
This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

How well does test case prioritization integrate with statistical fault localization?

Bo Jiang a, Zhenyu Zhang b, W.K. Chan c,⇑, T.H. Tse d, Tsong Yueh Chen e

a School of Computer Science and Engineering, Beihang University, Beijing, China
b State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
cDepartment of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
dDepartment of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
eCentre for Software Analysis and Testing, Swinburne University of Technology, Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 27 January 2011

Received in revised form 17 December 2011

Accepted 21 January 2012

Available online 1 February 2012

Keywords:

Software process integration

Continuous integration

Test case prioritization

Statistical fault localization

Adaptive random testing

Coverage

a b s t r a c t

Context: Effective test case prioritization shortens the time to detect failures, and yet the use of fewer test

cases may compromise the effectiveness of subsequent fault localization.

Objective: The paper aims at finding whether several previously identified effectiveness factors of test

case prioritization techniques, namely strategy, coverage granularity, and time cost, have observable con-

sequences on the effectiveness of statistical fault localization techniques.

Method: This paper uses a controlled experiment to examine these factors. The experiment includes 16

test case prioritization techniques and four statistical fault localization techniques using the Siemens

suite of programs as well as grep, gzip, sed, and flex as subjects. The experiment studies the effects of

the percentage of code examined to locate faults from these benchmark subjects after a given number

of failures have been observed.

Results: We find that if testers have a budgetary concern on the number of test cases for regression test-

ing, the use of test case prioritization can save up to 40% of test case executions for commit builds with-

out significantly affecting the effectiveness of fault localization. A statistical fault localization technique

using a smaller fraction of a prioritized test suite is found to compromise its effectiveness seriously.

Despite the presence of some variations, the inclusion of more failed test cases will generally improve

the fault localization effectiveness during the integration process. Interestingly, during the variation peri-

ods, adding more failed test cases actually deteriorates the fault localization effectiveness. In terms of

strategies, Random is found to be the most effective, followed by the ART and Additional strategies, while

the Total strategy is the least effective. We do not observe sufficient empirical evidence to conclude that

using different coverage granularity levels have different overall effects.

Conclusion: The paper empirically identifies that strategy and time–cost of test case prioritization tech-

niques are key factors affecting the effectiveness of statistical fault localization, while coverage granular-

ity is not a significant factor. It also identifies a mid-range deterioration in fault localization effectiveness

when adding more test cases to facilitate debugging.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Continuous Integration (CI) [15,18,19] is a software integration

strategy, in which a team of developers integrates a set of software

artifacts frequently and regularly, such as every two hours on a

business day. Typically, each developer makes several changes to

the codebase to add new features or enhance existing ones, fix re-

ported or latent bugs, or improve non-functional properties of an

application. Owing to the short time between two consecutive

rounds of software integration involved, each change to the code-

base is typically small in relation to the entire codebase. Effective

and efficient regression testing techniques that aim at reassuring

previously working features of the software application is particu-

larly attractive.

In general, a round of CI integration consists of code compila-

tion, linking, testing, and deployment [18,19]. A developer checks

out a module of a baseline version of an application and the base-

line version itself from a project repository in modifiable and read-

only modes, respectively. The developer then modifies the local

copy of the module, builds and tests the local copy, updates the lo-

cal baseline version with the modified module, and rebuilds and

tests the updated baseline version. If the quality assurance on

the updated local baseline version is passed, the developer com-

mits the change to the module to the CI server. The CI server then

compiles and links the committed working copy of the module

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2012.01.006

⇑ Corresponding author. Tel.: +852 3442 9684.

E-mail address: wkchan@cityu.edu.hk (W.K. Chan).

Information and Software Technology 54 (2012) 739–758

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

Author's personal copy

with the baseline version kept by the CI server into an executable

version, performs a first-stage and fast build to verify the key func-

tionality of the application, avoids regression bugs, and returns a

build report to the developer. We refer to such a build as a commit

build [19]. If a commit build is successful, the corresponding com-

mitted modifications are merged with the baseline code in the CI

server [18]. Moreover, for each round of CI integration, multiple

developers may commit their code changes to the CI server.

Every developer expects the CI server to run a regression test

suite of a baseline version to verify that his or her own code com-

mit has not unintentionally broken the code in other parts of the

executable version, and would like the CI server to provide the

developer with a quick feedback. Based on the feedback, the devel-

oper may, for instance, either fix any reported problem or proceed

to make other modifications to the code as required by the soft-

ware project.

Executing the whole regression test suite may slow down the

feedback cycle to individuals. Our first-hand experience [24] on

testing Microsoft protocols shows that executing the entire regres-

sion test suite for one protocol testing project can take more than a

whole day. The continuous integration process stresses on fast

feedback to the developers upon their code commit. However, if

the regression testing activity during the continuous integration

process takes too much time, the effectiveness of the whole CI pro-

cess will degrade seriously. Thus, it is critical to improve the effi-

ciency of each activity during the CI process.

As described above, CI can be conducted in stages [18,19]. Fig. 1

depicts such a scenario. In the figure, after a developer has submit-

ted a code module to a CI server, the server first conducts a commit

build, which runs a fraction of a regression test suite to verify a tar-

get modified baseline version. In case any failure is revealed, the

developer may debug the module based on the bug report gener-

ated from the limited number of test cases [28].

We observe that the CI server may include the results of fault

localization techniques in the generated bug reports to assist the

developers to locate faults [13,27,32,36]. After passing the data to

the developers, the follow-up stage of the CI may start, provided

that the modified baseline versions have successfully passed the

test in the commit-build stage. For instance, the second-stage build

typically involves executing more time-consuming tests such as

those interacting with databases or networks [19].

In other words, in the above CI scenario, a commit build serves

not only as a quick check of the integration but also as a guard that

decides whether to invoke the second stage. Our work is motivated

by several implications from this requirement:

The time available for regression testing in a commit build is

always limited [18,19]. As a result, the goal of regression testing

during the commit build is to make full use of the allocated time

to perform testing until the deadline is reached. Simply using test

suite reduction to reduce the number of test cases to be executed is

an inflexible approach as it is almost impossible to make the exe-

cution time of a reduced test suite to be exactly the same as the

time budget. Test case prioritization [16,37,46] is a preferential

solution to this problem. Since test case prioritization reorders test

cases so as to execute those with the higher priority first, the test

resources will be spent on the execution of the most important test

cases before the deadline irrespective of the time budget allocated.

Hence, it is crucial in CI to reorder a test suite with test case prior-

itization techniques to assign higher priority to those test cases

estimated to have higher chances in detecting failures.

Given a program P and a test suite T, a general test case priori-

tization [16,37] reorders test cases in T with the goal of finding a

test case ordering that will be useful over a sequence of subsequent

modified versions of P. General test case prioritization has the

advantage of being not on the critical path of software develop-

ment process. This is because a CI system can conduct general test

case prioritization when the developers are modifying the baseline

version. In this way, the entire period of regression testing of each

integration interval (e.g., two hours in the running scenario) can be

used for the actual execution of test cases. The second part of the

requirement further demands to cut a reordered test suite into

two consecutive fragments so that the higher priority fragment

has the ability indistinguishable from the entire test suite to assist

developers for their subsequent activities.

One of such activities is program debugging, in which develop-

ers would like to obtain as much relevant data as possible to debug

the artifacts committed to the CI server. For instance, statistical

fault localization techniques in debugging may acquire the code

coverage spectrum information of a variety of test cases to assess

the suspiciousness of program elements [27,32,44]. Such tech-

niques help developers locate faults by producing a list of ranked

statements in descending order of their suspiciousness of being

faulty or related to faults [22,27]. Developers may then walk

through the ranked list of statements to find the faults.

Using a smaller high-priority test suite for a commit build helps

shorten the response time of a CI server in each round of system

integration (such as a single loop in Fig. 1). However, such a test

suite may carry less information for fault localization techniques

to iron out the root causes of detected failures. It may adversely af-

fect fault localization and lengthen the time to develop or maintain

a module. Fig. 2, for instance, shows a scenario of three test cases

Continuous

Integration

Server

Regression

Testing

Technique

Fault

Localization

Technique

Fig. 1. A scenario of continuous integration. Fig. 2. The testing/debugging dilemma.

740 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

(t1, t2, and t3) ordered by two test case prioritization techniques,

where different fractions of the prioritized test suite are fed to a

statistical fault localization technique to find the fault in statement

s3. A smaller expense1 in the figure indicates less effort to conduct

fault localization (marked as debugging in the figure). Using an

appropriate test case prioritization technique (such as random

ordering), we may use fewer test cases (2 in this illustration) to lo-

cate faults, while the expense (0.66) is not much worse than that

when the entire test suite is used (0.5).

Many previous studies on test case prioritization and fault

localization focused on individual problems separately. More

recently, researchers proposed debugging-guided test case

prioritization techniques [21]. An inadequate amount of research

work (including our preliminary version [26]) studied to what

extent existing test case prioritization techniques and fault

localization techniques can be integrated, and examined the

factors that affect the effective integration of testing and

debugging activities.

A developer may want to stop regression testing for a commit

build earlier with a view to shortening the CI process. For instance,

a CI server may be instructed to stop a regression test after encoun-

tering a certain number of failed test cases (say, 10 or more) and

return a bug report to the developer for debugging. In this way,

the developer can debug the code module while their memory

on the modification is still fresh. Alternatively, the CI server may

have a limited time budget in regression testing (say, in terms of

the number of test cases to be executed). In either case, the com-

mit-build process merely executes some high-priority test cases

in a prioritized test suite, and yet its bug reports are supposed to

support fault localization conducted by developers later. How well

do the high-priority test cases of a test suite support statistical

fault localization? To what extent do the test suites prioritized

by existing test case prioritization techniques support effective sta-

tistical fault localization? What are the factors in the testing tech-

niques that effectively affect such integration? Knowing the

answers to these questions is critical toward a tighter integration

among software development activities.

This paper extends its preliminary version [26] in the following

aspects: (i) In addition to the study of the integration of random

ordering and six coverage-based test case prioritization techniques

with fault localization effectiveness, this paper reports the empir-

ical study results on the integration of adaptive random test case

prioritization techniques with fault localization. (ii) It further

investigates the problem of whether the studied test case prioriti-

zation techniques can support effective fault localization if testers

stop regression testing of the commit build after encountering dif-

ferent numbers of failed test cases. (iii) It strengthens the empirical

study by using four additional real-life UNIX utility programs with

both single and multi-fault versions as subjects.

We find the following results from our empirical study: If

testers want to stop regression testing of the commit build after

a certain number of failed test cases have been observed, the test

suites produced by random ordering can be a cost-effective option

to integrate with (existing) statistical/spectrum-based fault locali-

zation techniques. We also find that different levels of coverage

granularity do not result in significant differences in supporting

effective fault localization by the studied techniques. Interestingly,

we find that adding more failed test cases through test case prior-

itization to statistical fault localization techniques as inputs may

deteriorate the fault localization effectiveness in the mid-range. If

testers have a budgetary concern on the number of test cases for

regression testing, the use of test case prioritization can save up

to 40% of test case executions for commit builds without signifi-

cantly affecting the effectiveness of statistical fault localization.

The savings are more noticeable on a medium-sized program than

on a small-scale program and, on a multi-fault program than on a

single-fault program. Last but not least, we find that the inclusion

of more failed test cases will improve the fault localization effec-

tiveness of integrated techniques, despite the presence of some

variations.

The main contribution of the paper with its preliminary version

is twofold. (i) To the best of our knowledge, we report the first

study on the integration between fault localization and test case

prioritization techniques. (ii) The paper reports a multi-faceted re-

sult on the integration effectiveness between regression testing

and fault localization techniques. Our result shows that the effec-

tiveness of fault localization techniques can be seriously compro-

mised if testers merely use a small fraction of a test suite for a

commit build. Fortunately, we also find from the experiment that

executing the top 60% of a prioritized test suite can be a cost-

effective choice because it can, in general, provide fault localization

effectiveness comparable to that of the whole test suite for all the

subject programs studied. The study shows that the Random order-

ing strategy can be a cost-effective technique, followed by the ART

and the Additional strategies, while the Total strategy is the least

effective in supporting such integration. The result further shows

that different coverage granularity levels do not result in signifi-

cant differences in terms of their support to effective fault

localization.

The rest of this paper is organized as follows: Section 2 revisits

selected test case prioritization techniques and fault localization

techniques to be used in the experiment. Section 3 describes the

empirical study, followed by its results in Section 4. Section 5 re-

views related work. We conclude the paper in Section 6.

2. Techniques revisited

This section describes the test case prioritization techniques

and fault localization techniques to be used in our empirical study.

