, p<.10, P11 supported), more positive feature/display (δ̂=.16, p<.01, 
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P7 supported), and more negative promotional price elasticities (δ̂=-.14, p<.01, P5 supported). 

These findings confirm the notion that brands strong on Relevant Stature have a large pool of 

(latent) customers interested in buying the brand. Promoting the brand through advertising, price 

promotions and feature/display activity pays off for these brands. On the other hand, brands that 

are higher on Relevant Stature have lower distribution elasticities (δ̂=-.19, p<.01). Of course, 

such brands get the most distribution, but consumers are willing to go the extra mile to buy them, 

making gains in distribution less important, in line with Farris, Olver, and De Kluyver (1989).  

 Brands high on Energized Differentiation are in a very different position: their 

promotional price elasticity is weaker (δ̂=.09, p<.10, P6 supported). This result is in line with the 

idea that Energized Differentiation is rather associated with niche brands whose buyers are less-

price sensitive. These brands do have a stronger advertising elasticity (δ̂=.08, p<.10, P12 

supported), in line with having a clear value proposition to communicate.6  

 We do not find significant effects of the CBBE components on regular price elasticity (P3 

and P4 not supported) nor a significant effect of Energized Differentiation on the feature/display 

or distribution elasticity (P8 and P10 not supported).  

Discussion 

Based on the national performance of 290 CPG brands in 25 categories across 10 years, 

we have examined the empirical association between CBBE and SBBE. Using widely accepted 

measures in the literature and in practice, we link the underlying dimensions of CBBE to not 

only brand-intercepts, but also to the effectiveness of five major marketing mix variables. We 

now discuss the main insights organized along key themes. Within each theme, we offer 

managerial implications and, if applicable, opportunities for future research. Table 7 provides an 

overview of the main findings. 
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<Insert Table 7 About Here> 

Positive Association of CBBE with SBBE, but Energized Differentiation is Different 

The link of SBBE with three of the four CBBE dimensions is positive and fairly strong. 

Thus, investments into CBBE pay off if they build consumers’ awareness and understanding of 

what the brand stands for (Knowledge), make the brand appropriate to the consumer 

(Relevance), and enhance consumer regard for the brand (Esteem). Examples of the brands in 

this study that do very well on these three CBBE dimensions and on SBBE are Budweiser, Coke, 

Marlboro, Folgers, Secret, Lysol, Tide, and Doritos, to name a few. These brands have found a 

way to be very clear what they stand for, to be relevant across different segments of the market, 

and to be held in high esteem. Overall, Knowledge is the dimension that is most strongly 

correlated with SBBE. This provides generalizable empirical support for the conceptual 

proposition that building an understanding of what the brand stands for is the ultimate 

accomplishment for equity in the marketplace. 

At the same time, we have also documented a small negative association between SBBE 

and the fourth CBBE dimension – Energized Differentiation – which reflects a brand’s 

uniqueness compared to competitors and its agility to meet changing consumer demands. Hence, 

a strongly differentiated brand does not necessarily appeal to the masses. Specifically, the sample 

includes several niche-type brands that are low on Knowledge and high on Energized 

Differentiation, with relatively low SBBE. Many of these are fairly new, like Fat Tire and Blue 

Moon beer, Bear Naked cereal, Axe deodorant, Seventh Generation, and Method household 

cleaner. These products entered the market during the period of analysis or in the decade before 

it. They needed to be different to find a place in the market and several have not (yet) expanded 

beyond the niche in which they entered. As a result, their SBBE is low.7 
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However, high Energized Differentiation does not mean a brand has to be a niche player. 

Several mature brands in the sample, for example Dr Pepper, Coke, Special K, Lysol, Doritos, 

and Tide, do reasonably well on Energized Differentiation as well as the other CBBE dimensions 

and hence on SBBE. Presumably, the combination of CBBE dimensions gives these brands more 

staying power in the long term, though it also takes several years of consistent brand 

development to build up the combination.8 

We have focused on the contemporaneous association between CBBE and SBBE. Future 

research could examine the dynamics of how current CBBE dimensions might drive future 

SBBE. We conducted some preliminary analysis and did not find any difference between 

contemporaneous and one- or two-year lagged effects. However, at least for new brands, 

Energized Differentiation in the early years may have a positive effect on SBBE in later years. 

There may also be dynamic effects among CBBE dimensions. For example, Energized 

Differentiation in the present may enhance Esteem in later years. Note, though, that brand equity 

is built over years, not weeks or months, so a long time unit of analysis and a much longer data 

period would be needed to assess the dynamics in its evolution. 

Choice Complexity, Social, and Experiential Value Moderate Effect of CBBE on SBBE 

Variation in the association between CBBE and SBBE across categories is explained by 

the extent to which brands serve as cues for simplifying choice, and provide social value and 

personal enjoyment. As before, patterns differ for Energized Differentiation versus the other 

three CBBE dimensions which we combine into Relevant Stature. 

< Insert Figure 3 About Here> 

The effect sizes can be seen from the spotlight analysis in Figure 3. Using the estimates 

(Table 5), we compute the effect of CBBE on SBBE for categories in the 10th versus the 90th 
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percentile of the distribution of category characteristics. The coefficients represent changes in 

SBBE measured in standard deviations due to a one standard deviation increase in CBBE. The 

effect of Relevant Stature on SBBE is substantially stronger for the 90th versus 10th percentile on 

social value (.63 versus .37); it is also considerably stronger for high versus low hedonic nature 

(.67 versus .41) and for low versus high concentration (.61 versus .35). 

The spotlight analysis also demonstrates that Energized Differentiation can enhance 

SBBE in some circumstances. For highly hedonic categories, the effect is positive (.09). This is 

also the case for highly concentrated categories (.17).  

These results offer guidance to brand managers on which CBBE dimensions to prioritize 

contingent on the category. For categories that have high social value (e.g., beer, cigarettes), are 

fragmented (e.g., frozen pizza and dinners) and/or less hedonic (disposable diapers), it especially 

pays off to focus on Relevant Stature instead of highlighting differences. The brand’s positioning 

and communication should explain what the brand stands for (enhancing brand knowledge), 

make it relevant for many consumers and enhance its esteem. While Relevant Stature cannot be 

ignored, brands that are in hedonic (e.g., coffee) or concentrated categories (e.g., ketchup), or 

those with lower social value (e.g., mayonnaise, mustard) should highlight or enhance Energized 

Differentiation. As differences between brands are more appraisable in these categories, 

marketers must communicate the brand’s unique selling points and their efforts to keep on 

meeting consumer’s needs.  

Nuanced Effects of CBBE on Marketing Mix Elasticities 

The results on the association of CBBE with marketing mix elasticities caution against a 

broad-brush assumption that brand equity enhances all marketing mix response. Reality is more 

nuanced – both along the dimensions of CBBE, and across marketing mix elements. We find that 
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relevant, well-known brands held in high esteem benefit more from price discounts and 

display/feature support. A spotlight analysis (see Figure 4) based on the model estimates in Table 

6 illustrates that this impact is sizeable. For example, brands at the 90th versus 10th percentile on 

Relevant Stature average a price promotion elasticity of -3.32 versus -2.64, a 26% increase in 

magnitude; they also benefit from more positive advertising elasticities (.005 versus .001), 

though the magnitudes are small overall. Importantly, distribution elasticities are smaller for 

brands in the 90th versus the 10th percentile on Relevant Stature (.33 versus .59). High Relevant 

Stature brands get broad distribution but their marginal return on distribution is lower because 

consumers are willing to search for them. This result is not simply because such brands have 

reached a saturation point in distribution. We don’t measure ACV or PCV weighted brand 

distribution which is indeed close to 100% for most big brands. Instead, we measure the 

weighted share of SKUs on the shelf, which is much lower even for the strongest brands. The 

implication is that high Relevant Stature brands should prioritize better promotional pass-through 

and feature/display support over additional SKUs on the shelf.  

