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Abstract.—The test for model-to-data fitness is a fundamental principle within the statistical sciences. The purpose of such
a test is to assess whether the selected best-fitting model adequately describes the behavior in the data. Despite their broad
application across many areas of statistics, goodness of fit tests for phylogenetic models have received much less attention
than model selection methods in the last decade. At present a number of approaches have been suggested. However, these
are often flawed, with problems ranging from the presence of systematic error in the models themselves to the difficulties
presented by the nature of phylogenetic data. Ultimately these problems lead to an inadequate choice of statistic. This is one
of the main reasons why goodness of fit assessment is often a neglected step within phylogenetic analysis. We argue not
only for the necessity of these goodness of fit measures to test how well the model reflects the data, but additionally for the
need for “useful” tests that explain why the model-to-data fit may be inadequate. Such tests are a critical part of the model
building process, allowing the model to be adapted to provide a better model-to-data fit or to reject a model class outright
due to such an inadequate fit that the intended use of the class may be compromised. Proposed and existing methods
in both the maximum likelihood and Bayesian framework will be discussed here, whilst highlighting their strengths and
limitations for assessing goodness of fit. The final section discusses some critical open statistical problems in goodness of
fit assessment for this field, with the hope of encouraging more research into such a fundamental yet underdeveloped area
of phylogenetic inference. [Bayesian phylogenetics; Goodness of fit; maximum likelihood; molecular phylogenetics; outlier
detection; residual diagnostics.]

Accurately inferring evolutionary relationships heavily
depends on a number of factors. Two of these concern the
quality of data employed and the use of an appropriate
statistical model. Pivotal to this is ensuring the model
not only fits our data, but fits our data well. Poorly
fitting models are an inadequate approximation of the
true underlying evolutionary processes and can lead to
systematic error and unreliable inferences (Kelchner and
Thomas 2006).

Assessing goodness of fit is essential when building
any statistical model. Fit is defined in two forms—relative
and absolute. The relative goodness of fit reflects the
discrepancy between two alternative statistical models,
whereas the absolute goodness of fit portrays the
discrepancy between the selected model and the data
of interest. Both types are fundamentally important to
the statistical model-building process.

Tests to assess the relative goodness of fit have been
discussed intensely in a phylogenetic context (Sullivan
and Joyce 2005; Posada 2001). As a result, there is
a strong and impressive body of work regarding the
identification of the best model from among a set of
given phylogenetic models. Most notably, the software
package jModelTest (Posada 2008; Darriba et al. 2012)
has been used extensively to select the best model class,
with over 9000 citations in the phylogenetic literature.
Other, more recent, methods focus on fitting adequate
mixtures of phylogenetic models to address particular

characteristics of the data, for example, edge rate
variation, gene history variation, or site heterogeneity.
Examples of such methods are PartitionFinder (to select
partition schemes Lanfear et al. 2012) or ModelFinder
(novel ways to fit rate heterogeneity Kalyaanamoorthy
et al. 2017).

Absolute goodness of fit, on the other hand, did not
receive the amount of attention as relative goodness of fit.
The purpose of such tests is to provide the possibility to
reject the best model due to a lack of fit to the data (Navidi
et al. 1991; Reeves 1992; Goldman 1993b; Waddell et al.
2009). Just because our selected model has been deemed
the “best” fit, does not necessarily imply that the model
adequately describes the behavior in the data, or in the
colorful words of Gatesy (2007):

Given the simplicity of most models, it is
possible that model selection in modern
systematics is analogous to an overweight
man shopping in the petites department of a
women’s clothing store. A particular garment
might fit the portly man best, but this does not
imply a good overall fit.

However, the ability to test the adequacy of a model is
only half the problem. Given that we have seen a poor
fit between model and data, it would be of great use to
understand why such a discrepancy has occurred. Or
relating back to the example of Gatesy, given we have
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found the garment does not fit the overweight man well,
can we determine where exactly the garment is poorly
fitting? In the context of phylogenetic models, this would
allow specific insight into reasons behind the lack of fit
to data, such as whether the poor fit is due to a nuisance
parameter (parameter not of immediate interest), or
whether the selected topology is flawed (definitely of
interest). Such statistical tests are not unfamiliar in
the statistical sciences, but difficult to provide within
phylogenetic practice.