2.1. Test case prioritization techniques

Test case prioritization permutes the test cases in a test suite to

increase a specific testing goal. In previous work, such testing goal

can be the rate of fault detection, code coverage, or some other

units of measurement. Unlike test case reduction or test case selec-

tion techniques that discard test cases, test case prioritization re-

tains all the test cases, and hence the fault detection capability of

the test suite will not be compromised. Following on with our pre-

vious work [25], we study two groups of general test case prioriti-

zation techniques, namely, the greedy techniques and ART-based

techniques. The greedy techniques are coverage-based greedy

algorithms [37], which can be further subdivided into the Addi-

tional and the Total strategies. For the ART-based techniques, we

study nine techniques proposed in our previous work [23,25]. Both

groups of techniques rely on code-coverage information obtained

from the test execution of the previous (baseline) version of the

program. Therefore, we follow the procedure described in Rother-

mel et al. [37] to study the effect of code coverage granularity on

the effectiveness of test case prioritization techniques. We also fol-

low Rothermel et al. to use statement and branch coverage data to

represent a finer granularity and use function coverage data to rep-

resent a coarser granularity.

1 Expense [22,27,44] is a commonly used metric to measure the (in)effectiveness of

fault localization in software engineering experiments. It is computed by dividing the

number of statements needed to be examined to find a specific fault by the total

number of executable statements in the program. Intuitively, a technique having a

smaller expense for locating a particular fault means better fault localization

effectiveness for it. More details of the metric will be described in Section 3.5.1.

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 741

Author's personal copy

2.1.1. Greedy techniques

When we combine the two greedy strategies with the three

coverage (granularity) levels, we produce six greedy techniques:

total statement (total-st), total branch (total-br), total function

(total-fn), additional statement (addtl-st), additional branch

(addtl-br), and additional function (addtl-fn). We briefly describe

these techniques in this subsection. Interested readers may refer

to Rothermel et al. [37] for a detailed description.

The total statement (total-st) test case prioritization technique

computes the statements that have been covered in the execution

of each program version over each test case. It permutes test cases

in descending order of the total number of statements covered by

the respective test case. When two test cases cover the same

number of statements, it orders them randomly. The total branch

(total-br) and the total function (total-fn) test case prioritization

techniques are the same as total-st, except that they use branch

coverage and function coverage information, respectively, instead

of statement coverage information.

The additional statement (addtl-st) test case prioritization tech-

nique is the same as total-st, except that it selects a test case that

covers the maximum number of statements not yet covered in

each round. When no remaining test case can further improve

the statement coverage of the test suite being constructed, addtl-

st resets all the statements to ‘‘not yet covered’’ and reapplies

the same procedure on the remaining test cases. When two test

cases cover the same number of additional statements in a round,

it randomly picks one.

The additional branch (addtl-br) and additional function (addtl-

fn) test case prioritization techniques are the same as addtl-st,

except that they use branch coverage and function coverage data,

respectively, rather than statement coverage data.

2.1.2. ART-based techniques

We summarize the techniques for ART-based test case prioritiza-

tion [25] as follows. The basic algorithm accepts a test suite contain-

ing a sequence of test cases as its input, and produces a sequence of

prioritized test cases. It prioritizes the test cases by iteratively build-

ing a candidate set of test cases and, in turn, picks one test case out of

the candidate set until all given test cases have been selected. To gen-

erate the candidate set of test cases, the algorithmrandomlyadds test

cases that havenotyetbeenselected into the candidate set onebyone

as long as they can increase the code coverage achieved by the candi-

date set. To decide on the candidate test case to be selected from the

candidate set, the algorithmuses a function (denoted by f1) to calcu-

late the distance between a pair of test cases and another function

(denoted by f2) to select a test case from the candidate set that is far-

thest away from the set of prioritized test cases.

For function f1, we follow our previous work [25] to measure

the distance between two test cases using the Jaccard distance (a

special case of the Tanimoto distance, which satisfies the triangle

inequality property of a distance function [33]) based on their code

coverage data. Suppose the set of statements (or functions or

branches) covered by test cases pj and ci are S(pi) and S(ci), respec-

tively. We have

f1ðpj; ciÞ ¼ 1�
jSðpjÞ \ SðcjÞj

jSðpjÞ [SðcjÞj
:

Function f2 describes the strategy to select the farthest test case

from those test cases that have already been prioritized. We also

follow our previous work [25] in defining the distance between a

test case and a set of prioritized test cases as their minimum, aver-

age, or maximum test case distance. We then find a candidate test

case that is associated with the longest distance with the set of test

cases already selected. Given a matrix D of distances between each

pair of test cases in the test suite, f2(D) is given by

f2ðDÞ ¼

j s:t: min
06i6jPj

dij ¼ max
06j6jCj

fmin dijg
06i6jPj

ð1Þ

j s:t: avg
06i6jPj

dij ¼ max
06j6jCj

favg dijg
06i6jPj

ð2Þ

j s:t: max
06i6jPj

dij ¼ max
06j6jCj

fmax dijg
06i6jPj

ð3Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

In total, 16 test case prioritization techniques are considered in

this paper, including nine ART test case prioritization techniques,

six greedy test case prioritization techniques, and random ordering

[16]. We summarize the properties of all the test case prioritization

techniques in Table 1.

2.2. Fault localization techniques

Researchers have proposed numerous techniques to help devel-

opers locate faults. The statistical fault localization approach

[2,27,28,32,34,35,47–50] conducts statistical analysis on program

execution traces and pass/fail information of executed test cases

to generate a ranked list of suspicious program entities (such as

statements) for the developers to inspect in turn in the code. A

popular hypothesis is that if a statement is frequently executed

in failed test cases but rarely executed in passed test cases, then

it is more suspicious to be faulty or related to faults. We revisit four

statistical fault localization techniques in this section, which will

be used in our empirical study. They are also the four techniques

selected by Yu et al. [44] in their study of the effects of test suite

reduction on statistical fault localization. There are also many

other fault localization techniques proposed by various researchers

[13,22,36] that are not included in our experiment.

We note also that we use the statement-level program spec-

trum as the basis for fault localization. By so doing, our study not

only provides all fault localization techniques with a common basis

for comparison, but also represents a fine-level program spectrum

that likely leads to higher fault localization effectiveness than the

use of a coarse-level program spectrum. This serves the goal of

the target integration.

2.2.1. Tarantula

Jones and colleagues [27,28,44] propose the Tarantula tech-

nique, which was used initially for the visualization of testing

information. To rank program statements, Tarantula computes

two metrics, suspiciousness and confidence [44], according to the

coverage information on passed and failed test cases. The suspi-

ciousness of a statement s is given by the formula:

suspiciousnessðsÞ ¼
%failedðsÞ

%passedðsÞ þ%failedðsÞ

The function % failed(s) tallies the percentage of failed test cases that

execute statement s (among all the failed test cases in the test

suite). The function % passed(s) is similarly defined.

The confidence metric, computed as follows, indicates the

degree of confidence on a suspiciousness value:

confidenceðsÞ ¼ maxð%failedðsÞ;%passedðsÞÞ

Tarantula ranks all the statements in a program in descending

order of suspiciousness and uses the confidence values to resolve

ties.

2.2.2. Cooperative Bug Isolation (CBI)

Liblit et al. [32] deployed the notion of Cooperative Bug

Isolation (CBI) to develop a technique for identifying faults. The

technique is adapted by Yu et al. [44] to calculate the suspicious-

ness (called SBI) of a statement s as follows:

suspiciousnessðsÞ ¼
failedðsÞ

passedðsÞ þ failedðsÞ

742 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

The functions failed(s) and passed(s) tally the number of failed

and passed test cases, respectively, that execute s.

2.2.3. Jaccard similarity coefficient

Abreu et al. [1] use the Jaccard similarity coefficient for binary

data as a suspiciousness formula. The equation for the Jaccard coef-

ficient is given by:

suspiciousnessðsÞ ¼
failedðsÞ

totalfailedþ passedðsÞ

The functions failed(s) and passed(s) have the same meaning as

in CBI. The variable totalfailed is the number of failed test cases in

the test suite. The technique ranks the statements similarly to

Tarantula.

2.2.4. Ochiai similarity coefficient

Abreu et al. [1] also propose to use the Ochiai similarity coeffi-

cient as another suspiciousness formula. The equation for Ochiai

coefficient is given by:

suspiciousnessðsÞ ¼
failedðsÞ

ffi

totalfailed� ðfailedðsÞ þ passedðsÞÞ
p

where passed, failed, and totalfailed have the same meanings as

those in CBI and the Jaccard similarity coefficient. The technique

also ranks the statements similarly to Tarantula and the Jaccard

coefficient.

3. Empirical study

In this section, we present our study on the relationship be-

tween regression testing and debugging.

3.1. Research questions

The empirical study addresses two research questions:

RQ1: During a commit build, if the developers stop regression

testing after the process has encountered i failed test cases, which

test case prioritization strategy (Random, Greedy, or ART) and

which level of coverage granularities (function, statement, or

branch) are more helpful to developers in conducting effective

fault localization?

RQ2: If we are resource conscious about the number of test

cases for regression testing, to what extent will a fault localization

technique be affected if it only uses the execution statistics of the

high priority test cases as input?

Some previous studies [16,31] have empirically shown that

both strategy and coverage granularity can be key factors that sig-

nificantly affect the rates of fault detection or the rates of code cov-

erage of test case prioritization techniques. At the same time,

another previous study [1] has shown empirically that a statistical

fault localization technique that uses a small number of failed test

cases (which is 5 as reported in that study) already suffices to pro-

vide the same level of fault localization effectiveness as if the entire

test suite were used. If this is the case, a statistical fault localization

technique may use a subset of a test suite that contains a few failed

test cases. If such a test suite is generated via test case prioritiza-

tion, it is unclear whether factors like strategy and coverage gran-

ularity that affect test case prioritization may significantly affect

the effectiveness of statistical fault localization technique. More-

over, if such a factor exhibits any effect, it is also unclear what

direction (i.e., improvement or otherwise) that such a factor may

act on such integration in the CI process. The answers to these re-

search questions will disclose the relationships between such fac-

tors and the effectiveness of statistical fault localization.

RQ2 explores whether quick commit builds may preserve the

effectiveness of the fault localization techniques as if the entire test

suites were used. In a typical CI process, the time budget for regres-

sion testing of a commit build is limited. The use of fewer test cases

is an obvious choice to meet such a time budgetary constraint.

Nonetheless, the positive or adverse effects of such a decision on

the CI process are unclear. The answer to RQ2 unveils the tradeoff

between time budgets and fault localization effectiveness, which is

crucial if both test case prioritization and fault localization tech-

niques are used in a CI process.

3.2. Subject programs and test pools

We used two sets of subject programs in our experiment. The

first was the Siemens suite of seven programs and the second

was a suite of four UNIX programs. The Siemens programs were

originally created to support research on data-flow and control-

flow test adequacy criteria. Because they were small in scale, we

also used four real-life UNIX utility programs with real or seeded

faults. Since the Siemens suite was first produced, it has gone

through many modifications and many papers have reported quite

different descriptive statistics [40]. There are also numerous ver-

sions of the UNIX programs. For ease of reference by readers, we

Table 1

Test case prioritization techniques studied.

Ref. Name Descriptions

T1 Random Random ordering

Greedy Level of coverage information Coverage-based strategy

T2 total-st Statement Total

T3 total-fn Function Total

T4 total-br Branch Total

T5 addtl-st Statement Additional

T6 addtl-fn Function Additional

T7 addtl-br Branch Additional

ART Level of coverage information Test set distance (f2) in ART strategy

T8 ART-st-maxmin Statement Eq. (1)

T9 ART-st-maxavg Statement Eq. (2)

T10 ART-st-maxmax Statement Eq. (3)

T11 ART-fn-maxmin Function Eq. (1)

T12 ART-fn-maxavg Function Eq. (2)

T13 ART-fn-maxmax Function Eq. (3)

T14 ART-br-maxmin Branch Eq. (1)

T15 ART-br-maxavg Branch Eq. (2)

T16 ART-br-maxmax Branch Eq. (3)

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 743

Author's personal copy

downloaded all our subject programs from the Software-artifact

Infrastructure Repository (SIR) [14], available at http://sir.unl.edu

(last accessed in June 2010).

Table 2 shows the descriptive statistics of our subject programs.

The column headed by No. of faulty versions lists the number of

faulty versions for each subject program. The column headed by

No. of faults per version shows the number of faults for each faulty

version. The column SLOC shows the numbers of executable source

lines of code for the faulty versions of each program. The column

Test pool size represents the total number of available test cases

in the test pool for each program. For example, the last row of

the table shows the statistics for the sed program: The natural pro-

gram versions range from version 1.18 to version 3.02. There are 17

single fault faulty versions and six multi-fault faulty versions, each

with two to three faults. Finally, there are 4756 to 9289 lines of

executable source code and 370 test cases for this program in the

whole test pool.