< Insert Figure 4 About Here> 

In contrast, brands that excel in Energized Differentiation benefit relatively less from 

price promotions (-2.73 versus -3.13 for the 90th versus 10th percentile). They are better 

supported through their relatively effective advertising investments (.005 versus .001) and their 

marginally higher return on distribution (.49 versus .46). It is important for such brands to 

balance the pull and push sides of their marketing mix so that neither gets too far ahead of the 

other, especially because many of them are new and may have limited marketing budgets.  

Important Insights in the “Misalignment” of CBBE  

This research shows that (i) the dimensions of CBBE are not well-aligned; (ii) CBBE 
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does not always align well with SBBE and (iii) CBBE aligns better with market share than with 

SBBE. The nature of these “misalignments” has important ramifications for academic research, 

for firms tracking brand equity, and for brand managers using these measures as diagnostic tools. 

(i) Dimensions of CBBE. As we noted earlier, academic researchers use measures of 

brand equity in a variety of contexts like new product extensions, marketing mix, financial 

outcomes, and strategic brand alliances. Understandably, researchers are constrained by the 

availability of CBBE data. However, since different dimensions of CBBE and SBBE are likely to 

have very different effects on the phenomena of interest, our work implies that researchers 

should make and test more specific predictions related to the particular measures they use rather 

than rely on broad-based predictions related to brand equity. This research also cautions against 

combining very different measures into a composite brand equity score, as this may mask 

varying or even opposing effects of the underlying measures. Our analysis suggests that it is 

particularly important to track Energized Differentiation separately from the other dimensions. 

(ii) CBBE vs SBBE. The fact that the alignment of CBBE with SBBE is strong but not 

perfect offers a diagnostic opportunity. New and important insights can emerge from outliers, not 

just from observations that are in line with the overall association between CBBE and SBBE. 

Figure 5 plots SBBE against CBBE for beer category in 2011, using a regression line and its 

95% confidence interval for the mean. Brands above the confidence interval can be thought of as 

“over-achievers” because they garner significantly more SBBE than expected based on their 

CBBE. Conversely, brands below the confidence interval can be viewed as “under-achievers”. 

< Insert Figure 5 About Here > 

A notable over-achiever is Corona, the Mexican beer brand that succeeds in the 

marketplace despite relatively poor taste ratings (Stock 2014). Its success has been attributed to a 
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consistently advertised “sand, sun, and lime wedge” image. The challenge for an over-achiever 

such as Corona is to find out through marketing research why their relatively strong SBBE is not 

mirrored in a strong position in the hearts and minds of consumers (CBBE). Otherwise, the brand 

may not sustain its marketplace strength.  

A notable under-achiever is Fat Tire, a brand that is highly differentiated and that began 

national distribution around 2002. Its position is in line with the pattern that newer brands tend to 

be under-achievers, because it takes time for the positive attitudes they build to percolate into 

marketplace choices. New brands should monitor the development of their SBBE over time and 

make sure they migrate upwards on the CBBE-SBBE plot. Tracking market share is not enough 

since that can be propped up with price cuts and other temporary tactics. Miller is also an under-

achiever, but unlike Fat Tire, its position is not attributable to newness or to differentiation, 

making it a bigger cause for concern. Such an under-achiever must also research why their 

relatively favorable CBBE position does not manifest itself in SBBE – what is stopping 

consumers from acting in line with how they think and feel about the brand? 

Our purpose is not to explain why specific brands are under- or over-achievers, but to 

illustrate the value of the analysis as a diagnostic tool. Irrespective of whether or not a marketer 

concludes that its place on the plot is a cause for concern, it is useful to compare each CBBE 

dimension with SBBE and, if a brand is significantly “off the line”, diagnose the cause for it.  

(iii) CBBE vs SBBE vs Market Share. SBBE removes from a brand’s market share the 

effects of its objective attributes and marketing mix, so that a brand’s features and (possibly 

temporary) tactics do not confound its intrinsic equity. Obviously, when consumers choose 

brands, they take into account the whole package (SBBE + attributes + marketing mix), not just 

SBBE. Therefore, it is not surprising that CBBE aligns more strongly with market share than 
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with SBBE. Other researchers have argued that brand equity is also reflected in consumers’ 

subjective perceptions of a product’s experience attributes (Goldfarb, Lu, and Moorthy 2009; 

Park and Srinivasan 1994; Srinivasan, Park, and Chang 2005). Future research could separate the 

effects of “experience” from “search” attributes, and examine how CBBE affects perceptions of 

these different attribute types.  

Some of the Brand Equity Associations Merit Further Examination  

In this study, we tested several propositions on how CBBE links to SBBE, on how this 

link is moderated by category characteristics, and on how CBBE links to marketing elasticities. 

We find support for many of them, but the ones for which we do not deserve examination. There 

is only one case where we find a significant effect in the opposite direction than anticipated: the 

effect of Relevant Stature on SBBE is smaller for more hedonic categories. An explanation is 

that the more personally enjoyable a category is (which is more inward-looking), the less 

important are broad appeal and status for SBBE (which are more outward-looking). 

For some other propositions, we do not find a significant effect. One intriguing null result 

is that functional risk does not strengthen the effect of relevant stature on SBBE, though Fischer, 

Völckner, and Sattler (2010) identified functional risk as a driver of brand relevance. An 

explanation is that their research examined vastly different categories ranging from CPG to 

electronics, retail stores, and automobiles whereas we study CPG categories with less variation 

in perceived functional risk.  

Another interesting result is the lack of effect of CBBE on regular price elasticity. We 

anticipated that high CBBE brands would have lower regular price elasticities. However, high 

CBBE brands may face a relatively small loss in demand when their regular price increases, but 

a relatively strong gain in demand when their regular price decreases (Ailawadi, Lehmann, and 
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Neslin 2003). Our model assumes symmetric elasticities, but future research could allow for 

asymmetric effects. A final result worth investigating is the insignificant effect of Energized 

Differentiation on feature/display and distribution elasticities. Our expectations were based on 

the notion that differentiated brands mostly appeal to specific consumer segments, reducing the 

overall draw of feature/display and additional distribution. However, distribution and 

merchandising may, like advertising, make more consumers in those segments aware of the 

differentiated (and often new) brands. 

Conclusion 

No research is perfect, and ours is no exception. Future research can study refinements to 

our study to deepen the insights. For instance, we use aggregate scanner data to measure SBBE, 

as this matches the national level of the CBBE data. Future research could estimate less 

aggregate store- or market-level models and study geographical variation. We have examined 

one type of CBBE and one type of SBBE measure. While the measures we chose are arguably 

the most widely used in the literature, there is certainly value in examining others. In addition, 

future research could try to estimate an integrated model where the intercepts and response 

parameters of the market share model are specified as a function of (time-varying) CBBE 

measures while allowing for parameter heterogeneity and endogeneity. A Transfer Function 

Dynamic Hierarchical Linear Model could be suitable (Peers, van Heerde, and Dekimpe 2016).  