Bayesian inference approaches offer a variety of
statistics to assess model-to-data fitness, including
the so-called posterior predictive (PP) tests (Bollback
2002; Foster 2004; Brown 2014b). These tests draw
samples from the posterior distribution and assess the
distribution of a fitness statistic to the data. We will
discuss some of the proposed methods throughout this
review.

Within the maximum likelihood framework the
development of solutions to the same challenge has been
limited. Methods have been proposed before (Goldman
1993a, 1993b), but have been discounted due to lack of
power (Waddell et al. 2009), or due to the lack of residual
analysis tools in the event of rejection (pp. 495–496
Swofford et al. 1996). At present a number of promising
approaches remain. Here we will present available
tools in both the maximum likelihood and Bayesian
frameworks, discussing their pros and cons, before
suggesting some potential paths for improvement. For
the sake of this discussion, we have restricted our
focus to nucleotide models. Considering the reduced
complexity and state space of nucleotide models, it
will enable a clearer understanding of the mechanisms
involved in goodness of fit tests. However, with suitable
development these approaches can then be extended to
other data types.

The need for goodness of fit tools is not a new idea
and has previously been brought to light in reviews
by Sullivan and Joyce (2005) and Kelchner and Thomas
(2006). In this discussion, we wish to extend their ideas by
providing an updated and more detailed insight into the
current leading methods for assessing model adequacy.

This review will address two approaches for assessing
model-to-data fitness. First we will discuss omnibus
tests, tests that assess the overall adequacy of a model
in explaining the data. Such tests usually state whether
a model fits well or not. Next we will discuss residual
diagnostics tools, which may diagnose the type of
violation once an omnibus test has identified lack of
fitness.

GOODNESS OF FIT STATISTICS

Tests assessing the absolute goodness of fit generally
aim to answer whether it is likely or not that an inferred
phylogenetic model θ gave rise to a set of observations
X . In this work we will use θ to denote the phylogenetic
model used for inference. We assume that θ represents
the model acquired after the initial model selection

analysis (see Sullivan and Joyce 2005 for a good review
of models and the model selection methods).

An essential part of the model is the tree topology.
On the one hand, the topology can be fixed and thus
a phylogenetic model is a set of parameters on a
fixed topology. In this case, a goodness-of-fit test tests
the hypothesis that the data come from this specific
topology. On the other hand, we could consider the
topology a free parameter of the model, in which case a
goodness-of-fit test more generally tests the hypothesis
that the data arise on a tree-like topology. In this work,
we choose the latter convention.

The observations are represented as a k×n data
matrix X , where each of the k taxa are represented
by a homologous sequence of length n. Each column
in the data matrix determines an observed character a
on the leaves of the phylogenetic tree. The state set of
nucleotides is denoted as N ={A,C,G,T}, with N k being
the character set, that is the set of possible realizations
one can observe in a column on X .

Absolute goodness of fit tests provide the opportunity
to reject the “best” model (or rather find evidence
against the choice), given that we observe a lack of
fit to the data. This requires the construction of a
suitable hypothesis test. Driven by specific questions,
the hypotheses propose alternative descriptions of
the behavior of the data. To perform such tests, a
comparative statistic is used to quantify the behavior of
the data, and is then used to assess the hypotheses.

General Statistics
In order to assess the goodness of fit, Cressie and

Read (1984) formalized the family of power-divergence
statistics. The two most famous statistics from this
family are the deviance (G) and the Pearson X2 statistic
(X2

P). These statistics have slightly different behavior
towards deviations of individual observations with
Pearson being more sensitive than the deviance (Read
and Cressie 1988, Chapter 6). Therefore, X2

P has the
ability to highlight local lack-of-fitness, while G may
be seen as assessing more global lack of fitness (e.g.,
Waddell 1995). As the number of observed characters
na approaches infinity, however, G will approach X2

P
(Cressie and Read 1984). For our phylogenetic data, these
are defined as

G=F0(X,�)=2
∑

a∈N k

na
(
logna −logma

)
, (1)

X2
P =F1(X,�)=

∑
a∈N k

(
na −ma

)2

ma
=

∑
a∈(X∩N k)

na(na −ma)
ma

,

(2)

where ma is the expected frequency of character a∈N k

under model θ. Under ideal conditions, both statistics
follow a �2

df distribution, with the df corresponding
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to the residual degree of freedom (the difference in
degrees between the fitted model θ and the unrestricted
multinomial model).