We excluded the versions whose faults cannot be revealed by

any test case in our test infrastructure and environment. We also

excluded the versions whose faults were too easy to detect (where

more than 25% of all the test cases in the pool can detect them [16])

and the versions that do not work with the standard coverage tool

gcov (which was used to collect the coverage information of pro-

gram executions in our test infrastructure). Similar strategies, ma-

gic numbers, and tools were also used in previous experiments

[16,17,23,25]. Finally, we used the remaining 212 faulty versions

for data analysis. Faults in the faulty versions were either real or

seeded. According to SIR [14], the seeded faults mimicked real

world faults made by developers, including logical operator errors,

missing statements, wrong definitions, missing definitions, and so

on. We used the original program versions as the ‘‘golden’’ versions

and compared the execution results of a test case between an ori-

ginal version with that of a corresponding faulty version to deter-

mine whether it passes or fails. A fault is exposed if there is a

discrepancy between the two test results.

3.3. Experimental setup

This section presents the experiment setup for the empirical

study.

We applied the 16 test case prioritization techniques (see Ta-

ble 1) and the four fault localization techniques to the 212 versions

of our subject programs and their test suites. In this section, we

present the setup of the experiment.

For the seven Siemens programs, we followed our previous

work [23–26] to use the branch-adequate test suites provided by

SIR to conduct test case prioritization. There are 1000 small test

suites and 1000 large test suites, both of which are branch

adequate. Each small test suite contains about 30 test cases while

each large test suite contains about 100 to 200 test cases. For the

small test suites, testers can simply retest all test cases because

the execution time of the entire test suite is trivial. There is no real

need to conduct test case prioritization on them. Consequently, we

chose to use the large test suite for our empirical study, because

test case prioritization is only needed when the time cost of exe-

cuting the test suite is non-trivial. For the four UNIX programs,

since the test pool size was not large with respect to the program

size, we followed [17,23,25] to use the whole test pool as a suite for

prioritization.

All the ART-based techniques and the random ordering tech-

nique are based on random selection. We repeated each of them

20 times to obtain an average performance. To reduce the huge

computation cost incurred in the experiment, we randomly

selected 50 test suites from the available 1000 test suites for each

subject for the Siemens programs. Thus, we conduct a total of 1000

prioritizations for each ART-based technique and 4000 rounds of

fault localizations for each Siemens program. Since we used the

whole test pool of UNIX programs as a test suite, we conducted a

total of 20 prioritizations for each ART-based technique and 80

rounds of fault localizations for each UNIX program. The whole

experiment took about one month for all the executions to

complete.

Suppose the positions of the 1st,2nd, . . . ,mth failed test cases in

the prioritized test suite are f1, f2, . . . , fm, respectively, where m is

the total number of failed test cases for the test suite. To answer

research question RQ1, we stop the regression testing in the com-

mit build if fi test cases (for i = 1,2, . . . ,m) has been executed. We

conducted the experiment on each faulty version of every subject

program and averaged out the results over all the four fault local-

ization techniques considered.

For the experimental setup of research question RQ1, each test

case prioritization technique generated m test suites of different

sizes for fault localization, where m is again the total number of

failed test cases. In this way, we could evaluate how a test case pri-

oritization technique changes in terms of expense when different

prefixes of a prioritized test suite were used for fault localization.

To answer research question RQ2, for every prioritized test suite

generated by each test case prioritization technique, we used its

top 10%,20%, . . . ,100% test cases for the commit build. If a percent-

age of a test suite is not an integer value, it is rounded down to the

nearest integer. We then used the corresponding resultant suites

for fault localization. We conducted the experiment on each faulty

version of every subject program and averaged out the results over

all the four fault localization techniques. As a result, for the exper-

imental setup for research question RQ2, each prioritized test suite

generated 10 test suites of different sizes for the commit build.

Table 2

Subject programs.

Subject No. of faulty versions No. of faults per version SLOC Test pool size

tcas 41 1 133–137 1608

schedule 9 1 291–294 2650

schedule2 10 1 261–263 2710

tot_info 23 1 272–274 1052

print_tokens 7 1 341–342 4130

print_tokens2 10 1 350–354 4115

replace 32 1 508–515 5542

flex (2.4.7–2.5.4) 21 1 8571–10,124 567

4 2–3

grep (2.2–2.4.2) 17 1 8053–9089 809

6 2–3

gzip (1.1.2–1.3) 55 1 4081–5159 217

4 2–3

sed (1.18–3.02) 17 1 4756–9289 370

6 2–3

744 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

3.4. Experimental environment

We carried out the empirical study on a Dell PowerEdge 2950

server run under Solaris UNIX. The server had 2 Xeon 5430

(2.66 GHz, 4 core) processors with 4 GBytes of physical memory.

3.5. Main metrics

3.5.1. Expense

We use expense [22,27,44] as the metric to measure fault local-

ization effectiveness. Given a ranked list produced by a fault local-

ization technique, expense measures the minimum percentage of

statements in a program that must be examined in descending

order of the ranks so as to include the fault in the set of examined

statements. It is defined by the formula,

expense ¼
rank of the faulty statement

number of executable statements

where a smaller expense indicates a better result.

When conducting fault localization on multi-fault programs, we

first measure the expense for locating the first fault. After fixing the

first fault, we conduct further fault localization and measure the

expense for locating the second fault in the modified program.

After fixing the second fault, we continue with the fault localiza-

tion and measure the expense for locating the third fault, and so

on. In this way, we iteratively measure the expense for each fault.

Finally, we report the mean and variance of the expenses for

locating all the faults in a multi-fault program. We measure the

expenses for multi-fault programs in this way because previous

papers (such as [48]) have reported this kind of analysis, which

appears to be close to how developers debug multi-fault programs

in practice. For instance, developers may firstly fix one bug, submit

the changed code to the CI server for regression testing to confirm

that the bug has been correctly fixed, and then use the updated bug

report to assist them to fix another bug.

3.5.2. Area Under Curve (AUC)

We use Area Under Curve (AUC) to measure the cumulative fault

localization expense for a given strategy or dimension after the tes-

ter has encountered a number of failed test cases and stopped

regression testing. Thus, given a strategy or dimension and the to-

tal number of failed test cases n,

Area Under CurveðAUCÞ ¼
X

n

i¼1

expenseðiÞ

where expense(i) is the mean expense achieved when i failed test

cases in a test suite has been observed in the commit build. Like

the expense metric, the lower value of AUC, the better will be the

result.

For example, the curve in Fig. 3 shows the expenses for a given

strategy or dimension after encountering different numbers of

failed test cases in a commit build, until all the n failed test cases

have been observed. The x-axis represents the number of failed test

cases encountered in the commit build whereas the y-axis repre-

sents the expenses. If we are interested in the cumulative fault

localization effectiveness for that strategy or dimension, we may

use the area under curve (and above the x-axis) to represent it.

4. Data analysis and discussions

4.1. Effectiveness

In this section, we first present the results for each research

question on the Siemens programs, and then analyze them to an-

swer research questions RQ1 and RQ2, respectively.

4.1.1. Answering RQ1

4.1.1.1. Comparison of test case prioritization strategies. In this sec-

tion, we report for each test case prioritization strategy the mean

result over all the techniques. We use ART to stand for the mean

expense for the ART-st-maxmin, ART-st-maxavg, ART-st-maxmax,

ART-fn-maxmin, ART-fn-maxavg, ART-fn-maxmax, ART-br-max-

min, ART-br-maxavg, and ART-br-maxmax techniques. The curve

for Additional represents the mean expense for the addtl-st,

addtl-fn, and addtl-br techniques. The curve for Total stands for

the mean expense for total-st, total-fn, and total-br.

We show in Fig. 4 the trend of fault localization effectiveness

after encountering the first i failed test cases in a test suite for a

commit build on the Siemens programs. The x-axis represents

the number of failed test cases observed before we stop the

execution of the prioritized test cases during a commit build, and

the y-axis represents the mean expense achieved by using the

corresponding portion of the prioritized test suites for fault locali-

zation. The four curves correspond to the mean expenses achieved

by Random ordering, ART, Additional, and Total.

For ease of discussion, we divide the graph in Fig. 4 into three

regions using two vertical lines.

(a) We observe that in the leftmost region, the fault localization

effectiveness for different test case prioritization strategies

improves rapidly if more failed test cases are available. It

Fig. 3. Example illustrating AUC metric.

Fig. 4. Comparison of test case prioritization strategies on fault localization

effectiveness for Siemens programs.

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 745

Author's personal copy

clearly indicates that regression testing should continue

beyond the first failed test case until a few more failed cases

have been reported.

(b) In the middle region, on the other hand, the fault localization

effectiveness represented by each curve is not monotoni-

cally increasing. It shows that in terms of expense, adding

more failed test cases may even adversely affect the fault

localization effectiveness. Moreover, the experiment has

used quite a number of test case prioritization techniques

over 122 faulty versions. Even for the Random ordering

strategy that gets rid of the subjective heuristics used in dif-

ferent test case prioritization strategies and coverage granu-

larity levels, we still observe such variations.

We note that every analyzed program version contains a single

fault. We can, therefore, rule out the reason that such variations in

the fault localization effectiveness of the test suites may be due to

the interference among different faults in the same program

version.

It appears to us that the use of adequate test suite and the num-

ber of failed test cases have complicated interactions. This finding

is very interesting and, to the best of our knowledge, no previous

empirical study has reported this kind of result.

An empirical study involves the analysis of observations and the

validation of hypothesis in specific research questions. It differs

from an experimental study, which verifies predicted behaviors

based on models and theories. In other words, empirical studies

are more of an explorative nature and apply to an early stage of

the scientific research on a particular issue before models and the-

ories are postulated. Hence, it is beyond the scope of the present

empirical study to explain the theoretical cause of the small varia-

tions in fault localization effectiveness.

On the other hand, to facilitate future research, we put forward

two potential reasons for consideration. First, some of the test

cases in a test suite may show coincidental correctness, which

causes the contrasting step in statistical fault localization to be

imprecise. Second, the formulas for statistical fault localization

techniques are non-linear with respect to the number of failed test

cases.

(c) Finally, the effectiveness of different strategies gradually

increases and converges to almost the same value at the final

range. Like the first range, the finding in this range again

agrees with the general intuition that to make a given test

suite more effective for fault localization, it is better to make

use of as many failed test cases as possible. This finding is

regardless of the test case prioritization strategy employed.

Our finding is consistent with, but more detailed than, the result

reported in Abreu et al. [1], who find that simply using up to five

test cases helps improve the fault localization effectiveness of an

enhanced test suite to match that of using the entire test pool.

Our results show that after encountering the first few failed test

cases, the inclusion of more failed test cases may lead to a variation

period where the fault localization effectiveness fluctuates. More-

over, only when going beyond this variation period will the fault

localization be improved again significantly by the inclusion of

more failed test cases. The results in both [1] and this paper show

that the inclusion of more failed test cases initially helps improve

the fault localization effectiveness. Our results in particular imply

that we should continue to include as many failed test cases as

possible to achieve better fault localization effectiveness despite

the small variations period.

We also observe another interesting result. We recall that

previous studies [16,25,37] consistently reported that the ART,

Additional, and Total strategies are more effective in exposing

faults earlier than the Random ordering strategy on the Siemens

programs. Indeed, almost all previous empirical studies on test

case prioritization research consider Random ordering as the lower

bound technique (on average) to expose faults as early as possible

[16,37]. Our results, however, show that although Random can be

slower in exposing faults, if we base on the failures observed from

a randomly ordered test suite to decide when to stop regression

testing, we can actually provide better fault localization effective-

ness than the ART, Additional, and Total strategies in the initial

and middle ranges. We also observe that the curve for Random

forms a lower frontier (i.e., the best result) among all the strategies

on the Siemens programs for the first two regions. Random order-

ing is simple and objective, and has the advantage of low cost in

terms of the prioritization process. It can be better than other test

case prioritization strategies for this scenario (on the Siemens pro-

grams) when the target is to locate faults.

Moreover, in a previous empirical study [23,25], the Total strat-

egy is found to be comparable to the ART and Additional strategies

in terms of rate of fault detection in the Siemens programs. How-

ever, the results in Fig. 4 indicate that Total is relatively the least

effective strategy in making statistical fault localization effective.

Nonetheless, the study reported here can only show the corre-

lation, but has not revealed the underlying reason why the Total

strategy is ineffective for statistical fault localization. At this stage,

it appears to us that Total may select consecutive passed execu-

tions clustering across a set of statements, branches, or functions

that is quite different from the failed executions. It may effectively

provide less contrast to distinguish statistically the statements,

branches, or functions related to the failed executions. In this

connection, the Random strategy provides a higher probability to

allow a statistical fault localization technique to distinguish

different program entities.

To compare the cumulative fault localization expenses, we

calculate the AUC for each strategy. We find from Table 3 that

the Random strategy is 21.6%, 24.0%, and 93.2% better than the

ART, Additional, and Total strategies, respectively. In other words,

Random (2.83) is the most effective fault localization strategy on

the Siemens programs. The ART strategy (3.44) is slightly better

than the Additional strategy (3.51). The Total strategy (5.47) is

the least effective strategy on the Siemens programs.