Despite its limitations, this paper offers new insights into the strength and nature of the 

relationship between consumer-based and sales-based brand equity measures. The finding that 

these measures align quite well but not perfectly, and that there are important differences at the 

level of component parts, shows that there is room for important follow-up questions for both 

brand managers and academic researchers in this domain. 
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Footnotes

                                                           
1 The original four pillars identified by BAV were differentiation, relevance, esteem, and 

knowledge. In their work with the company, Mizik and Jacobson (2008) then identified energy 

as a fifth pillar which has since been combined with differentiation as energized differentiation. 
2 We dropped toothbrushes and photo film because their sales volume is provided in counts 

without information on the number of toothbrushes in a package or the number of exposures in a 

roll of film.  
3 A file listing the IRI subcategories and IRI brands included in our analysis, along with our 

coding of their respective parent brands, is available for download under “Supplemental 
Material” at http://dx.doi.org/10.1509/jm.15.0340. 
4 A Hierarchical Linear (HLM) framework that models market shares in a first layer and explains 

the intercepts and response parameters in a second layer is theoretically more efficient. However, 

we have ten years of weekly data to estimate the brand-specific parameters with precision, so the 

potential efficiency advantage of HLM is likely to be small (Gelman 2005). Conversely, an HLM 

would have to deal with missing data in the second layer for the 151 out of 441 brands without 

BAV data. Replacing missings by zeros or averages, or using a missing data dummy would 

introduce biases since the missing data may not be random (Schafer and Graham 2002). 

Adopting a Bayesian data imputation approach would add substantial complexity. For these 

reasons, and because it accounts for uncertainty in the model estimates and for error 

dependencies, we believe the two-stage regression is preferable to HLM here. 
5 We also converted the principal component level results back to the level of the individual four 

CBBE dimensions (e.g., Rust, Lemon, and Zeithaml 2004). Those results are summarized in 

Web Appendix F. 
6 The category characteristics may moderate the effects of the CBBE components on elasticities 

(e.g., Erdem, Swait, and Louviere 2002). Although those are third order effects for which we do 

not have strong expectations, we did test them. Complete results are available in Web Appendix 

G. 
7 In fact, if we exclude these newer brands from the analysis, the association between Energized 

Differentiation and SBBE becomes insignificant.  
8 To test for any concurrent synergies, we included an interaction between Energized 

Differentiation and Relevant Stature in the regression of SBBE on CBBE components, but found 

that it was not statistically significant. 
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Figure 1 
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Figure 2 
 

 The Association of CBBE with SBBE and Market Share 

 

 
 

 

  
Note: Data are shown for the most recent year (2011). All measures except market share are standardized across 
brands to facilitate comparability. Regression lines are shown to indicate the association between the measures. 
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Figure 3 

 

Effect of Relevant Stature and Energized Differentiation on SBBE  

for Different Levels of Moderators  

 

A. Effect of Relevant Stature on SBBE 
 

B. Effect of Energized Differentiation on SBBE 

 

   

Notes: Effects are computed at the 10th and 90th percentile of the category characteristics using the regression results in Table 5. 
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Figure 4 

Marketing Elasticities for Different Levels of CBBE 
 

 Effect on 

Effect of Promotional Price Index 

Elasticity 

Feature/Display  

Elasticity 

Distribution  

Elasticity 

Advertising  

Elasticity 

R
el

ev
a
n

t 
S

ta
tu

re
 

 
 

   

E
n

er
g

iz
ed

 D
if

fe
re

n
ti

a
ti

o
n

 

    
Note: Effects are computed in two steps: First, we calculate the impact of Relevant Stature and Energized Differentiation at their 10th and 90th percentiles on standardized 
elasticities, using the regression results in Table 6. Then, we convert the effect to raw elasticities by multiplying them with the (weighted) standard deviation of estimated 
elasticities, and adding their (weighted) mean. 
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Figure 5 
 

Association between SBBE and CBBE: Beer Category 
 

 

 

Note: Data are shown for the most recent year (2011), and are 
standardized for all measures across brands to facilitate comparability. 
Regression lines, with 95%-confidence bounds are shown. 
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Table 1 

 

Association of CBBE with SBBE and Marketing Mix Elasticities: Propositions 

 

 
 
CBBE 

dimension 

Expected Association With 

 

SBBE 

Regular Price 

Elasticity  

Promotional 

Price Index 

Elasticity  

Feature/Display 

Elasticity 

Distribution 

Elasticity 

Advertising 

Elasticity 

Relevance 

Esteem 

Knowledge 

(REK) 

P1: REK has a positive association with SBBE. 

P1.1: The association between REK and SBBE 
is stronger for higher functional risk categories. 

P1.2: The association between REK and SBBE 
is stronger for less concentrated categories. 

P1.3: The association between REK and SBBE 
is stronger (more positive) for higher social 

value categories. 

P1.4: The association between REK and SBBE 
is stronger for more hedonic categories. 

P3: Higher 
REK is 
associated with 
a weaker (less 
negative) 
regular price 

elasticity. 

P5: Higher 
REK is 
associated with 
a stronger 
(more 
negative) 
promotional 

price elasticity. 

P7: Higher REK 
is associated 
with a stronger 

feature/display 

elasticity. 

P9: There are 
arguments both 
for a positive 
and a negative 
association of 
REK with 

distribution 

elasticity. 

P11: Higher 
REK is 
associated with 
a stronger 
advertising 

elasticity. 

Energized 

Differentiation 

(ED) 

P2: ED has a negative association with SBBE. 

P2.1: The association between ED and SBBE is 
weaker for higher functional risk categories. 

P2.2: The association between ED and SBBE is 
stronger for more concentrated categories. 

P2.3: The association between ED and SBBE is 
stronger (more positive) for higher social value 

categories. 

P2.4: The association between ED and SBBE is 
stronger for more hedonic categories. 

P4: Higher ED 
is associated 
with a weaker 
(less negative) 
regular price 

elasticity. 

P6: Higher ED 
is associated 
with a weaker 
(less negative) 
promotional 

price elasticity. 

P8: Higher ED 
is associated 
with a weaker 
feature/display 

elasticity. 

P10: Higher 
ED is 
associated with 
a weaker 
distribution 

elasticity. 