The deviance statistic has been studied extensively
in the context of phylogenetic analysis (Navidi et al.
1991; Reeves 1992; Goldman 1993b). In the standard
hypothesis test setting, it is used in a nested hypothesis
which states:

H0 : The data have been generated under the selected

phylogenetic model θ.

H1 : There is no restriction on the model

other than
∑

pi =1.

The statistic measures the cost of fit by selecting a
particular model. In this case, it measures a phylogenetic
model θ over the model of highest entropy, that is the
assumption that the data come from a multinomial
model only showing the observed site patterns a∈
X . Under the multinomial assumption, the associated
maximum likelihood estimates p̂a =na/n are used to
calculate the likelihood.

Both statistics are widely applied across the statistical
sciences, making them a popular tool for assessing
quality of model fit. Due to their popularity, the majority
of statistical software provides an implementation
of these statistics when fitting a model (e.g., the
deviance() function when fitting a linear model
within R).

The most common model-to-data fitness approach
in Bayesian phylogenetic inference is PP testing.
The PP approach creates samples from the posterior
distribution to estimate the distribution of a fitness
statistic conditional on said distribution. Model-to-data
adequacy is then assessed by looking at the location
of the statistic for the original data relative to this
distribution (for an overview of methods Brown 2014b).
PP approaches have been implemented in most Bayesian
phylogenetic packages thus providing the means to test
the fit between model and data. We highlight a few
interesting goodness-of-fit measures here.

Bollback (2001) suggested using the multinomial test
statistic T for the PP assessment, which was later studied
more thoroughly by Bollback (2002). The multinomial
test statistic is given as

T(X)=
⎛
⎝ ∑

a∈X∩Nk

na logna

⎞
⎠−nlogn.

Essentially, this statistic assesses the entropy of the
sample space. To assess model-to-data adequacy one
then calculates the number of times the entropy of the
posterior samples exceeded the entropy of the original
data. However, this approach has been criticised for its
preference of distributions with high posterior variation
(e.g., Lewis et al. 2014). Foster (2004) suggested to use a
Pearson-type statistic instead, and use PP to simulate a

distribution of the X2 statistic, thus extending the work
of Goldman (1993b).

Brown (2014a) used PP approaches to test the impact
of bias on the inference. In this work, the test statistic
has been defined as the difference in entropy of the prior
and the posterior distribution. The size is then assessed
using the PP p-value which is defined as the proportion
of samples in the PP distribution with a test statistic
value less or equal to the observed value. Brown called
his approach phylogenetic plausibility. A result was that
the tree topology was surprisingly robust to even quite
severe biases in branch length estimation.

A Problem of Phylogenetic Data
Aside from the lack of implementation, the use of

the deviance and Pearson X2 within phylogenetics is
not without limitations. A number of studies found
both statistics often suffered from the form of data
usually encountered in phylogenetics, with the data
having a strong effect on their performance. Under ideal
data conditions, both G and X2

P are approximately �2
df

distributed. For the �2 distribution to be appropriate,
a number of assumptions need to be satisfied - a
large sample size, independence between sites, and at
least 80% of characters having an expected count of at
least five, with all characters having an expected count
greater than one (Cochran 1952). However, within the
phylogenetic context most of these assumptions are often
violated.

We know that independence of sites is rarely given
considering the nature and function of DNA. For
instance, RNA and protein-encoding genes provide
an inherent structure, and even noncoding regions
may be subject to secondary structure restrictions.
The assumption of expected counts rarely holds. For
example, given that we have a tree with 10 leaves, we
automatically have 410 =1,048,576 potential characters.
Under the assumption that 80% of these characters need
an expected count of five or more, we can begin to see
how large our data sets are required to be. In practice,
acquiring such a sizeable data set is not always realistic
or feasible. This observation also leads to the question of
adequacy of the multinomial state space.

A study by Goldman (1993b) confirmed the
inadequacy of the �2 distribution. Goldman compared
the �2 distribution with a simulation approach (the
Goldman–Cox test, GC) to evaluate the goodness
of fit by G. The GC test alleviated the dependency
on a known �2 distribution, by simulating samples
under the null models whilst re-estimating parameters
for both models. This obtained a range of plausible
values for G under the null hypothesis (model-to-
data fit is adequate), which was used to determine
whether the observed G from the data indicated an
adequate model-to-data fit. The results using the GC
test confirmed the inadequacy of the distribution, with
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the �2 statistic grossly overestimating the value of G for
most phylogenetic data.