4.1.1.2. Comparison of coverage granularity levels. In this section, we

report the mean expenses for different levels of coverage granular-

ity across all the test case prioritization techniques studied. We use

‘‘Branch’’, ‘‘Function’’, and ‘‘Statement’’ to represent the mean

expenses for all the branch-level techniques, function-level tech-

niques, and statement-level techniques studied, respectively, on

the Siemens programs. For example, the curve for Branch is the

mean of the expenses of using ART-br-maxmin, ART-br-maxavg,

ART-br-maxmax, addtl-br, and total-br on all the analyzed test

suites. The other two levels of coverage granularity are computed

similarly. We do not include Random in this analysis because Ran-

dom does not depend on such information for ordering.

We observe from Fig. 5 that there is no noticeable difference in

fault localization effectiveness between coarse granularity (func-

tion-level) techniques and fine granularity (statement- and

branch-level) techniques. We compute the area under curve for

each level of granularity as shown in Table 4. The result also con-

firms the observation that branch-level granularity (3.74) is slightly

Table 3

Areas under curve for different strategies on Siemens programs.

Strategy Random ART Additional Total

AUC 2.83 3.44 3.51 5.47

746 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

better than function-level granularity (3.91) and statement-level

granularity (3.94), and yet the corresponding differences constitute

only 4.5% and 5.3%, respectively. Apparently, the effectiveness at

different levels of coverage granularity is comparable. We further

conduct the ANalysis Of VAriance (ANOVA) test, and the resulting

large p-value of 0.112 confirms that there is no significant statisti-

cal difference between coarse granularity techniques and fine

granularity techniques in terms of the expense over all

test suites at a significance level of 5%. Intuitively, given a specific

test case prioritization strategy, the use of coarse (function-level)

coverage granularity information is a better choice as it incurs

less cost in terms of both coverage profiling and prioritization

time.

4.1.1.3. Comparison of distributions of different test case prioritization

techniques. In this section, we report variances of the expenses of

using the test suites generated by different test case prioritization

techniques for statistical fault localization. Table 5 summarizes the

results. Each column represents a test case prioritization tech-

nique. Each row represents the variance of expenses for the same

number of failed test cases. In each row, we have highlighted in

bold the cell with the largest variance (unless there are multiple

cells having the same largest variance).

We observe that the 13 Random, ART and Additional

techniques are comparable to one another in terms of variances,

whereas the variance of the expenses for the three Total tech-

niques are comparably larger than the former techniques when

the number of failed test cases is no more than 40. Thus, when

compared with each of the three Total techniques, Random

ordering achieves a smaller variance when the number of failed

test cases is small. When the number of failed test cases exceeds

40, the variances of different test case prioritization techniques

are comparable to one another.

We further group different test case prioritization techniques in

the dimension of strategy as shown in Table 6. We have similar

observations that the variances of the expenses for the Random,

ART, and Additional strategies are comparable to one another. Also,

Random, ART, and Additional have smaller variances than the Total

strategy if the number of failed test cases is small (no more than

40), which is likely the case in practice. If we view different test

case prioritization techniques in the dimension of coverage granu-

larities, the result is shown in Table 7, which excludes Random as it

does not depend on such information. We find that the variances of

the expenses of using Statement, Branch, and Function as the cov-

erage granularities are comparable to one another.

4.1.2. Answering RQ2

To answer RQ2, we compute the overall fault localization effec-

tiveness of using a particular percentage of a test suite for a com-

mit build (regardless of the choice of test case prioritization or fault

localization techniques), as shown in Fig. 6. The x-axis represents

the percentages of a test suite being used to conduct a commit

build. The y-axis represents the expenses. Each box in the figure

represents the distribution of expenses over all test case prioritiza-

tion techniques for a given percentage of test suite used to conduct

a commit build, as indicated by the x-value in the plot.

We observe from Fig. 6 that with an increase in the percentage

of a test suite used for statistical fault localization, the decrease in

expense is very noticeable, especially when the percentage is

small. For instance, when using the first 10% of a test suite for fault

localization, the median expense is 0.42. When using the first 20%,

the median expense decreases to 0.36. When using the entire test

suite for fault localization, the resultant expense is only 0.24. How-

ever, the variances of the expenses in all three scenarios are almost

the same, which is around 0.04. The result indicates that although

code examination efforts can be reduced by using more high prior-

ity test cases, the variance does not improve when more test cases

are used for fault localization.

If we look closer at Fig. 6, we find that when a higher percentage

of a test suite is used for a commit build, the decrease in expense

(or increase in fault localization effectiveness) gradually become

slower. In fact, the difference in the median expense between using

60% and 100% is only 0.02. We further conduct an ANOVA test, val-

idating the null hypothesis that there is no significant difference

between the mean expenses of using different percentages of test

suite for fault localization at a significance level of 5%. The ANOVA

test returns a p-value of 0.0037, which successfully rejects the null

hypothesis and shows that there are significant differences among

the groups.

In an ANOVA test, we compare the means and variances of sev-

eral groups to validate statistically the hypothesis that all these

groups are drawn from the same population, as against the general

alternative that they are not from the same population. We further

want to know which pairs of the means are significantly different

and which are not. A test that can provide such information is

called a multiple comparison procedure.

Thus, to verify whether the mean expenses for two different

percentages of a test suite differ significantly, we further conduct

multiple comparisons to compare the mean expenses of using

different percentages of a test suite for a commit build at a sig-

nificance level of 5%. For each multiple comparison procedure

conducted in this work, we use Tukey’s Honestly Significant

Difference (HSD) as the alpha adjustment procedure, which is

the default option available in MATLAB. The result is shown in

Fig. 7. The multiple comparisons are conducted between using

100% of a test suite for a commit build and using other percent-

ages of the test suite for the commit build. The x-axis shows the

expenses and the y-axis shows the different percentages of test

suites. Each horizontal line in the figure represents the distribu-

tions of expenses using a specific percentage of the test suite for

the commit build, and the central point indicating the mean ex-

pense. The horizontal lines cut by the two dotted vertical lines

indicate that their mean expenses are not significantly different

from that of using 100% of test suites for commit build at a sig-

nificance level of 5%.
Fig. 5. Comparison of coverage granularity levels on fault localization effectiveness

for Siemens programs.

Table 4

Areas under curve for different coverage granularity levels on Siemens programs.

Coverage granularity Branch Function Statement

AUC 3.74 3.91 3.94

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 747

Author's personal copy

The result of multiple comparisons in Fig. 7 shows that there is

no statistical difference between the mean expense of using an en-

tire test suite for a commit build and that of using 60% or more of

the test suite at a significance level of 5%. However, there is a sig-

nificant difference between the mean expenses of using an entire

test suite and using no more than 50% of the test suite. The result

also shows that for programs of the scale represented by the

Siemens suite, the CI process can reduce the number of test case

executions by up to 40% while maintaining a fault localization

effectiveness result similar to that when the entire test suite is

being used.

4.2. Scalability of single-fault subjects

We want to know whether our finding on the Siemens pro-

grams can be observed in other real-life scenarios. Therefore, we

further analyze the results for single-fault and multi-fault UNIX

programs. In this section, we present the results for single-fault

UNIX programs and re-examine the two research questions. In

the next section, we will report the result on multi-fault UNIX

programs.

4.2.1. Answering RQ1

Similarly to the experiment on the Siemens programs, we first

study the scenario of developers stopping a commit build when-

ever a specific number of failed test cases have been observed.

4.2.1.1. Comparison of test case prioritization strategies. This section

reports on the comparison of different test case prioritization strat-

egies as shown in Fig. 8. The x- and y-axes of Fig. 8 can be inter-

preted similarly to Fig. 4. The expenses in each curve are

computed in the same way as in Section 4.1.1.1, except that we

use single-fault UNIX programs instead of the Siemens programs

as subjects.

Similarly to what we did for Fig. 4, we divide the plot in Fig. 8

into three regions using two vertical lines. We observe that during

the initial range (i.e., the leftmost region), the fault localization

effectiveness of all the strategies studied (except Total) improves

rapidly when more failed test cases are encountered. In the middle

region, roughly speaking, the fault localization effectiveness of all

the strategies deteriorates towards the end of the range. Total fluc-

tuates more seriously than the other strategies. We observe also

that there are quite a number of peaks and troughs along the curve

of Total in the middle region. Finally, all the curves converge to the

same value in the final range. This general trend is similar to what

we have observed from Fig. 4. By comparing these curves in Fig. 8,

we also find that Total is the least effective among the strategies

studied. The trends of the Random, ART, and Additional strategies

are observably comparable to one another, and quite different from

the trend of the Total strategy.

Encouragingly, the effectiveness of the ART and Additional

strategies catches up with that of the Random strategy. However,

the former strategies do not outperform the latter noticeably. In

order to understand this observation better, we further compute the

area under curve of each strategy, as shown in Table 8. We observe

that, in general, the Random (2.14), ART (2.33), and Additional

(2.05) strategies only differ by about 2 to 13%, and they all perform

significantly better than the Total strategy (3.16) by at least 35%.

Random ordering can be applied at low cost. On the other hand,

consistent with the time cost reported in Jiang et al. [23,25], the

Additional strategy is the least efficient among the studied tech-

niques, and the time cost of the ART strategy is much lower than

that of the Additional strategy. The result echoes the result in

Section 4.1.1.1 that owing to its low prioritization cost, the

Random ordering strategy is useful if the project concerned is

buggy; whereas the ART or Additional strategy can be viableT
a
b
le

5

V
a
ri
a
n
ce
s
o
f
e
x
p
e
n
se
s
o
n
S
ie
m
e
n
s
p
ro
g
ra
m
s.

N
u
m
b
e
r
o
f
fa
il
e
d
te
st

ca
se
s

R
a
n
d
o
m

A
R
T
-b
r-

m
a
x
m
a
x

A
R
T
-b
r-

m
a
x
a
v
g

A
R
T
-b
r-

m
a
x
m
in

A
R
T
-f
n
-

m
a
x
m
a
x

A
R
T
-f
n
-

m
a
x
a
v
g

A
R
T
-f
n
-

m
a
x
m
in

A
R
T
-s
t-

m
a
x
m
a
x

A
R
T
-s
t-

m
a
x
a
v
g

A
R
T
-s
t-

m
a
x
m
in

a
d
d
tl
-

b
r

a
d
d
tl
-

fn

a
d
d
tl
-

st

to
ta
l-

b
r

to
ta
l-

fn

to
ta
l-

st

1
0

0
.0
1
6

0
.0
1
6

0
.0
1
7

0
.0
1
5

0
.0
1
4

0
.0
2
0

0
.0
1
9

0
.0
1
6

0
.0
1
7

0
.0
1
5

0
.0
1
4

0
.0
2
4

0
.0
1
4

0
.0
3
0

0
.0
2
5

0
.0
3
3

2
0

0
.0
1
5

0
.0
1
7

0
.0
1
8

0
.0
1
7

0
.0
1
7

0
.0
2
0

0
.0
1
8

0
.0
1
7

0
.0
1
8

0
.0
1
7

0
.0
1
6

0
.0
2
3

0
.0
1
6

0
.0
3
0

0
.0
2
2

0
.0
3
1

3
0

0
.0
1
2

0
.0
1
4

0
.0
1
4

0
.0
1
5

0
.0
1
3

0
.0
1
4

0
.0
1
3

0
.0
1
4

0
.0
1
5

0
.0
1
5

0
.0
1
3

0
.0
1
6

0
.0
1
2

0
.0
2
1

0
.0
1
6

0
.0
3
2

4
0

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
4

0
.0
0
5

0
.0
0
3

0
.0
0
6

0
.0
0
5

0
.0
1
1

5
0

0
.0
0
1

0
.0
0
1

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
1

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
1

0
.0
0
2

0
.0
0
1

0
.0
0
2

0
.0
0
2

0
.0
0
2

6
0

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

7
0

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

M
a
x

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

748 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

options if the goal is to reassure all the existing features of a base-

line version.

4.2.1.2. Comparison of coverage granularity levels. Similarly to our

analysis on the raw data of Fig. 5 for the Siemens programs, we re-

port our result on the single-fault UNIX programs in Fig. 9. We find

the trends of the curves for these subject programs are similar to

that for the Siemens programs. We also compute the area under

curve for each level of granularity, as shown in Table 9. We find

that different levels of coverage granularity do not result in any

significant difference in the cumulative fault localization effective-

ness. This is confirmed by an ANOVA test that returns a p-value of

0.145, which cannot reject the null hypothesis that there is no dif-

ference in expenses between different coverage granularity levels

at a significance level of 5%. Thus, when the test case prioritization

strategy (other than Random) is fixed, a coarse (function-level)

coverage granularity can be a better choice from the perspective

of cost effectiveness. When Random ordering is used, coverage

granularity is not relevant.