P12: Higher 
ED is 
associated with 
a stronger 

advertising 

elasticity. 
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Table 2 

Sample Description 

 

Category 
No. of 
Brands 

No. of  
BAV brands 

Mean No. of  
Years per Brand 

Mean of 
Social Valuea 

Mean of  
Hedonic Naturea 

Mean of  
Functional Riska 

Mean of  
Cat. Concentrationa 

Beer 59 37 9.9 3.39 5.96 3.44 .47 
Carbonated Soft Drinks 27 21 9.8 2.72 5.32 3.01 .56 
Cigarettes 25 21 10.0 3.11 4.26 3.10 .65 
Coffee 30 23 9.4 3.07 5.52 3.64 .74 
Cold (RTE) Cereal 23 20 10.0 2.72 4.75 3.16 .48 
Deodorants 19 17 9.7 2.44 2.83 3.53 .51 
Disposable Diapers 6 4 9.2 2.45 2.10 3.72 .99 
Household Cleaners 15 9 9.7 2.59 2.18 3.41 .59 
Ketchup 5 3 10.0 2.05 3.45 2.58 1.00 
Laundry Detergents 20 17 9.9 2.56 2.40 3.53 .60 
Margarine & Spreads 13 6 10.0 2.17 3.09 2.72 .65 
Mayonnaise 7 3 10.0 2.15 3.07 2.83 .93 
Milk 19 4 9.9 2.34 3.39 2.81 .90 
Mustard 12 5 10.0 2.12 3.30 2.46 .90 
Peanut Butter 11 5 9.4 2.30 4.37 2.98 .92 
Frozen Pizza & Dinners 26 15 9.4 2.47 3.61 3.22 .47 
Razors & Blades 5 3 10.0 2.52 2.61 3.72 .99 
Salty Snacks 17 7 9.6 2.56 5.16 2.97 .74 
Shampoo 28 17 9.1 2.84 3.09 3.56 .57 
Soup 8 6 9.0 2.16 3.40 2.94 .98 
Pasta Sauce 15 14 9.6 2.30 3.89 3.05 .70 
Sugar Substitutes 10 5 8.1 2.52 2.82 2.76 .89 
Toilet Tissue 10 5 10.0 2.45 2.40 3.60 .70 
Toothpaste 15 13 9.9 2.53 2.79 3.43 .87 
Yogurt 16 10 8.9 2.43 4.03 3.01 .79 
a Category concentration is the total market share of the top four brands in a category. Both Social Value and Functional Risk of a category are measured on two-

item, 5-point Likert scales (values 1-5), with higher values representing higher scores. Hedonic Nature is measured on a two-item, 7-point sematic differential 

scale (values 1-7), with higher values representing more hedonic categories. Please see Web Appendix B for measurement details. 
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Table 3 

Summary of Market Share Elasticity Estimates 

 

 

Marketing Mix Variable Elasticity estimatea 90%-interval of 
estimated 

elasticities   Mean 
Standard 
Deviation 

Regular price  -.79*** 1.18 [-2.74, .53] 

Promotional price index -2.59*** 1.97 [-5.64, -.45] 

Feature/Display  .02*** .05 [-.04, .19] 

Distribution  .40*** .47 [-.10, 1.03] 

Advertising stock .001** .02 [-.02, .04] 

a Weighted means and standard deviations across 441 brands in 25 categories, with weights equal to 
the inverse of the estimated standard errors. Significance tests based on meta-analytic Z-values. 
*** p< .01; ** p< .05; * p<.10 

 

 

 

Table 4 

Correlations of SBBE with CBBE 

 

 
Correlation With  

CBBE Dimension 
Esteem Knowledge Energized 

Diff. 
SBBE Market 

Share 

Relevance .85*** .64*** .02 .39*** .56*** 

Esteem  .70*** .04** .35*** .55*** 

Knowledge   -.20*** .53*** .52*** 

Energized Differentiation    -.14*** -.08*** 

Note: Correlations computed on 2423 brand-year observations for 290 brands in 25 categories for which CBBE measures 
are available. Data are standardized within category before computing correlations. 
*** p< .01; ** p< .05; * p<.10. 
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Table 5 

Regression of SBBE on CBBE Principal Components and Category Moderators  

 
Independent Variable Expectation 

(Proposition) 

Estimate S.E. 

Principal Component for Relevant 

Stature (RelStat) 

+ (P1) .52*** .04 

x Category Functional Risk + (P1.1) -.01 .17 

x Category Concentration − (P1.2) -.50* .30 

x Category Social Value + (P1.3) .29* .17 

x Category Hedonic Nature  + (P1.4) -.09** .04 

Principal Component for Energized 

Differentiation (EnDif) 

− (P2) -.08** .04 

x Category Functional Risk − (P2.1) -.08 .19 

x Category Concentration + (P2.2) .72*** .26 

x Category Social Value + (P2.3) -.05 .21 

x Category Hedonic Nature + (P2.4) .13*** .05 

Secondary market          − -.59*** .13 

Category Social Value  -.21 .24 

Category Hedonic Nature  .03 .06 

Category Functional Risk  -.08 .21 

Category Concentration   .26 .35 

Constant  .64 .67 

R2  .47  

Number of brands  290  

Number of observations  2423  

Note: The dependent variable is a brand’s SBBE, and the model is estimated using Weighted Least 
Squares, with weights equal to the estimated SBBE’s inverse standard error. Data are standardized 
within category before model estimation. Robust clustered standard errors are reported. 
*** p< .01; ** p< .05; * p<.10 
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Table 6 

Regression of Marketing Mix Elasticities on CBBE Principal Components 

 

 

 
Effect on Elasticity of 

CBBE Principal Component Regular Price  Promotional Price  Feature / Display  Distribution  Advertising  

 Expectation 
(Proposition) 

Estimate  
(S.E.) 

Expectation 
(Proposition) 

Estimate  
(S.E.) 

Expectation 
(Proposition) 

Estimate  
(S.E.) 

Expectation 
(Proposition) 

Estimate 
(S.E.) 

Expectation 
(Proposition) 

Estimate 
(S.E.) 

Relevant Stature (RelStat) +  (P3) -.02 
(.07) 

− (P5) -.14*** 
(.05) 

+ (P7) .16*** 
(.05) 

+ or − (P9) -.19*** 
(.05) 

+ (P11) .07* 
(.04) 

Energized Differentiation (EnDif) + (P4) .08 
(.06) 

+ (P6) .09* 
(.05) 

− (P8) .08 
(.06) 

− (P10) .03 
(.05) 

+ (P12) .08* 
(.05) 

Constant  .03 
(.06) 

 .07 
(.05) 

 -.15** 
(.06) 

 -.05 
(.05) 

 -.06 
(.05) 

R2  .01  .06  .04  .06  .02 

N  290  290  276  290  226 

S.E. = standard error. *** p< .01; ** p< .05; * p<.10 
Note: The model is estimated using Weighted Least Squares, with weights equal to the elasticities’ inverse standard errors. Data are standardized within category 
before estimation. Hence, the variation being explained is across brands within a category, not across categories. N is smaller for Feature/Display and Advertising 
because some brands lack variation in these variables. 
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Table 7 

Association of CBBE with SBBE and Marketing Mix Elasticities: Summary of the Findings 
 

 
 
CBBE dimension 

Association With 

 

SBBE Marketing Mix Elasticities 

Relevance 

Esteem 

Knowledge,  

combined in Relevant 

Stature 

• Positive and significant correlation between SBBE and 
Relevance (.39), Esteem (.35) and Knowledge (.53). 

• The effect of Relevant Stature on SBBE is significantly 
positive (P1 supported). 

• The effect of Relevant Stature on SBBE is stronger for 

o less concentrated categories (P1.2 supported). 

o high social value categories (P1.3 supported). 

o less hedonic categories (P1.4 not supported). 

but it is not significantly moderated by 

o functional risk (P1.1 not supported) 

Higher Relevant Stature is associated with 

• no significant difference in regular price elasticity 
(P3 not supported) 

• a stronger (more negative) promotional price elasticity 
(P5 supported). 

• a stronger feature/display elasticity 
(P7 supported). 

• a weaker distribution elasticity (P9 no prediction). 

• a stronger advertising elasticity (P11 supported). 

Energized Differentiation  • Negative and significant correlation between SBBE 
and Energized Differentiation (-.14).  

• The effect of its principal component on SBBE is 
significantly negative (P2 supported). 