Waddell (1995) highlights a number of possible
reasons for this overestimation. The �2 approximation
requires the necessary degrees of freedom (df ) to
be known. However, estimating the df for a given
phylogenetic model can be problematic, with currently
no confirmed approach to accurately approximate the df
associated with a given topology. For most conventional
tests of relative goodness of fit estimating the df is not
a problem. Model comparison tests share a common
topology, allowing the associated tree df to cancel,
and the numbers of free parameters being simple to
count. However, when dealing with tests for the absolute
goodness of fit, this is not the case. The topology df
remains unknown, causing the df for the fitted model
and null hypothesis to be ambiguous. As the expectation
of the �2 distribution is equivalent to the associated
df , without a suitable estimation of this value, the
estimation for G could be completely inaccurate. This
poor estimation of the df results in a lack of power for
the G statistic when assessed using a �2 distribution
(Waddell 1995).

Waddell (1995) further highlighted the problem
of sparseness in nucleotide data. Alignment data X
frequently include characters that are rarely observed
or not observed at all, with the character space N k

only sparsely sampled. The few characters sampled may
have a strong influence upon the inference, with the
sparseness of the phylogenetic data matrix implying a
lack of power of the test employed (Waddell et al. 2009).
In fact, the low sampling of states means that we actually
deal with zero inflation (lots of unobserved characters
in N k) instead of just sparseness. Taking both factors
into account might improve the performance of these
statistics.

The GC test acknowledges the fact that classic
distributions might not be a good fit if the state space
is difficult to sample, and does not require a known
�2 distribution. However, it needs to be stressed that
not re-estimating all the parameters when sampling
under the null models can have serious issues with
regards to statistical power, so should be applied with
caution (Goldman 1993b). As it stands, p4 (Foster 2004)
is the only available implementation of the GC test.
PAUP* (Swofford 2011) does allow the user to calculate
both the multinomial likelihood and the model-based
likelihood, so with suitable adaptation the GC test
could be performed. In addition, PhyML (Guindon et al.
2010) calculates G but provides no assessment of effect
strength.

A handful of studies have used the GC test
alongside G or X2

P to assess model adequacy for
differing models (Foster 2004; Lanfear and Bromham
2008; Duchêne et al. 2010). A number of these
applications interestingly concern the test for violations
of compositional homogeneity in alignment data. Foster
(2004) used the Pearson X2 statistic alongside the GC test

to investigate whether the composition of the model fits
the composition of the data (model-to-data fitness). Later
work by Ababneh et al. (2006) adapted the Bowker (1948)
test statistic (a measure for matrix symmetry applied to
nucleotides in the data matrix) to use the data in guiding
the choice of a suitable substitution model. This area of
research is relatively unique in its development of model-
fitness tools and provides a useful example of how such
tests are being applied and developed.

Temporal heterogeneity which accommodates
changes in the rate matrix across branches of a tree was
used in Foster (2009), similar to the model allowing a
change in composition over the tree in Foster (2004). In
this case, each branch is assigned its own rate matrix,
reflecting a change in transition patterns across time.
Such models potentially lead to a large increase in
parameters. The more heterogeneity our models permit,
the more the issue of overfitting comes into play. To
address overparameterization when estimating branch-
specific rate matrices, Jayaswal et al. (2011) suggested
a branch classification approach where branches with
similar behavior are grouped and a common rate
matrix estimated. Foster (2004, 2009) restricted the
number of parameters by placing a minimum number
of composition vectors or rate matrices on the tree,
with each vector or rate matrix having the potential to
be assigned to more than one branch. It should also
be noted that overparameterization can be less of a
problem for Bayesian inference, by selecting appropriate
priors for the amount of heterogeneity.

Ripplinger and Sullivan (2010) applied the GC
test and the PP approach proposed by Bollback
(2002) as a model selection feature. Ripplinger and
Sullivan calculated the test statistics (G and multinomial
likelihood, respectively) for a number of substitution
models, and then selected the model with the least
parameters that had not been rejected by the tests. They
found these approaches tend to favor simpler models
than established statistics like AICc or BIC. They also
found that for empirical data, PP is more likely to
reject a model than the GC test, while for simulated
data PP is less likely to reject a model than GC as
long as the substitution model includes the rates-across-
sites component. Note, that the simulated data were
generated under the GTR+I+� model thus giving an
impressive picture of the impact of the � component in
phylogenetic models.