4.2.1.3. Comparison of distributions of different test case prioritization

techniques. In this section, we report the variances of the expenses

of using the test suites generated by different test case prioritiza-

tion techniques for statistical fault localization on single-fault

UNIX programs. Table 10 shows the results. Note that a value smal-

ler than 0.001 is represented as ‘‘<10–3’’ in the table.

We can find that all the 13 Random, ART and Additional tech-

niques are comparable to one another in terms of the variances

of the expenses, which are comparably smaller than those of the

three Total techniques when the number of failed test cases is

small.

If we group different test case prioritization techniques accord-

ing to strategies as shown in Table 11, we find that for the Random,

ART, and Additional strategies, the variances of the expenses are

comparable to one another, and all of them have smaller variances

than the Total strategy when the number of failed test cases is up

to 50. If we classify test case prioritization techniques in terms of

Table 6

Variances of expenses for prioritization strategy on Siemens programs.

Number of failed test cases Random ART Additional Total

10 0.016 0.017 0.017 0.029

20 0.015 0.018 0.018 0.028

30 0.012 0.014 0.014 0.023

40 0.004 0.004 0.004 0.007

50 0.001 0.002 0.001 0.002

60 0.001 0.001 0.001 0.001

70 0.001 0.001 0.001 0.001

Max 0.001 0.001 0.001 0.001

Table 7

Variances of expenses for coverage granularity on Siemens programs.

Number of failed test cases Branch Function Statement

10 0.018 0.020 0.019

20 0.020 0.020 0.020

30 0.015 0.014 0.018

40 0.005 0.004 0.005

50 0.002 0.002 0.002

60 0.001 0.001 0.001

70 0.001 0.001 0.001

Max 0.001 0.001 0.001

10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

E
x

p
e

n
s

e

Percentage of Test Suite

Fig. 6. Distributions of expenses for different percentages of test suites on Siemens

programs.

Expense

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

5 groups have means significantly different from Group 100

0.2 0.25 0.3 0.35 0.4 0.45

100

90

80

70

60

50

40

30

20

10

Fig. 7. Multiple comparisons of expenses for different percentages of test suite on

Siemens programs.

Fig. 8. Comparison of test case prioritization strategies on fault localization

effectiveness for single-fault UNIX programs.

Table 8

Areas under curve for different strategies on single-fault UNIX programs.

Strategy Random ART Additional Total

AUC 2.14 2.33 2.05 3.16

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 749

Author's personal copy

coverage granularity as shown in Table 12 (which excludes the

Random technique), we find that the variances of the expenses

for the Statement, Branch, and Function levels are comparable

to one another. As the expense and variance of using a coarse

coverage granularity are comparable to those for fine granularities,

function coverage is a better choice from the perspective of cost-

effectiveness as it incurs less program instrumentation, coverage

profile, and test case prioritization overheads.

4.2.2. Answering RQ2

Similarly to our analysis shown in Fig. 6 for the Siemens

programs, we compute the distributions of expenses in the use of

different percentages of a test suite for a commit build of a

single-fault UNIX program. The result is shown in Fig. 10. The

x-axis and y-axis can be interpreted similar to those of Fig. 6.

Like the results for the Siemens programs, if more test cases are

used for a commit build, the expense decreases gradually. For in-

stance, when using 10% of a test suite, the median expense is only

0.21. When using 20% of a test suite, the median expense improves

to 0.148. When using the entire test suite for fault localization, it is

about 0.04.

We further observe that the variances for single-fault UNIX pro-

grams, as indicated by vertical bars, are larger than those for

Siemens programs. For example, if 10%, 20%, and 30% of the test

cases in a test suite are used for a commit build, the variances

are 0.1, 0.15, and 0.2, respectively. They correspond to 2.5, 3.75,

and 5 times of the observed variances for the Siemens programs.

We conduct an ANOVA test to validate whether there is no sig-

nificant difference between the mean expenses of using different

percentages of test suite for fault localization at a significance level

of 5%. The test returns a p-value of 0.0026, which successfully

rejects the null hypothesis and shows that there are significant

differences among the groups.

We further conduct multiple mean comparisons on these data.

The result, as shown in Fig. 11, can be interpreted similarly to those

in Fig. 7. It indicates that there is no statistical difference (at a

significance level of 5%) between the expense of using an entire

Fig. 9. Comparison of coverage granularity levels on fault localization effectiveness

for single-fault UNIX programs.

Table 9

Areas under curve for different coverage granularity levels on single-fault UNIX

programs.

Coverage granularity Branch Function Statement

AUC 2.40 2.32 2.40

T
a
b
le

1
0

V
a
ri
a
n
ce
s
o
f
e
x
p
e
n
se
s
o
n
si
n
g
le
-f
a
u
lt

U
N
IX

p
ro
g
ra
m
s.

N
u
m
b
e
r
o
f
fa
il
e
d
te
st

ca
se
s

R
a
n
d
o
m

A
R
T
-b
r-

m
a
x
m
a
x

A
R
T
-b
r-

m
a
x
a
v
g

A
R
T
-b
r-

m
a
x
m
in

A
R
T
-f
n
-

m
a
x
m
a
x

A
R
T
-f
n
-

m
a
x
a
v
g

A
R
T
-f
n
-

m
a
x
m
in

A
R
T
-s
t-

m
a
x
m
a
x

A
R
T
-s
t-

m
a
x
a
v
g

A
R
T
-s
t-

m
a
x
m
in

a
d
d
tl
-

b
r

a
d
d
tl
-

fn

a
d
d
tl
-

st

to
ta
l-

b
r

to
ta
l-

fn

to
ta
l-

st

1
0

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
9

0
.0
0
6

0
.0
0
7

2
0

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
6

0
.0
0
4

0
.0
0
6

3
0

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
5

0
.0
0
4

0
.0
0
5

4
0

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
6

0
.0
0
4

0
.0
0
5

5
0

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
6

0
.0
0
4

0
.0
0
5

6
0

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
5

7
0

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
5

8
0

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
4

9
0

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
4

1
0
0

0
.0
0
3

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
4

1
1
0

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
4

0
.0
0
6

0
.0
0
6

0
.0
0
6

1
2
0

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

1
3
0

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

1
4
0

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

1
5
0

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

1
6
0

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

M
a
x

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

<
1
0
–
3

750 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

test suite for a commit build and that of using 50% or more of

the test suite. This finding is the same as our earlier result for

the Siemens suite that we can reduce the number of test case

executions by up to 50% in a commit build while maintaining

a fault localization effectiveness result as if the whole test suite

were used.

4.3. Scalability of multi-fault subjects

In this section, we present the results for multi-fault UNIX pro-

grams. To reduce the number of repetitions, for brevity, we directly

discuss the results without elaborating again on how to read the

corresponding plots and tables, or how to compute the statistics.

4.3.1. Answering RQ1

4.3.1.1. Comparison of test case prioritization strategies. From Fig. 12,

we observe a trend similar to what we have found on the Siemens

programs and single-fault UNIX programs. The variations in the

effectiveness of fault localization (in terms of expense) are ob-

served to be consistent in all three kinds of subjects.

We also measure the area under curve of each strategy. The re-

sult is shown in Table 13. We find that the Random (2.48), ART

(2.60), and Additional (2.45) strategies have comparable fault

localization effectiveness, and they all perform better than the To-

tal (3.51) strategy significantly by at least 35%.

4.3.1.2. Comparison of coverage granularity levels. We also report the

comparison among different levels of coverage granularity in

Fig. 13. The corresponding cumulative fault localization effective-

ness at each level is shown in Table 14. We find that different

coverage granularity levels do not show significant differences in

Table 11

Variances of expenses for prioritization strategy on single-fault UNIX programs.

Number of failed test cases Random ART Additional Total

10 0.003 0.003 0.002 0.007

20 0.003 0.003 0.002 0.005

30 0.002 0.003 0.002 0.005

40 0.002 0.003 0.002 0.005

50 0.003 0.004 0.003 0.005

60 0.004 0.004 0.004 0.004

70 0.004 0.004 0.004 0.004

80 0.004 0.004 0.003 0.004

90 0.004 0.004 0.003 0.004

100 0.003 0.004 0.003 0.004

110 0.004 0.005 0.004 0.006

120 <10�3 <10�3 <10�3 <10�3

130 <10�3 <10�3 <10�3 <10�3

140 <10�3 <10�3 <10�3 <10�3

150 <10�3 <10�3 <10�3 <10�3

160 <10�3 <10�3 <10�3 <10�3

Max <10�3 <10�3 <10�3 <10�3

Table 12

Variances of expenses for coverage granularity on single-fault UNIX programs.

Number of failed test cases Branch Function Statement

10 0.0042 0.0034 0.0036

20 0.0032 0.0028 0.0032

30 0.0030 0.0028 0.0030

40 0.0036 0.0032 0.0030

50 0.0040 0.0036 0.0038

60 0.0042 0.0042 0.0042

70 0.0042 0.0042 0.0042

80 0.0036 0.0038 0.0036

90 0.0034 0.0036 0.0036

100 0.0034 0.0036 0.0036

110 0.0050 0.0052 0.0050

120 <10�3 <10�3 <10�3

130 <10�3 <10�3 <10�3

140 <10�3 <10�3 <10�3

150 <10�3 <10�3 <10�3

160 <10�3 <10�3 <10�3

Max <10�3 <10�3 <10�3

10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
x

p
e

n
s

e

Percentage of Test Suite

Fig. 10. Distributions of expenses for different percentages of test suite on single-

fault UNIX programs.

Expense

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

100

90

80

70

60

50

40

30

20

10

4 groups have means significantly different from Group 100

Fig. 11. Multiple comparisons of expenses for different percentages of test suite on

single-fault UNIX programs.

Fig. 12. Comparison of test case prioritization strategies on fault localization

effectiveness for multi-fault UNIX programs.

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 751

Author's personal copy

terms of fault localization effectiveness in Fig. 13, and the differ-

ence in terms of AUC among different levels are marginal. Further-

more, an ANOVA test returns a large p-value of 0.112, which cannot

reject the null hypothesis that various coverage granularities are

not significantly different. Thus, when the test case prioritization

strategy (other than Random) is fixed, a coarse (function-level)

coverage granularity is a better choice due to its low cost. Random

ordering does not, of course, involve coverage information. These

results also echo the findings we have observed in previous

sections.

4.3.1.3. Comparison of distributions of different test case prioritization

techniques. Table 15 summarizes the variances of the expenses of

using the test suites generated by different test case prioritization

techniques for statistical fault localization on multi-fault UNIX pro-

grams. We find that all the 13 Random, ART, and Additional tech-

niques are close to one another in terms of the variances of their

expenses, while the variances for the three Total techniques are

comparably larger than the former techniques when the number

of failed test cases is small. We should add, of course, that the Ran-

dom technique is much simpler to implement.

Similarly to the results on the Siemens and single-fault UNIX

programs, Tables 16 and 17 show the corresponding results of

Table 15, which summarize the variances of the expenses of using

the test suite generated by different test case prioritization

techniques for statistical fault localization on multi-fault UNIX pro-

grams at the strategy and coverage granularity levels. From

Table 16, we find that the variances of the expenses for the Ran-

dom, ART, and Additional strategies are close to one another, and

all of them have smaller variances than those of the Total strategy

Table 13

Areas under curve for different strategies on multi-fault UNIX programs.

Strategy Random ART Additional Total

AUC 2.48 2.60 2.45 3.51

Fig. 13. Comparison of coverage granularity levels on fault localization effective-

ness for multi-fault UNIX programs.

Table 14

Areas under curve for different coverage granularity levels on multi-fault UNIX

programs.

Coverage granularity Branch Function Statement

AUC 2.77 2.68 2.81

T
a
b
le

1
5

M
e
a
n
s
a
n
d
v
a
ri
a
n
ce
s
o
f
e
x
p
e
n
se
s
o
n
m
u
lt
i-
fa
u
lt

U
N
IX

p
ro
g
ra
m
s.