• The effect of Energized Differentiation on SBBE is 
stronger for  

o more concentrated categories (P2.2 supported). 

o more hedonic categories (P2.4 supported). 

but it is not significantly moderated by 

o functional risk (P2.1 not supported). 

o social value (P2.3 not supported). 

Higher Energized Differentiation is associated with 

• no significant difference in regular price elasticity 
(P4 not supported). 

• a weaker (less negative) promotional price elasticity 
(P6 supported). 

• no significant difference in feature/display elasticity 
(P8 not supported). 

• no significant difference in distribution elasticity 
(P10 not supported). 

• a stronger advertising elasticity 
(P12 supported). 
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Web Appendix A 

Consumer-Based Brand Equity Measures from Brand Asset Valuator (BAV)a 

CBBE Dimension Items Survey Statements Item Scales 

Energized 
Differentiation 

Dynamic 
Innovative 
Distinctive 
Unique 
Different 
 

We would like to know whether or not you associate each 
characteristic with each brand. Please place an “X” in the 
box for each characteristic which applies to the brand. 

Yes or No 

Relevance Relevance By “relevance” we mean how appropriate the brand is for 
you personally. Please put an “X” in the box that best 
describes how relevant you think it is for you. 
 

7-point scale: 
Not at all (1) – Extremely Relevant (7) 

Esteem Regard 
 
 
 
Leader 
Reliable 
High Quality 

By “personal regard” we mean how highly you think and 
feel about the brand. Please put an “X” in the box that best 
describes how highly you think and feel about the brand. 
 
Please place an “X” in the box for each characteristic which 
applies to the brand.  

7-point scale: 
Extremely Low (1) – Extremely High Regard (7) 
 
 
Yes or No 
 
 

Knowledge Familiarity By “familiarity” we mean your overall awareness of the 
brand as well as your understanding of what kind of 
product or service the brand represents. Please put an “X” 
in the box that best describes how familiar you are with it.  

7-point scale: 
Never Heard of (1) – Extremely Familiar (7) 
 
 
 

Brand Asset Score   Product of rescaled values of the four dimensions 
a Documentation from Young & Rubicam. More information about BAV can be found at bavconsulting.com.  
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Web Appendix B 

Operationalization of Category Characteristics 

 
Construct Symbol Measures Scale Adapted from 

Hedonic 
nature of 
category 
(Cronbach α = 
.81) 

Hedc Please rate category X on how Not 
Fun / Fun it is. 
 
Please rate category X on how 
Unenjoyable / Enjoyable it is. 

7-point semantic differential scale:  
Not Fun = 1; Fun = 7  
 
Unenjoyable = 1; Enjoyable = 7 

Voss, 
Spangenberg, and 
Grohmann, 
(2003) 

Functional risk 
(Cronbach α = 
.60) 

PerfRiskc There is much to lose if you make the 
wrong choice in category X. 
 
In category X, there are large 
differences in quality between the 
various products. 

5-point Likert scale:  
 
 
1= strongly disagree; 2 = somewhat disagree;  
3 = neither agree nor disagree;  
4 = somewhat agree; 5 = strongly agree. 

Steenkamp and 
Geyskens (2014) 
 
Own development 

Social value 
(Cronbach α = 
.85) 

Socialc You can tell a lot about a person from 
the brand of category X he or she 
buys. 
 
The brand of category X a person 
buys says something about who they 
are. 

5-point Likert scale:  
 
 
 
1= strongly disagree; 2 = somewhat disagree; 
3 = neither agree nor disagree;  
4 = somewhat agree; 5 = strongly agree. 

Steenkamp and 
Geyskens (2014) 

Concentration C4c C4: market share of the four largest 
brands in the category 

 Tirole (1988) 
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Web Appendix C 

Operationalization of Variables in Market Share Attraction Model 

Variable Symbol Operationalization 

Market share MSbt Number of units (in volume equivalents) of all SKUs of brand b sold in week t, divided by total units of 
category sold in week t. 

Regular price RegPricebt SKU- and store-weighteda regular price of brand b in week t, defined for each available SKU as the highest 
actual price (dollar revenue divided by units sold) per equivalent volume of the SKU in the most recent four 
weeks (t, t-1, t-2, t-3), and deflated by the consumer price index of the product categoryb. 

Price index PriceIndexbt SKU- and store-weighteda ratio of actual price to regular price (RegPrice) for brand b in week t. Suppose an 
SKU’s regular price is $2.00 and its actual price is $1.50, then the price index is $1.50/$2.00 = .75, reflecting 
a 25% promotional price discount. 

Feature/Display  FDbt SKU- and store-weighteda indicator variable for whether or not each available SKU of brand b has a feature 
and/or display in week t. 
 

Total 
distribution 

Distrbt Store-weightedc total distribution of brand b in week t, defined as a brand’s share of total SKUs available in 
store in week t.d Suppose there are 100 (same-size) stores and each carries a total of 50 SKUs in the 
category. The focal brand is sold in 80 stores, and has 10 SKUs in each of them. The total distribution is 
(80*10)/(100*50) = .16 or 16%. Total distribution is the same as the product of distribution breadth (80/100 
in the example) and distribution depth (10/50 in the example): (80*10)/(100*50) = (80/100)*(10/50) = .16. 

Advertising Advertisingbt Total monthly advertising spending of brand b in week te. 
a To aggregate SKU-level metrics to brand-level metrics, we first compute weighted averages of the focal variables across a brand’s SKUs within each store 
stocking the brand, using as weights the SKU’s share of brand sales in the store in a rolling window of the previous quarter (13 weeks). Then, we aggregate 
across all stocking stores, with weights equal to each store’s share of total category sales in the same rolling window. 
b Data taken from the Bureau of Labor Statistics (http://www.bls.gov/cpi). 
c Weights are equal to each store’s share of total category sales in a rolling window of the previous quarter. 
d An SKU is assumed to be available in a store in week t if it has non-zero sales at least once in the most recent four weeks (t, t-1, t-2, t-3).  
e To compute weekly advertising spending, we first divide by the number of days in a month, and then sum up the spending in 7-day periods that correspond to 
IRI’s definition of a week. 
 

http://www.bls.gov/
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Web Appendix D 

Product Attributes Included in Market Share Model 
 

Category Attribute Levelsa 

Beer Type of Beer Ale Ale, Malt, Stout, Lager, Other 

Beer Package Bottle, Can, Other 

Carbonated Soft Drinks Package Bottle, Can, Glass, Other 

Carbonated Soft Drinks Flavor Scent Cola, Ginger, Root, Other 

Carbonated Soft Drinks Calorie Level Reg, Lowcal 

Carbonated Soft Drinks Product Type Soda, Water 

Cigarettes Type of Cigarette Filter, Other 

Cigarettes Size King85, Long100, Other 

Cigarettes Menthol Info Nonmenth, Other 

Coffee Caffeine Info Decaf, Lowcaf 

Cold (RTE) Cereal Package Box, Other 

Cold (RTE) Cereal Type of Grain Corn, Oat, Wheat, Bran, Whole, Granola, Other 

Cold (RTE) Cereal Flavor Scent Regular, Honey, Cocoa, Cinnamon, Other 

Deodorants Product Type Antiper, Deo 

Deodorants Package Container, Other 

Deodorants Form Solid, Stick, Gel, Spray, Other 

Disposable Diapers User Info Boy, Girl, Baby, Other 

Disposable Diapers Product Type Diaper, Tpant 

Disposable Diapers Weight of Baby Lt20, Up40, Gt40, Other 

Disposable Diapers Stage Phase Stg1, Stg2, Stg3, Stg4, Stg5, Stg6, Infant, Other 

Household Cleaners Product Type Cleaner, Toilet, Other 

Household Cleaners Form Liquid, Spray, Solid, Gel, Foam, Other 

Ketchup Package Jar, Other 

Laundry Detergents Package Bottle, Box, Bag, Other 

Laundry Detergents Concentration Level Ultra, Double, Triple, Gt3, Classic, Other 