Marginalized Tests
Waddell et al. (2009) suggested the use of marginalized

tests as another approach to assess the absolute goodness
of fit. Marginalized tests group similar characters to
increase the observed frequency of pooled characters.
The marginalization may regard looking at subsets
of taxa or at a simplified version of the data matrix
X , thus decreasing the state space and reducing the
sparseness of the data. The deviance and Pearson X2

statistics are then applied to the subsets before summing
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(as opposed to each individual character under the
traditional approach).

A study by Waddell et al. (2009) compared an
application of the standard deviance statistic with a
marginalized test. The results indicated that whilst
the deviance is considered to be the uniformly
most powerful test (given the data meets certain
conditions as previously discussed), the marginalized
test outperformed it, due to it better accounting for
the sparseness in the data. For a data set knowingly
not suited to the model in question, the deviance
test did not reject the fit of data to the model,
whereas the marginalized test consistently did. In
fact, marginalization enabled the deviance statistic to
regain power (Waddell et al. 2009). The marginalization
even provided an additional strength, with different
marginalizations detecting different deviations from
the fit (Waddell et al. 2009). However, binning data
can often correspond to a loss of information. This is
generally viewed as a negative aspect for a statistical
tool. Nonetheless, Waddell et al.’s study did indicate
the potential behind this approach, but the lack of
any implementation in software prevents an accessible
application of such tests.

Dealing with Ambiguous or Gappy Sites
All of the above methods assume a gap-free and

ambiguity-free alignment, that is all the observed
characters do not have ambiguous nucleotides and there
are no gaps or unsequenced regions. However, this is
seldom the case in practice. The effect of gappy sites
on the phylogenetic inference is not a well understood
problem (Hartmann 2008). The popular protocol is to
simply remove the gappy or ambiguous sites from the
analysis. However, a number of times this has been
found to be problematic for the inference (Loytynoja
2009; Dessimoz and Gil 2010).

How to handle such data is also a key concern
when assessing model adequacy. As Waddell (2005)
pinpoints, removing the data before applying tests (such
as G or X2

P) is often undesirable or impractical, with
much of the data being discarded. As an alternative
approach, Waddell suggested a fit in which missing
or ambiguous characters are considered to share the
likelihood of those characters which are observed in the
alignment. For example, if we observe the ambiguous
character AANC and the alignment also contains the
observed characters AATC and AACC, then the likelihood
of the ambiguous character is simply the sum of these
two characters’ likelihoods. The modified observed and
expected frequencies are then used with the G or X2

P
statistics to assess the absolute fit of data to model.
While this approach is practical it also treats missing and
ambiguous characters as the same, which is problematic.
The latter is generally a sequencing artifact while the
former could also be attributed to a loss event in the
evolutionary history.

The implemented tests have different ways in dealing
with this. P4 will not do the test if the alignment has
gappy or ambiguous sites while PhyML only includes
fully resolved sites in the calculation of the statistics.

METHODS FOR RESIDUAL DIAGNOSTICS

Rejecting a model is relatively uninformative unless
there is supporting information that can direct the
following inference steps (pp. 495–496 Swofford et al.
1996). Given that we have seen a violation in the model-
to-data fit, it would be useful to gain more information
about the nature of this failure. The common approach
in statistical methods is to use residual diagnostic tools as
a second step after the initial model adequacy check.
The term ‘residual diagnostics’ is used in regression
analysis (estimating relationships among variables) and
calculates the difference between the observed and
fitted values. Here we can apply the same logic to our
framework, by looking at specific sites that violate the
model fit. Residual diagnostic tools offer a more detailed
assessment of the model-to-data fit and enable the user
to understand where and how the model shows poor fit
to the data. This can then be used to direct future steps
in the model-fitting process.

We discuss a number of residual diagnostic
approaches that have been proposed for phylogenetic
practice. These use a mixture of quantitative and
qualitative assessment to pinpoint model-to-data fit
violations. It should be noted, that most of the methods
discussed here were introduced to filter data and did not
deal with model fitness directly. The filtering methods
assign a fitness statistic to every site in an alignment
and filters out those sites that exceed a threshold which
corresponds to stability in the inference. For residual
diagnostics the filtering step is inadequate. However,
the fitness statistics employed permit a visualization of
the variability of alignment sites and can highlight sites
and areas within the alignment which may be difficult
to model. The inclusion of filtering approaches here
should be seen from this point of view rather than as
applied.