N
u
m
b
e
r
o
f
fa
il
e
d
te
st

ca
se
s

R
a
n
d
o
m

A
R
T
-b
r-

m
a
x
m
a
x

A
R
T
-b
r-

m
a
x
a
v
g

A
R
T
-b
r-

m
a
x
m
in

A
R
T
-f
n
-

m
a
x
m
a
x

A
R
T
-f
n
-

m
a
x
a
v
g

A
R
T
-f
n
-

m
a
x
m
in

A
R
T
-s
t-

m
a
x
m
a
x

A
R
T
-s
t-

m
a
x
a
v
g

A
R
T
-s
t-

m
a
x
m
in

a
d
d
tl
-

b
r

a
d
d
tl
-

fn

a
d
d
tl
-

st

to
ta
l-

b
r

to
ta
l-

fn

to
ta
l-

st

1
0

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
7

0
.0
0
4

0
.0
0
7

2
0

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
7

0
.0
0
6

0
.0
0
7

3
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
6

0
.0
0
5

0
.0
0
6

4
0

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
6

0
.0
0
4

0
.0
0
6

5
0

0
.0
0
2

0
.0
0
2

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
3

0
.0
0
2

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
6

0
.0
0
6

0
.0
0
6

6
0

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
3

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

7
0

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
5

8
0

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
4

0
.0
0
6

0
.0
0
6

0
.0
0
6

9
0

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
5

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
6

0
.0
0
6

0
.0
0
5

1
0
0

0
.0
0
5

0
.0
0
5

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
5

0
.0
0
6

0
.0
0
5

0
.0
0
5

1
1
0

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
5

0
.0
0
6

0
.0
0
6

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
6

0
.0
0
6

1
2
0

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
5

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
4

0
.0
0
5

0
.0
0
5

0
.0
0
6

0
.0
0
6

0
.0
0
6

1
3
0

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

0
.0
0
4

1
4
0

0
.0
0
3

0
.0
0
4

0
.0
0
2

0
.0
0
3

0
.0
0
2

0
.0
0
4

0
.0
0
3

0
.0
0
2

0
.0
0
4

0
.0
0
3

0
.0
0
3

0
.0
0
2

0
.0
0
4

0
.0
0
3

0
.0
0
4

0
.0
0
3

1
5
0

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

0
.0
0
2

1
6
0

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

M
a
x

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

752 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

when the number of failed test cases is up to 50. From Table 17

(which excludes the Random strategy), we find that the variances

of the expenses for Statement, Branch, and Function levels are

comparable to one another, which agrees with the results that

we have observed on the Siemens and single-fault UNIX programs.

4.3.2. Answering RQ2

Lastly, for completeness, we report the distributions of

expenses on the use of different percentages of a test suite for a

commit build. The result is shown in Fig. 14, and that for their

multiple mean comparisons is shown in Fig. 15.

We observe that the difference in median expenses between

using the entire test suite and using 30% is only 0.003, which is

small. We conduct an ANOVA test to check whether there is no sig-

nificant difference between the mean expenses of using different

percentages of test suite for fault localization at a significance level

of 5%. However, the ANOVA test returns a p-value of 0.0039, which

rejects the null hypothesis, and shows that there are significant

differences among the groups. We further perform a multiple-

comparison procedure to find out which pairs of techniques differ

significantly. Interestingly, the result of multiple comparisons in

Fig. 15 shows that there is no statistical difference (at a significance

level of 5%) between the mean expense of using the whole test

suite for a commit build and that of using 30% or more of the test

suite. We conjecture that the presence of multiple faults in a pro-

gram may reduce the effectiveness of locating the first fault among

all the faults in the same version. Nonetheless, more studies are re-

quired to confirm the conjecture.

4.4. Summary

In summary, the results of our empirical study provide new

information to better configure the continuous integration process

to make the best use of test case prioritization techniques and sta-

tistical fault localization techniques under different scenarios.

With respect to research question RQ1, we have the following

findings: (a) Random ordering can be a cost-effective strategy to

reorder test suites for statistical fault localization. It is a low cost

prioritization strategy to assist developers to locate faults. How-

ever, Random may require executing more test cases to obtain

the same number of failed test cases than the other strategies stud-

ied. (b) The ART and Additional strategies have quite comparable

results with Random ordering in terms of cumulative fault localiza-

tion effectiveness. If covering different program elements (depend-

ing on the coverage granularity) is the prioritization requirement,

these two are good strategies. Total is the least effective among

the strategies studied. (c) There is no statistically significant differ-

ence among various levels of coverage granularity. Intuitively,

since the collection of statistics on coarse-grained program

elements is less intrusive and more lightweight, it can be more

Table 16

Variances of expenses for prioritization strategy on multi-fault UNIX programs.

Number of failed test cases Random ART Additional Total

10 0.002 0.002 0.002 0.006

20 0.002 0.002 0.002 0.007

30 0.002 0.002 0.002 0.006

40 0.002 0.002 0.002 0.005

50 0.002 0.002 0.002 0.006

60 0.004 0.003 0.003 0.004

70 0.004 0.004 0.004 0.005

80 0.005 0.005 0.005 0.006

90 0.005 0.005 0.004 0.006

100 0.005 0.005 0.004 0.005

110 0.005 0.005 0.005 0.006

120 0.005 0.005 0.005 0.006

130 0.004 0.004 0.004 0.004

140 0.003 0.003 0.003 0.003

150 0.002 0.002 0.002 0.002

160 0.001 0.001 0.001 0.001

Max 0.001 0.001 0.001 0.001

Table 17

Variances of expenses for coverage granularity on multi-fault UNIX programs.

Number of failed test cases Branch Function Statement

10 0.003 0.002 0.003

20 0.003 0.003 0.003

30 0.003 0.003 0.003

40 0.003 0.003 0.003

50 0.003 0.003 0.003

60 0.003 0.004 0.004

70 0.004 0.004 0.004

80 0.005 0.005 0.005

90 0.005 0.005 0.005

100 0.005 0.005 0.005

110 0.005 0.005 0.006

120 0.005 0.005 0.005

130 0.004 0.004 0.004

140 0.003 0.003 0.003

150 0.002 0.002 0.002

160 0.001 0.001 0.001

Max 0.001 0.001 0.001

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

E
x
p

e
n

s
e

Percentage of Test Suite

Fig. 14. Distributions of expenses for different percentages of test suite on multi-

fault UNIX programs.

Expense

P
e

rc
e

n
ta

g
e

 o
f

T
e

s
t

S
u

it
e

2 groups have means significantly different from Group 100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

100

90

80

70

60

50

40

30

20

10

Fig. 15. Multiple comparisons of expenses for different percentages of test suite on

multi-fault UNIX programs.

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 753

Author's personal copy

attractive to software projects (except when Random ordering is

used, in which case coverage information is not relevant). (d) Last

but not least, despite small variations, there is a gradual increase in

fault localization effectiveness as the number of failed test cases in-

creases. The underlying reason for the variations remains to be

uncovered. In a nutshell, we find that strategy can be a factor for

fault localization effectiveness, and yet coverage granularity is not

a significant factor.

With respect to research question RQ2, we find that fault local-

ization effectiveness will be compromised only if a small fraction

(640% in the experiment) of the test suite is used for a commit

build. In addition, for all our subject programs, when the scale of

a program increases and multi-faults are involved, we observe

more savings in terms of the percentage of test cases used in a

commit build. Real-life applications are usually large and contain

many faults. Our result provides the first piece of empirical evi-

dence that the integration of test case prioritization and fault local-

ization techniques can save efforts in test case execution in a

commit build. We find that time cost expressed in terms of the

number of test cases is a factor for fault localization effectiveness.

Our empirical findings surprisingly show that Random is effec-

tive for continuous integration if our objective is to locate faults by

using a prioritized test suite with a fixed number of failed test

cases. Random can be attractive because it can be efficiently imple-

mented and is non-intrusive. Researchers may wish to study

deeper on the role of Random in such integration.

While our study provides empirical findings on the integration

of test case prioritization techniques with statistical fault localiza-

tion, further studies are need to relate such findings to underlying

models or theories.

4.5. Threats to validity

4.5.1. Internal validity

To conduct the empirical study, we used many tools, which

could have added variability to our results and introduced threats

to internal validity. We used several procedures to control poten-

tial sources of variation.

All our subject programs and their faulty versions were down-

loaded from SIR. The fault seeding process used by SIR followed a

precise specification so that each program was handled in a similar

way [37]. Various previous work [16,17,37] also used the Siemens

suite of programs from SIR to study test case prioritization and

other problems. We have verified that in our experiment, each

version produced the same test verdicts as indicated in the fault

matrix files provided by SIR.

We evaluated four fault localization techniques and 16 test case

prioritization techniques in our empirical study. We chose these

specific techniques because they have been studied in recent

regression testing and fault localization papers. They are chosen

because they are representative.

When analyzing the results of the empirical study, we chose to

group the subjects into small-sized programs, medium-sized single

fault programs, and medium-sized multi-fault programs rather

than discussing each subject program individually. Our rationale

is an attempt to provide a useful summary rather than overwhelm-

ing readers with unnecessary details. We also carefully verified the

results of every subject program to ensure that they are consistent

with those of the overall group.

We carefully tested our regression testing tools, which were

also used in Jiang and Chan [23]. The result for ART-based tech-

niques can be repeated by the experiment presented in [25]. We

also systematically tested our fault localization tools, which were

also used in Zhang et al. [47,48]. More specifically, we tested our

tools on the SIR subjects and compared the results with the fault

matrix provided by SIR. Our tools produced exactly the same fault

matrix as that from SIR. To evaluate Tarantula, CBI, Jaccard similar-

ity coefficient, and Ochiai, we carefully studied their papers on the

technical details and implemented them on our platform. For the

ranking results produced by a fault localization technique, we

spot-checked themmanually to verify the correctness of the imple-

mentation. To conduct ANOVA test and multiple comparisons, we

used MATLAB rather than any toolset of our own. This is because

MATLAB’s statistics package is mature and tested by many users

to be reliable. We also made use of gcov, a popular code coverage

collection tool used with gcc. The gcov tool has been demonstrated

to work well by many researchers and software engineers. We

have also double checked the reported figures. We use an un-

weighted average to aggregate the measured value from the out-

puts of the techniques of the same dimension because they have

the same probability to happen in our experiment setting. Using

other aggregation formulas may obtain different findings.

One important component of our study was how to use a prior-

itized test suite for fault localization. In other words, how could we

define the interface between test case prioritization and fault local-

ization? To do it correctly, we obtained a prioritized test suite gen-

erated by a test case prioritization technique, collected the

execution profile of different percentages (or numbers) of test

cases within the test suite to emulate the commit build process,

and fed the execution profile to each fault localization technique.

We carefully verified the results with invariant properties to en-

sure correctness. We also manually worked out small examples

to check whether our implementations output the results

correctly.

4.5.2. External validity

There were several issues that may affect the external validity

of our experiment. The first issue was concerned with the subject

programs studied.

We used the Siemens and UNIX programs as subjects in the

study. They ranged from small scale to real-life programs with

single and multiple faults. While the Siemens programs were

small in scale, all the subject UNIX programs were real-life pro-

grams with 4756 to 10,124 statements. We used them to study

the integration problem between test case prioritization and sta-

tistical fault localization because they were also used by other

studies on regression testing and statistical fault localization

[1,16,17,23,25,27,31,34,40,47,48,50]. Nonetheless, compared to

the scale of software development today, the programs are still

relatively small. Case studies of industrial-scale programs would

help to verify the results further.

Another potential threat to validity for the Siemens and UNIX

programs is that seeded faults were the only modifications be-

tween the original versions and the faulty versions. In real life,

code evolution by developers may include both benign and faulty

modifications. Since benign and faulty modifications may interact

with each other, a further study on subject programs with both

kinds of changes may further strengthen the validity of our study.

KLEE [4] has demonstrated that it is feasible to generate test

cases automatically to achieve high branch coverage for selected

industrial-strength and complex programs. In general, not all test

suites may fully satisfy a specific test adequacy criterion. We used

the test suites already developed for Siemens programs because all

the test suites are based on the branch coverage criterion. The use

of other test case coverage criteria to construct test cases for

regression testing is also an interesting topic for future study.

We only chose C programs in our empirical study because they

are still widely used in many real-life applications such as Web

servers, UNIX tools, and database servers. A further investigation

on subject programs written in other programming languages

may help generalize our findings.

754 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

The current results show that if a tester starts debugging after a

given number of failed test cases have been observed, Random

may, on average, generate a more effective test suite for fault local-

ization than the techniques under each of the other strategies stud-

ied. There are many interesting follow-up questions: First, it is

unclear (to us) how the current results can be generalized if the

tester chooses to start debugging after (i) a given number of test

cases (regardless of whether they have failed) have been executed,

(ii) a given test adequacy criterion has been fulfilled, (iii) some cri-

terion that is determined not only by the test results has been sat-

isfied, or (iii) other feedback related to fault prediction has been

obtained. Second, the current study has only explored the strategy

dimension (which is at an aggregated level of the underlying tech-

niques). Future research may be conducted to examine the effect

of, say, one particular prioritization technique coupled with one

particular fault localization technique. While it will be a valuable

option, the result of such research may have even more significant

threats to external validity than the present study, because there is

a vast number of test case prioritization techniques and fault local-

ization techniques proposed in the literature. At the other extreme,

a further study covering more techniques will surely alleviate the

threats to external validity of our study.