Laundry Detergents Form Liquid, Powder, Sheet, Pod, Other 

Margarine & Spreads Package Tub, Bottle, Box, Other 

Margarine & Spreads Product Type Marg, Btr_blend, Vegoil_sprd 

Margarine & Spreads Flavor Scent Regflv, Swtcrm, Butter, Btrmlk, Other 

Margarine & Spreads Type of Margarine Vegoil, Cornoil, Oliveoil, Soyoil, Canolaoil, Flaxoil, Other 

Margarine & Spreads Calorie Level Regcal, Other 

Margarine & Spreads Form Spread, Stick, Spray, Other 

Mayonnaise Flavor Scent Regflv, Garlicflv, Mustflv, Tomflv, Lime, Hradflv, Other 

Mayonnaise Package Gjar, Pjar, Squeeze, Other 

Mayonnaise Sugar Content Regsug, Lowsug, Other 

Milk Package Bottle, Carton, Other 

Milk Flavor Scent Regflv, Strawberry, Chocolate, Vanilla, Other 

Milk Type of Milk Regular, Reduced_fat, Low_fat, Other 
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Category Attribute Levelsa 

Mustard Package Jar, Other 

Peanut Butter Texture Smooth, Crunchy, Chunky, Other 

Peanut Butter Flavor Scent Regular, Other 

Frozen Pizza & Dinners Product Type Entr_din, Burito/Tamale, Sandwich/panini, Pizza, Other 

Razors & Blades Package Box, Bag, Card, Other 

Razors & Blades Form Single, Twin, Triple, Multiple, Other 

Salty Snacks Package Bag, Tin, Other 

Salty Snacks Flavor Scent Regular, Cheese, Barbecue, Sourcream, Salt_vin, Other 

Salty Snacks Product Type Potato, Tortilla 

Shampoo Type of Shampoo Regular, Moistur, Volum, Dandruff, Color, Cleansing, Other 

Shampoo Product Type Shampoo, Combo 

Shampoo Flavor Scent Regular, Herbal, Other 

Shampoo Form Liquid, Other 

Soup Product Type Soup, Broth 

Pasta Sauce Type of Italian Sce Pasta, Bruschetta, Other 

Pasta Sauce Flavor Scent Regular, Mushroom, Meat, Garlic, Cheese, Marinara, Other 

Pasta Sauce Product Type Pastasc, Italian, Spagsc 

Sugar Substitutes Type of Sugar Aspartame, Sucralose, Agave, Saccharin, Other 

Sugar Substitutes Form Packet, Liquid, Granul, Other 

Toilet Tissue Package Plastic, Paper, Box, Other 

Toilet Tissue Color White, Other 

Toilet Tissue Number of Ply Ply2, Other 

Toothpaste Type of Formula Whitening, Cavity, Sensitive, Other 

Toothpaste Additives Fluoride, Peroxide, Other 

Toothpaste Form Paste, Gel, Strips, Other 

Toothpaste Flavor Scent Regular, Mint, Other 

Toothpaste Package Tube, Other 

Toothpaste Product Type Toothpaste, Whitener 

Yogurt Flavor Scent Berry, Plain, Peach, Vanilla, Other 

Yogurt Package Bottle, Cup, Container, Other 

Yogurt Product Type Yogurt, Smoothie, Drink 

Yogurt Fat Content Lowfat, Nonfat, Other 

a The last level of each attribute represents the base case level which is excluded for identification.  
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Web Appendix E 

Elasticities by Category 

 

  Regular price Price index Feature/Display Distribution Advertising 

Category B Meana Med. SD Sig.>0 Sig.<0 B Meana Med. SD Sig.>0 Sig.<0 B Meana Med. SD Sig.>0 Sig.<0 B Meana Med. SD Sig.>0 Sig.<0 B Meana Med. SD Sig.>0 Sig.<0 

Beer 59 -1.96 -2.04 1.54 2% 81% 59 -4.38 -4.37 2.12 0% 90% 58 .04 .03 .07 41% 7% 59 .55 .48 .46 78% 0% 46 -.001 -.001 .012 7% 13% .10 

Carbonated Soft 
Drinks 

27 -.87 -1.00 1.39 4% 74% 27 -3.09 -3.19 1.05 0% 89% 27 .16 .16 .28 48% 4% 27 .37 .33 .45 78% 7% 21 -.004 -.005 .020 14% 29% .90 

Cigarettes 25 -.74 -.75 1.07 4% 72% 25 -.46 -.64 1.33 16% 44% 16 .00 .00 .00 13% 6% 25 .30 .29 .24 84% 0% 14 -.001 -.001 .014 14% 21% .90 

Coffee 30 -.60 -.69 1.29 7% 40% 30 -3.12 -3.42 3.30 0% 80% 30 .02 .01 .12 33% 17% 30 .48 .44 .94 60% 0% 20 -.002 .001 .038 15% 10% .90 

Cold (RTE) Cereal 23 -1.18 -1.37 1.09 9% 57% 23 -2.95 -3.10 1.38 0% 87% 23 .04 .03 .06 26% 0% 23 .22 .25 .33 52% 4% 22 .011 .015 .034 32% 0% .60 

Deodorants 19 .07 -.05 1.33 16% 21% 19 -3.88 -3.68 1.46 0% 100% 19 .06 .06 .06 79% 5% 19 .60 .46 .49 58% 0% 16 .010 .007 .053 19% 13% .90 

Disposable Diapers 6 -.33 -.46 .67 17% 50% 6 -1.61 -2.43 1.31 0% 67% 6 .02 .03 .04 33% 0% 6 .05 .05 .35 17% 17% 4 -.003 -.004 .005 0% 0% .90 

Household Cleaners 15 -.75 -.98 2.69 7% 60% 15 -3.65 -3.81 1.19 0% 93% 15 .03 .02 .05 67% 7% 15 .34 .37 .23 93% 0% 11 .022 .017 .083 27% 0% .90 

Ketchup 5 -1.58 -1.89 .90 0% 60% 5 -2.22 -2.41 .75 0% 60% 5 .13 .17 .09 80% 0% 5 .03 -.01 .16 0% 0% 1 .005 .005 NA 0% 0% .70 

Laundry Detergents 20 -.85 -.93 .49 0% 80% 20 -3.25 -3.53 2.39 0% 80% 20 .02 .05 .13 45% 5% 20 .45 .31 .36 60% 0% 11 -.007 .004 .044 0% 18% .90 

Margarine & Spreads 13 -.72 -.89 .45 0% 69% 13 -2.26 -2.38 .68 0% 100% 13 .05 .05 .05 85% 0% 13 -.01 -.04 .23 15% 15% 7 .005 .006 .011 14% 0% .60 

Mayonnaise 7 -1.24 -1.09 .75 0% 86% 7 -3.10 -3.17 .51 0% 100% 7 .11 .10 .05 71% 0% 7 -.05 -.20 .31 0% 14% 3 -.012 -.005 .015 0% 33% .90 

Milk 19 -.20 -.12 .59 5% 26% 19 -.62 -.47 1.24 0% 68% 19 .00 .00 .02 21% 26% 19 .20 .24 .34 47% 11% 17 .000 -.001 .022 12% 0% .90 

Mustard 12 -.81 -.72 1.11 8% 75% 12 -2.49 -2.64 1.18 0% 92% 12 .04 .03 .04 75% 0% 12 .48 .64 .51 67% 0% 3 .001 .002 .002 33% 0% .10 

Peanut Butter 11 -.35 -.60 5.82 27% 27% 11 -3.06 -4.03 1.30 0% 100% 11 .01 .00 .07 36% 9% 11 .18 .18 .37 45% 0% 5 .000 .001 .019 0% 0% .90 

Frozen Pizza & 
Dinners 

26 -1.37 -1.48 1.54 4% 73% 26 -4.15 -4.29 1.11 0% 100% 25 .03 .04 .12 32% 4% 26 .46 .41 .35 58% 4% 19 .002 .003 .035 16% 16% .80 

Razors & Blades 5 -.18 -.22 .34 0% 20% 5 -3.04 -2.98 1.43 0% 100% 5 .05 .03 .07 60% 0% 5 .28 .36 .79 20% 0% 2 .005 .019 .025 0% 0% .60 

Salty Snacks 17 -.85 -.83 1.10 0% 65% 17 -2.36 -2.41 1.24 0% 94% 17 .14 .16 .21 47% 0% 17 .26 .08 .48 41% 6% 13 .002 .000 .034 23% 23% .70 

Shampoo 28 -.54 -.19 1.31 11% 32% 28 -1.59 -1.29 2.84 11% 54% 27 .07 .07 .10 74% 0% 28 .70 .78 .53 86% 0% 18 .002 .007 .048 22% 17% .90 

Soup 8 -.10 -.91 2.12 13% 63% 8 -3.04 -3.65 1.70 0% 100% 7 .05 .06 .06 100% 0% 8 .27 .47 .37 63% 0% 4 .007 .006 .010 25% 0% .40 

Pasta Sauce 15 -1.40 -1.31 1.78 20% 67% 15 -3.37 -3.78 2.43 7% 93% 15 .02 .02 .06 40% 7% 15 1.04 .74 1.17 73% 0% 8 .008 .016 .040 13% 13% .90 

Sugar Substitutes 10 -.72 -.57 3.17 0% 60% 10 -1.25 -1.50 4.67 10% 60% 8 .00 .00 .02 38% 0% 10 .57 .63 .71 80% 0% 6 -.001 .000 .033 0% 0% .80 

Toilet Tissue 10 -1.13 -.75 1.94 20% 40% 10 -3.74 -3.88 2.29 0% 90% 10 .08 .09 .17 60% 10% 10 .20 .02 .34 30% 0% 5 -.003 -.001 .039 0% 0% .80 

Toothpaste 15 -.33 -.56 1.04 7% 33% 15 -3.64 -3.97 1.40 0% 93% 15 .04 .04 .09 73% 0% 15 .45 .44 .46 60% 0% 11 -.002 -.003 .022 9% 9% .90 

Yogurt 16 -.58 -.69 2.17 19% 56% 16 -3.15 -3.31 1.41 0% 94% 16 .01 .00 .09 38% 13% 16 .63 .46 .88 75% 6% 10 .020 .015 .022 30% 0% .90 

a Weighted mean, with weights equal to the estimated elasticity's inverse standard error.  

Note: B = Number of brands. = Advertising smoothing constant. 
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Web Appendix F 

Table F1 
 

Regression of SBBE on CBBE Principal Components and Category Moderators  

(Effects Reported by CBBE Dimensions Underlying Principal Components) 
 

Independent Variable Estimate  SE t p 

Relevance .16 *** .01 12.24 <.01 

x Category Social Value .09  .06 1.51 .13 

x Category Hedonic Nature -.02  .01 -1.22 .22 

x Category Functional Risk -.01  .06 -.17 .87 

x Category Concentration -.11  .10 -1.09 .28 

Esteem .19 *** .01 13.06 <.01 

x Category Social Value .10 * .06 1.65 .10 

x Category Hedonic Nature -.03 * .02 -1.77 .08 

x Category Functional Risk -.01  .06 -.11 .91 

x Category Concentration -.17  .11 -1.51 .13 

Knowledge .25 *** .02 13.98 <.01 

x Category Social Value .14 * .08 1.79 .07 

x Category Hedonic Nature -.06 *** .02 -3.09 <.01 

x Category Functional Risk .00  .08 .05 .96 

x Category Concentration -.34 *** .13 -2.54 .01 

Energized Differentiation -.10 *** .04 -2.80 .01 

x Category Social Value -.05  .20 -.25 .81 

x Category Hedonic Nature .13 *** .05 2.79 .01 

x Category Functional Risk -.07  .18 -.39 .69 

x Category Concentration .73 *** .25 2.86 <.01 

Secondary market -.59 *** .13 -4.54 <.01 

Category Social Value -.21  .24 -.88 .38 

Category Hedonic Nature .03  .06 .50 .62 

Category Functional Risk -.08  .21 -.38 .70 

Category Concentration  .26  .35 .74 .46 

Constant .64   .67 .96 .34 

R-squared .47  
   

Number of brands 290  
   

Number of observations 2423         

Note: The model is estimated using Weighted Least Squares, with weights equal to the estimated 

SBBE’s inverse standard error. Data are standardized within category before model estimation. 
Robust Clustered Standard Errors are reported. The original model regresses SBBE on the 

independent variables that include the interactions between the principal components for RelStat 

and EnDiff and category-level moderators. To calculate the impact of the four CBBE dimensions 

underlying the principal components, we use 1 category-level SD shifts in each respective CBBE 

dimension (for computational details, see below).  
*** p< .01; ** p< .05; * p<.10  
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Table F2 

 

Regression of Marketing Mix Elasticities on CBBE Principal Components  

(Effects Reported by CBBE Dimensions Underlying Principal Components) 
 

  Estimated Effect on Elasticity of 

CBBE Dimension 
Regular 

Price  

Promotional 

Price  

Feature / 

Display  
Distribution  Advertising  

Relevance 
.00 -.03*** .05*** -.05*** .03*** 

(.02) (.01) (.02) (.01) (.01) 

Esteem 
.00 -.05*** .06*** -.07*** .03*** 

(.02) (.01) (.02) (.01) (.01) 

Knowledge 
-.02 -.08*** .06*** -.09*** .02*** 

(.03) (.02) (.01) (.02) (.00) 

Energized Differentiation 
.08 .09* .07 .03 .07* 

(.05) (.05) (.05) (.05) (.04) 

Constant 
0.03 0.07 -.15** -0.05 -0.06 

-0.06 -0.05 -0.06 -0.05 -0.05 

R-squared 0.01 0.06 0.04 0.06 0.02 

N 290 290 276 290 226 

Standard errors in parentheses. *** p< .01; ** p< .05; * p<.10 

Note: The model is estimated using Weighted Least Squares, with weights equal to the elasticities’ inverse 
standard errors. Data are standardized within category before model estimation. Hence, the variation being 

explained is across brands within a category, not across categories. N is smaller for Feature/Display and 