4.5.3. Construct validity

APFD was originally proposed to measure the fault detection

rates of test case prioritization techniques. In this paper, however,

we focused on the integration of test case prioritization and fault

localization, whose efficacy was demonstrated by debugging effec-

tiveness. As a result, we used expense as the primary metric in our

empirical study. It was widely adopted in many previous studies

on fault localization techniques. This is because it corresponds to

a typical way software engineers use fault localization techniques,

by examining the individual entries in a ranked list from top to

bottom until they find a faulty statement. On the other hand, we

are aware that software engineers may also use the ranked list of

suspicious statements in various other ways. For example, when

developers examine a particular statement s1, they may happen

to spot problems in another statement s2 close to s1. Statement

s2 may have a much lower rank, however. This indicates that more

code or less code may be examined to locate faults than what an

effectiveness metric may indicate. In any case, a study of the

behavior of software engineers on the use of ranked list is beyond

the scope of this paper.

They were also other studies [13,34,36] that used T-score to

evaluate the effectiveness of fault localization techniques. We did

not use T-score because it was a metric for predicate-based fault

localization techniques rather than statement-based fault localiza-

tion techniques. Furthermore, T-score relies heavily on the

assumption of ‘‘an ideal programmer who is able to distinguish de-

fects from non-defects at each location, and can do at the same cost

for each location considered’’ [13]. As a result, we used expense

rather than T-score to evaluate the effectiveness of fault localiza-

tion techniques.

We studied the impact of using different portions of a reordered

test suite on fault localization for the integration problem. There-

fore, we also wanted to know the overall effectiveness of a strat-

egy. We thus used area under curve to compute the cumulative

expense for the full range of a test suite for fault localization. The

use of more metrics may help strengthen the study.

5. Related work

This section reviews projects that are related to our work. We

firstly review the work on test case prioritization and fault locali-

zation, followed by their integration.

Our work is related to studies on the time–cost dimension of

test case prioritization. In our empirical study, we used the ART

[25], Additional [16], and Total [16] strategies to prioritize a test

suite based on code coverage information obtained from the exe-

cutions of the test suite over previous versions of a program.

Researchers have proposed a number of variants of these basic

strategies. For instance, a binary matching technique was proposed

by Srivastava and Thiagarajan [38] to identify program modifica-

tions between versions, and reorder test cases to optimally cover

such modifications.

However, such optimization can be inefficient. Walcott et al.

[39] adopted a genetic algorithm approach, which usually runs

fast, to propose a time-aware test case prioritization technique that

generates approximations to an optimized permutation efficiently.

Li et al. [31] empirically evaluated various search-based algorithms

for test case prioritization in a systematic way. However, they con-

cluded from their experiments that meta-heuristics approaches to

optimizing the rate of coverage might not outperform the greedy

algorithms proposed by Elbaum et al. [16]. Zhang et al. [46] used

integer linear programming to optimize time-aware test case pri-

oritization. They found that such coverage-based optimization

could help improve the fault detection rate for selected Java pro-

grams. You et al. [43] evaluated time-aware test case prioritization

on the Siemens suite and the program space. They found that the

differences among techniques in terms of AFPD were not statisti-

cally significant. Li et al. [30] further showed that the Additional

strategy and the 2-optimal greedy algorithms could be more effec-

tive than generic hill-climbing algorithms and the Total strategy.

Based on previous results, therefore, we chose to use the Additional

strategy [16] in our experiment to study this time-related dimen-

sion, rather than using a meta-heuristics approach. We also in-

cluded the Total strategy [16] in our experiment because it is

often used in pair with the Additional strategy.

Jiang et al. [25] showed that an ART-based approach to test case

prioritization can be slightly less effective but more scalable than

the Additional strategy. We note that even without a comparison

with a genetic algorithm such as those proposed in [30], the result

is still valid. Their experiments found that coverage granularity is

not a consistent factor that affects the goal of detecting failures

as early as possible, which is consistent with our finding on fault

localization that coverage granularity is not a factor that affects

fault localization effectiveness significantly. Thus, our result is con-

sistent with their observation, even though we focus on fault local-

ization rates. Rather than using the Jaccard distance as in Jiang

et al., Zhou [51] uses the Manhattan similarity coefficient to mea-

sure the test case differences from the codebase perspective.

The related work above differed from the present paper in that

their techniques primarily focused on the goal of increasing the

rate of fault detection or the rate of code coverage, while our study

focuses on the goal of increasing the fault localization rate primar-

ily measured by expense [27,48]. Our target is not to measure the

effectiveness of test case prioritization techniques, but whether

test case prioritization may affect the use of statistical fault local-

ization techniques to help developers locate faults.

All the ART, Additional, and Total techniques in our study prior-

itize a test suite based on code coverage information obtained from

the executions of the test suite using previous versions of the pro-

gram. However, the code coverage information for different ver-

sions may be different, which may especially affect the

effectiveness of the greedy techniques for test suite prioritization.

Chittimalli and Harrold [9] proposed techniques that use algo-

rithms for regression test selection to compute accurate, up-to-

date coverage data on a modified version of the software without

having to rerun test cases that do not execute the modified state-

ments. Zhang et al. [45] proposed a regression test selection tech-

nique that manages to choose a subset of an original test suite

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 755

Author's personal copy

while maintaining high precision and recall rates. They proposed to

use a clustering approach to achieve this objective. Leon et al. [29]

proposed failure-pursuit techniques for test case generation and

prioritization. Their techniques first cluster test cases based on in-

puts and then use sampling to select an initial sample. If a failure is

revealed by any test case in the initial sample, its k nearest neigh-

bors are selected and checked. If additional failures are found, the

process will be repeated. This is an online technique that uses exe-

cution results to guide the selection of follow-up test cases. Yan

et al. [42] proposed a new sampling strategy to select test cases.

One may also adapt their idea to conduct online test case prioriti-

zation to support more statistical significant execution informa-

tion. However, the degree of fault localization support is unclear.

Moreover, in the preliminary version of this paper [26], we showed

that such techniques could be more sensitive than random order-

ing. We therefore did not include such clustering-based techniques

in our empirical study.

To support debugging, researchers have proposed many indi-

vidual techniques. Delta Debugging [13] automatically isolated

failure-inducing inputs, produced cause-effect chains, and identi-

fied the faults. It located faults by systematically manipulating

the input to isolate the minimum failure inducing input, and ana-

lyzing when an erroneous program state is produced and propa-

gated to the final output. Since their techniques changed the test

cases systematically, it would be hard to directly integrate it with

test case prioritization techniques. Renieris and Reiss [36] used the

difference in the execution traces between a failed run and its

nearest neighboring passed run for fault localization. Jeffrey et al.

[22] proposed a value replacement approach to ranking program

statements according to their suspiciousness of being faulty. Zhang

et al. [48] proposed to represent passed executions and failed exe-

cutions using edge profiles, and compared them in order to model

how each basic block contributes to failures and how the infected

program states propagate along control flow edges. Wong et al.

[41] proposed a family of code-coverage-based heuristics for fault

localization. Abreu et al. [2] also proposed to combine spectrum-

based fault localization (SFL, which correlate failures with abstrac-

tions of program traces) and model-based fault diagnosis to

support fault localization in programs with multiple faults. Their

techniques used ideas similar to the four techniques studied in this

paper. Zhang et al. [50] proposed to conduct fault localization at

evaluation sequence level to take into consideration the short-cir-

cuit evaluations of individual predicates. Zhang et al. [48] also

studied whether the feature spectra of program elements can be

safely considered as normal distributions, so that parametric fault

localization techniques can be soundly and powerfully applied.

These techniques used different ranking formulas in statistical

analyses to rank the faulty statements. Since our study is an inte-

gration of test case prioritization techniques and fault localization

techniques, the experiment may grow exponentially if we evaluate

more fault localization techniques. We have therefore focused on

four well-studied fault localization techniques to make the empir-

ical study both comparable to previous work and manageable.

Yu et al. [44] studied the effect of applying different test suite

reduction techniques on the effectiveness of fault localization. In

regression testing research, test suite reduction and test case prior-

itization are two different categories of techniques. On the other

hand, at an abstract level, both of them can select a subset of test

cases from a test suite, and can therefore be considered as test case

selection approaches. However, applying every technique studied

by Yu et al. on a pair of a test suite and a program generates exactly

one subset of the test suite. Owing to the redundancy elimination

nature of every such test suite reduction technique, in general,

such a technique cannot generate two subsets, say A and B, from

the same pair of test suite and program such that A is a proper sup-

erset of B. Moreover, each technique also has an assumption of the

availability of a coverage adequacy criterion. Test case prioritiza-

tion has neither of these limitations. Without such limitations,

we can explore in this paper the effects of adding or removing test

cases to fault localization effectiveness at a level of detail unprec-

edented in previous studies.

Wong et al. [40] proposed to select test cases based on a ratio of

cost to incremental coverage. Their approach combined both test

suite minimization and prioritization techniques. Baudry et al.

[3] used a bacteriologic approach to create test suites that aim at

maximizing the number of dynamic basic blocks and use the rank-

ing algorithm in Jones and Harrold [27] to conduct fault localiza-

tion. It would be interesting to study how test case generation

techniques may support fault localization. Gonzalez-Sanchez

et al. [20,21] proposed to directly incorporate fault localization

estimations into test case prioritization techniques. They did not

study the factors of test case prioritization techniques that might

affect the integration. In our previous work [23], we reported a

postmortem analysis of the support by test case prioritization

strategies on the capability of fault localization. Different from

the current study, our previous work first set a threshold effective-

ness value for the metric expense to select criterion-adequate test

suites. It then conducted a postmortem analysis on the test case

prioritization strategies that may generate these test suites.

Adaptive random testing [5,6,8] improved the effectiveness of

random testing in detecting the first failure by recommending

diversity guidelines to the test case generation process. Chen and

Merkel [7] proposed the use of quasi-random sequences for testing

in a high-dimensional input space. Ciupa et al. [10–12] investi-

gated how to define distance among objects for ART. Their experi-

mental results showed that ART based on object distance can

significantly increase the fault detection rate for object-oriented

programs. Chen et al. [5] further proposed a more general category

and choice method of using ART in non-numeric applications. They

have not studied test case prioritization. However, these distance

measures and the idea of handling higher dimensional inputs

may be used to enhance adaptive test case prioritization [25].

6. Conclusion and future work

In this paper, we have examined the integration of test case pri-

oritization and fault localization techniques. Our primary interest

is motivated by whether such an integration supports commit

build in continuous integration. We have conducted and reported

the first empirical study in this area, and have examined three fac-

tors, namely strategy, coverage granularity, and time cost. Our

empirical study has used 11 subject programs, including the Sie-

mens suite as well as single-fault and multi-fault UNIX programs.

It has involved 16 test case prioritization techniques, four statisti-

cal fault localization techniques, tens of thousands test cases, and

different percentages of test suites. The empirical results have con-

cluded that strategy and time cost of test case prioritization tech-

niques can be factors that affect the effectiveness of statistical fault

localization techniques, while there is no statistical evidence to

conclude that coverage granularity is a factor. Last but not least,

we have found that the addition of more failed test cases will gen-

erally improve the fault localization effectiveness in such integra-

tion, and yet there are variations (namely, deteriorations in fault

localization effectiveness) in terms of expenses during the process.

In other words, statistical fault localization can be fully effective

only after sufficient failed test cases have been added to get over

such variation periods.

Based on the empirical results, we have the following interpre-

tations: If testers want to stop regression testing of the commit

build after a certain number of failed test cases have been ob-

served, the test suites produced by Random ordering can be a

756 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

Author's personal copy

cost-effective option to integrate with (existing) statistical/spec-

trum-based fault localization techniques. The ART and Additional

strategies have comparable fault localization effectiveness as Ran-

dom ordering. The Total test case prioritization techniques are the

least effective in ordering test suites for effective statistical fault

localization. We have also found that different coverage granular-

ity levels do not result in significant differences in supporting

effective fault localization by the studied techniques. If testers have

a resource concern in terms of the number of test cases for regres-

sion testing, the use of test case prioritization can save up to 40% of

test case executions for commit builds without significantly dete-

riorating the fault localization effectiveness from the statistics

point of view. The finding shows that such savings are more notice-

able on medium-sized programs than small-scale programs, and

more on multi-fault programs than single-fault programs.

For future work, it is interesting to study how to achieve a

tighter integration between regression testing and debugging

techniques. We also want to further study test case generation

techniques and test case adequacy selection criteria that enable

the original test suite to provide better support for effective

fault localization. We would also like to know why there is a

variation of fault localization effectiveness after the addition

of failed test cases. Our study only reveals some empirical

findings in this integration process. The answers on why the

integration leads to such empirical findings are still open to fur-

ther investigation.

In previous work, random ordering was reported to be slow in

revealing faults when compared with Greedy and ART. In studying

RQ1, we set the scenario that testers start debugging on observing

a given number of failed test cases. Random probably requires

more test cases than either Greedy or ART to reveal the same num-

ber of faults. Moreover, statistical fault localization techniques can

be more effective if they work on a larger test suite than a smaller

one. However, our finding on RQ1 also shows that even for the

same strategy (such as Additional), there is a deterioration period

in which the addition of more test cases worsens the average fault

localization effectiveness. Based on such findings, we conjecture

that the effect of failed test cases is more significant than the size

of a test suite. We suggest studying these two observations in more

detail in the future. Fault detection capability of a test suite is also

closely related to the concept of test adequacy. Hence, for RQ2, we

suggest further studies on the effect of test adequacy. In addition,

special attention should be given to marginal savings rates rather

than simply on whether there are savings if less test cases are

applied.

Acknowledgments

This research is supported in part by a grant of the Basic Re-

search Fund of Beihang University, a grant of the Natural Science

Foundation of China (Project No. 61003027), a strategy research

grant of City University of Hong Kong (Project No. 7002673), a

grant of the General Research Fund of the Research Grants Council

of Hong Kong (Project No. 717308), and a discovery grant of the

Australian Research Council (Project No. DP120104773).

References

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, A.J.C. van Gemund, A practical evaluation of
spectrum-based fault localization, Journal of Systems and Software 82 (11)
(2009) 1780–1792.

[2] R. Abreu, P. Zoeteweij, A.J.C. van Gemund, Spectrum-based multiple fault
localization, in: Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2009), IEEE Computer Society Press, Los
Alamitos, CA, 2009, pp. 88–99.

[3] B. Baudry, F. Fleurey, Y. Le Traon, Improving test suites for efficient fault
localization, in: Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006), ACM Press, New York, NY, 2006, pp. 82–91.

[4] C. Cadar, D. Dunbar, D.R. Engler, KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs, in: Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation (OSDI
2008), USENIX Association, Berkeley, CA, 2008, pp. 209–224.

[5] T.Y. Chen, F.-C. Kuo, R.G. Merkel, T.H. Tse, Adaptive random testing: the ART of
test case diversity, Journal of Systems and Software 83 (1) (2010) 60–66.

[6] T.Y. Chen, H. Leung, I.K. Mak, Adaptive random testing, in: M.J. Maher (Ed.),
Advances in Computer Science: Proceedings of the 9th Asian Computing
Science Conference (ASIAN 2004), Lecture Notes in Computer Science, vol.
3321, Springer, Berlin, Germany, 2004, pp. 320–329.

[7] T.Y. Chen, R.G. Merkel, Quasi-random testing, IEEE Transactions on Reliability
56 (3) (2007) 562–568.

[8] T.Y. Chen, R.G. Merkel, An upper bound on software testing effectiveness, ACM
Transactions on Software Engineering and Methodology 17 (3) (2008) 1–27.

[9] P.K. Chittimalli, M.J. Harrold, Recomputing coverage information to assist
regression testing, IEEE Transactions on Software Engineering 35 (4) (2009)
452–469.

[10] I. Ciupa, A. Leitner, M. Oriol, B. Meyer, Object distance and its application to
adaptive random testing of object-oriented programs, in: Proceedings of the
1st International Workshop on Random Testing (in conjunction with the 2006
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2006)), ACM Press, New York, NY, 2006, pp. 55–63.

[11] I. Ciupa, A. Leitner, M. Oriol, B. Meyer, Experimental assessment of random
testing for object-oriented software, in: Proceedings of the 2007 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2007), ACM
Press, New York, NY, 2007, pp. 84–94.

[12] I. Ciupa, A. Leitner, M. Oriol, B. Meyer, ARTOO: adaptive random testing for
object-oriented software, in: Proceedings of the 30th International Conference
on Software Engineering (ICSE 2008), ACM Press, New York, NY, 2008, pp. 71–
80.

[13] H. Cleve, A. Zeller, Locating causes of program failures, in: Proceedings of the
27th International Conference on Software Engineering (ICSE 2005), ACM
Press, New York, NY, 2005, pp. 342–351.

[14] H. Do, G. Rothermel, On the use of mutation faults in empirical assessments of
test case prioritization techniques, IEEE Transactions on Software Engineering
32 (9) (2006) 733–752.

[15] P.M. Duvall, S. Matyas, A. Glover, Continuous Integration: Improving Software
Quality and Reducing Risk, Addison-Wesley, Upper Saddle River, NJ, 2007.

[16] S.G. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: a family
of empirical studies, IEEE Transactions on Software Engineering 28 (2) (2002)
159–182.

[17] S.G. Elbaum, G. Rothermel, S. Kanduri, A.G. Malishevsky, Selecting a cost-
effective test case prioritization technique, Software Quality Control 12 (3)
(2004) 185–210.

[18] D. Farley, The deployment pipeline: extending the range of continuous
integration. <http://www.scribd.com/doc/196739/The-Deployment-Pipeline-
by-Dave-Farley-2007>, 2007.

[19] M. Fowler, Continuous integration. <http://www.martinfowler.com/articles/
continuousIntegration.html>, 2006.

[20] Gonzalez-Sanchez, R. Abreu, H.-G. Gross, A. van Gemund, A diagnostic
approach to test prioritization, Technical Report TUD-SERG-2010-007,
Software Engineering Research Group, Delft University of Technology, Delft,
the Netherlands, 2010.

[21] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, A.J.C. van Gemund, Prioritizing tests
for software fault localization, in: Proceedings of the 10th International
Conference on Quality Software (QSIC 2010), IEEE Computer Society Press, Los
Alamitos, CA, 2010, pp. 42–51.

[22] D. Jeffrey, N. Gupta, R. Gupta, Fault localization using value replacement, in:
Proceedings of the 2008 ACM SIGSOFT International Symposium on Software
Testing andAnalysis (ISSTA2008), ACMPress, NewYork, NY, 2008, pp. 167–178.

[23] B. Jiang, W.K. Chan, On the integration of test adequacy: test case prioritization
and statistical fault localization, The 1st International Workshop on Program
Debugging in China (IWPDC 2010), in: Proceedings of the 10th International
Conference on Quality Software (QSIC 2010), IEEE Computer Society Press, Los
Alamitos, CA, 2010, pp. 377-384.

[24] B. Jiang, T.H. Tse, W. Grieskamp, N. Kicillof, Y. Cao, X. Li, Regression testing
process improvement for specification evolution of real-world protocol
software, in: Proceedings of the 10th International Conference on Quality
Software (QSIC 2010), IEEE Computer Society Press, Los Alamitos, CA, 2010, pp.
62–71.

[25] B. Jiang, Z. Zhang, W.K. Chan, T.H. Tse, Adaptive random test case prioritization,
in: Proceedings of the 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2009), IEEE Computer Society Press, Los Alamitos,
CA, 2009, pp. 233–244.

[26] B. Jiang, Z. Zhang, T.H. Tse, T.Y. Chen, How well do test case prioritization
techniques support statistical fault localization, in: Proceedings of the 33rd
Annual International Computer Software and Applications Conference
(COMPSAC 2009), vol. 1, IEEE Computer Society Press, Los Alamitos, CA,
2009, pp. 99-106.

[27] J.A. Jones, M.J. Harrold, Empirical evaluation of the Tarantula automatic fault-
localization technique, in: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), ACM Press, New
York, NY, 2005, pp. 273–282.

[28] J.A. Jones, M.J. Harrold, J. Stasko, Visualization of test information to assist fault
localization, in: Proceedings of the 24th International Conference on Software
Engineering (ICSE 2002), ACM Press, New York, NY, 2002, pp. 467–477.

B. Jiang et al. / Information and Software Technology 54 (2012) 739–758 757

Author's personal copy

[29] I. Leon, W. Masri, A. Podgurski, An empirical evaluation of test case filtering
techniques based on exercising complex information flows, in: Proceedings of
the 27th International Conference on Software Engineering (ICSE 2005), ACM
Press, New York, NY, 2005, pp. 412–421.

[30] S. Li, N. Bian, Z. Chen, D. You, Y. He, A simulation study on some search
algorithms for regression test case prioritization, in: Proceedings of the 10th
International Conference on Quality Software (QSIC 2010), IEEE Computer
Society Press, Los Alamitos, CA, 2010, pp. 72–81.

[31] Z. Li, M. Harman, R.M. Hierons, Search algorithms for regression test case
prioritization, IEEE Transactions on Software Engineering 33 (4) (2007) 225–237.

[32] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, M.I. Jordan, Scalable statistical bug
isolation, in: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2005), ACM Press,
New York, NY, 2005, pp. 15–26.

[33] A.H. Lipkus, A proof of the triangle inequality for the Tanimoto distance,
Journal of Mathematical Chemistry 26 (1) (1999) 263–265.

[34] C. Liu, X. Yan, L. Fei, J. Han, S.P. Midkiff, SOBER: statistical model-based bug
localization, in: Proceedings of the Joint 10th European Software Engineering
Conference and 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC 2005/FSE-13), ACM Press, New York, NY, 2005,
pp. 286–295.

[35] L. Naish, H.J. Lee, K. Ramamohanarao, A model for spectra-based software
diagnosis, ACM Transactions on Software Engineering and Methodology 20 (3)
(2010). Article no. 11.

[36] M. Renieris, S.P. Reiss, Fault localization with nearest neighbor queries, in:
Proceedings of the 18th IEEE International Conference on Automated Software
Engineering (ASE 2003), IEEE Computer Society Press, Los Alamitos, CA, 2003,
pp. 30–39.

[37] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an
empirical study, in: Proceedings of the 15th IEEE International Conference on
Software Maintenance (ICSM 1999), IEEE Computer Society Press, Los
Alamitos, CA, 1999, pp. 179–188.

[38] A. Srivastava, J. Thiagarajan, Effectively prioritizing tests in development
environment, in: Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2002), ACM Press, New
York, NY, 2002, pp. 97–106.

[39] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer, R.S. Roos, TimeAware test suite
prioritization, in: Proceedings of the 2006 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2006), ACM Press, New
York, NY, 2006, pp. 1–12.

[40] W.E. Wong, V. Debroy, B. Choi, A family of code coverage-based heuristics for
effective fault localization, Journal of Systems andSoftware83 (2) (2010) 188–208.

[41] W.E. Wong, J.R. Horgan, S. London, H. Agrawal, A study of effective regression
testing in practice, in: Proceedings of the 8th International Symposium on
Software Reliability Engineering (ISSRE 1997), IEEE Computer Society Press,
Los Alamitos, CA, 1997, pp. 264–274.

[42] S. Yan, Z. Chen, Z. Zhao, C. Zhang, Y. Zhou, A dynamic test cluster sampling
strategy by leveraging execution spectra information, in: Proceedings of the
3rd International Conference on Software Testing, Verification, and Validation
(ICST 2010), IEEE Computer Society Press, Los Alamitos, CA, 2010, pp. 147–154.

[43] I. You, Z. Chen, B. Xu, B. Luo, C. Zhang, An empirical study on the effectiveness
of time-aware test case prioritization techniques, in: Proceedings of the 2011
ACM Symposium on Applied Computing (SAC 2011), ACM Press, New York, NY,
2011.

[44] Y. Yu, J.A. Jones, M.J. Harrold, An empirical study of the effects of test-suite
reduction on fault localization , in: Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), ACM Press, New York, NY,
2008, pp. 201–210.

[45] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, B. Xu, An improved regression test
selection technique by clustering execution profiles, in: Proceedings of the
10th International Conference on Quality Software (QSIC 2010), IEEE
Computer Society Press, Los Alamitos, CA, 2010, pp. 171–179.

[46] L. Zhang, S.-S. Hou, C. Guo, T. Xie, H. Mei, Time-aware test-case prioritization
using integer linear programming, in: Proceedings of the 2009 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2009), ACM
Press, New York, NY, 2009, pp. 213–224.

[47] Z. Zhang, W.K. Chan, T.H. Tse, P. Hu, X. Wang, Is non-parametric hypothesis
testing model robust for statistical fault localization?, Information and
Software Technology 51 (11) (2009) 1573–1585

[48] Z. Zhang, W.K. Chan, T.H. Tse, B. Jiang, X. Wang, Capturing propagation of
infected program states, in: Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC
2009/FSE-17), ACM Press, New York, NY, 2009, pp. 43–52.

[49] Z. Zhang, W.K. Chan, T.H. Tse, Y.T. Yu, P. Hu, Non-parametric statistical fault
localization, Journal of Systems and Software 84 (6) (2011) 885–905.

[50] Z. Zhang, B. Jiang, W.K. Chan, T.H. Tse, X. Wang, Fault localization through
evaluation sequences, Journal of Systems and Software 83 (2) (2010) 174–187.

[51] Z.Q. Zhou, Using coverage information to guide test case selection in adaptive
random testing, The 7th International Workshop on Software Cybernetics
(IWSC 2010), in: Proceedings of the 34th Annual Computer Software and
Applications Conference (COMPSAC 2010), IEEE Computer Society Press, Los
Alamitos, CA, 2010, pp. 208–213.

758 B. Jiang et al. / Information and Software Technology 54 (2012) 739–758