Advertising because some brands do not engage into advertising or feature/display promotions, or because these 

variables lack sufficient variation and are hence excluded from the models for some brands. The original model 

regresses elasticities on the principal components for RelStat and EnDiff. To calculate the impact of the four 

CBBE dimensions underlying the principal components, we use 1 category-level SD shifts in each respective 

CBBE dimension (for computational details, see below). 
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Computational details to derive the impact of the CBBE dimensions  

from the estimated coefficients of the principal component scores 

 

 

The analyses reported in Tables 5 and 6 in the paper assess the impact of the principal 

components RelStat and EnDiff on SBBE and marketing mix elasticities. These components 

have been derived from the original CBBE dimensions Relevance, Esteem, Knowledge, and 

Energized Differentiation. The principal components (PC) can be computed as: 

 PCby = CBBEby · E (F1) 

 

where 

  

PCby  denotes the rotated components for brand b in year y (dimension: N x 2),1 

consisting of the column vectors RelStatby and EnDiffby; N = Number of 

observations; 

 

CBBEby are the standardized CBBE dimensions (dimension: N x 4); and 

 

E is the eigenvector matrix obtained from PCA, where the eigenvectors of 

the smallest principal components (Eigenvalues < 1) have been dropped 

(dimension: 4 x 2). 

 

Because of this linear relationship between the component scores PCby and the CBBE 

dimensions CBBEby, we can trace back the impact of the original CBBE dimensions on SBBE 

and marketing mix elasticities as described next. 

 

In a standard principal component regression, we could pre-multiply the parameter estimates of 

the two component scores on the dependent variable [2 x 1] by the [4 x 2] eigenvector matrix E 

                                                           
1 Our formalization applies to estimating SBBEby; note that we drop subscript y for the elasticity regressions, as 
elasticities do not vary over time. For the elasticity regressions, we use brand-level means for CBBEb. 
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to obtain a [4 x 1] vector of estimates of the four CBBE dimension on the dependent variable and 

derive standard errors using the delta method (Rust, Lemon, and Zeithaml 2004).  

 

However, in our model, we have standardized the component scores PCby by category before 

estimation. Therefore, a stylized regression with only main effects would read as: 

 SBBEby = α + β · Z(PCby) (F2) 

where 

 

SBBEby is the dependent variable (here: brand equity) for brand by in year y, 

standardized by category; 

 

 α  is the intercept; 

 

 β  are the estimated response parameters for the principal components; and 

 

Z(·) is a function which standardizes its argument by category, using observed 

means and standard deviations from PCby. 

 

We want to calculate the change in SBBE due to a 1-standard deviation change in one dimension 

of CBBE. In a first step, we have to calculate of the change in CBBE on the principal 

component, leading to a new value PCby′ . Recalling eq. (F1), we can compute PCbyk′  for a shock 

in the kth CBBE dimension as: 

 PCbyk′ = (CBBEby + STDby · Sk) · E (F3) 

where 

 PCbyk′   are the new component scores [N x 2] when CBBE dimension k is shifted 

by one category-level standard deviation; 
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 STDby  are category-level standard deviations of CBBEby [N x 4];  

 Sk is a 4 x 4 matrix with zeros, except for the kth diagonal element that is 1 (if 

the k the dimension is shocked). 

 

Hence equation (F3) expresses the impact of a shock of an individual CBBE dimension k on the 

component scores PCby. The next equation (F4) calculates the impact of this change on the 

dependent variable, which is Bk, the quantity of interest: 

 Bk = (Z(PCbyk′ ) − Z(PCbyk)) ∙ β (F4) 

 

To account for uncertainty in the parameter estimate β , we draw D = 1,000 draws from the 

variance-covariance matrix of the model in equation (F2) at the mean of the estimated parameter 

vector, and save the draws for β, denoted as βd. We then extend equation (F4) by superscript d: Bkd = (Z(PCbyk′ ) − Z(PCbyk)) ∙ βd (F5) 

where 

 Bkd  is a [N x 1] vector with the impact of CBBE dimension k on the dependent 

variable for each of the N observations for draw βd. 
 

Last, to summarize the impact of a change in CBBE dimension k on the dependent variable, we 

first average over the N observations for each draw, B̅kd = ∑ 1NBkndNn=1 , and then compute means 

and standard deviations (i.e., standard error) of B̅kd. 
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Web Appendix G 

 

Regression of Marketing Mix Elasticities on  

CBBE Principal Components and Category Moderators 

 

 

 (1) (2) (3) (4) (5) 
CBBE Principal Component Regular 

Price  
Promotional 

Price  
Feature / 
Display  

Distribution  Advertising  

Relevant Stature (RelStat) -.01 
(.05) 

-.15*** 
(.05) 

.13** 
(.05) 

-.19*** 
(.05) 

.08 
(.05) 

     x Category Social Value .04 
(.21) 

.11 
(.19) 

.26 
(.32) 

-.13 
(.23) 

-.02 
(.16) 

     x Category Hedonic Nature .03 
(.06) 

.02 
(.05) 

-.10 
(.06) 

.07 
(.06) 

.02 
(.05) 

     x Category Functional Risk .06 
(.21) 

.19 
(.15) 

.13 
(.26) 

.06 
(.19) 

.19 
(.18) 

     x Category Concentration -.10 
(.36) 

.04 
(.37) 

-.30 
(.32) 

.39 
(.32) 

1.27*** 
(.41) 

Energized Differentiation (EnDif) .12* 
(.06) 

.11** 
(.05) 

.06 
(.06) 

.03 
(.05) 

.09** 
(.04) 

     x Category Social Value -.42 
(.26) 

.30 
(.27) 

-.32 
(.38) 

-.01 
(.22) 

-.62*** 
(.24) 

     x Category Hedonic Nature -.06 
(.06) 

-.17** 
(.07) 

.05 
(.07) 

-.10* 
(.06) 

.14*** 
(.05) 

     x Category Functional Risk .23 
(.20) 

-.07 
(.24) 

.26 
(.31) 

.15 
(.19) 

.96*** 
(.19) 

     x Category Concentration -.60 
(.39) 

-.44 
(.38) 

-.73** 
(.30) 

-1.16*** 
(.34) 

.15 
(.34) 

Secondary market -.11 
(.14) 

.19 
(.12) 

-.04 
(.11) 

.19 
(.14) 

-.13 
(.17) 

Category Social Value .41 
(.25) 

-.12 
(.30) 

-.50* 
(.28) 

-.22 
(.26) 

-.04 
(.26) 

Category Hedonic Nature -.12* 
(.06) 

.04 
(.07) 

.24*** 
(.06) 

.04 
(.06) 

.02 
(.07) 

Category Functional Risk -.21 
(.23) 

.21 
(.25) 

.28 
(.23) 

.14 
(.24) 

.03 
(.25) 

Category Concentration .37 
(.36) 

.55 
(.40) 

.01 
(.31) 

-.67* 
(.38) 

.74* 
(.38) 

Constant -.16 
(.82) 

-.86 
(.75) 

-.62 
(.66) 

.35 
(.79) 

-.61 
(.83) 

R-squared .09 .13 .18 .15 .13 
N 290 290 276 290 226 
Standard errors in parentheses. *** p< .01; ** p< .05; * p<.10 
Note: Data are standardized within category. Hence, the variation being explained is across brands within a category, 
not across categories. N is smaller for Feature/Display and Advertising because these variables are not in the models 
for some brands due to lack of variation. 

 