Likelihood Scores
One way to address areas of poor model-to-data fit is

to identify those columns of the data matrix (observed
characters) that contribute the most to the deviance. The
inadequacy of a selected model is often reflected by large
deviations between the observed and expected (under θ)
character frequencies.

Nguyen et al. (2011) developed a simple approach
to visualize this deviance using essentially a weighting
system. The Misfits approach aims to evaluate the
goodness of fit, through computation of an associated
biologically motivated score relating to these deviations.
The deviations are simply the deviance statistic
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calculated for an individual character a (individual
contribution from Equation 1).

The Misfits method is built upon the acceptance that
the model-to-data fit is never completely accurate; there
is naturally a difference between the expected and
observed character frequencies (residuals). To account
for variation in the data, Nguyen et al. (2011) computed
the simultaneous 95% Gold confidence region for
multivariate proportions (Gold 1963) as

CIGold =pa ±
√

�pa(1−pa)
�

, (3)

where � is the 0.05/�-quantile of the �2
df distribution,

with the degrees of freedom corresponding to the
number of estimated variables in the inferred model
θ (substitution model parameters and number of
branches). The confidence interval corresponds to the
likelihood for character a under the model θ, and creates
a region of acceptable deviations.

Characters are classified as over-represented (D+) when
the observed frequency exceeds the upper bound of the
confidence interval, and as under-represented (D−) when
the observed frequency is below the lower bound of the
confidence region. The Misfits score is then computed by
considering the number of mutations it takes on the tree
to transform instances of over-represented characters
into under-represented characters.

Lower Misfits scores correspond to a situation in which
few additional substitutions are required, suggesting a
more accurate model to data fit. By classifying each
character, the Misfits approach allows specific areas of
model violation to be pinpointed. The method considers
the underlying biology behind the evolutionary process
when attempting to identify outliers. This provides
a strength of the Misfits approach, drawing on both
the biological and statistical theory combined in
phylogenetics.

However, the problem of the Misfits approach lies in
the great disparity between available data and possible
characters. This leads to the common observation that
many more characters are over- rather than under-
represented. In extreme instances all characters may be
over-represented, thus providing no under-represented
characters to transform them to, including characters
not observed. The method would benefit from exploring
how to better handle the unequal under- and over-
representation of characters.

The Misfits approach is undoubtedly an interesting
tool. However, Holland (2013) discussed how the
seemingly “back-to-front” nature of the method,
provides the opposite to how a statistician would
typically assess the goodness of fit. The method firstly
highlights areas of poor fit, before exploring how to
change the data to fit the model. However, such methods
should rather investigate how to change the model to better
fit the data.

In addition, it should be stressed that in its current
form, the Misfits score does not represent an effect size.

The statistic purely is a reflection of the number of
additional substitutions required and is dependent upon
the number of taxa within the inference. In order to be
an effect size, the Misfits score should be standardized.
This enables us to understand the magnitude of the effect
on a general scale that is no longer specific to this data
set only, which is more informative about the scale of
violation between data and model.

Influence Scores
Influence functions have been used extensively

throughout regression analysis to identify outliers of a
fitted model (Rousseeuw and Leroy 1987). Bar-Hen et al.
(2008) adapted this method for phylogenetic models, to
assess the impact of a single site on the likelihood for a
model.

Define X to be the original alignment and X (i) to be the
alignment after removing site i. Let θ denote the model
inferred from X and θ(i) the model inferred from X (i).
To assess the influence of a site i on the model θ, the
influence function Fθ(i) is calculated by

Fθ

(
i
)=(

n−1
)[

logL
(
θ|X)−logL

(
θ(i)|X (i)

)]
, (4)

where L denotes the likelihood. The influence score
represents the change in average likelihood from
removing site i. If Fθ(i) is positive then site i does not
support θ, whilst a negative influence score indicates that
the site does support θ. The method considers sites with
the highest influence scores as outlier sites, due to their
lack of support for θ. The authors further suggested the
use of topological influence indices like interior node
changes as a means to test the topological adequacy of
each site.

Similar to the Misfits approach, the method’s strengths
lie with the ability to identify regions along the
alignment that display poor model fit. Yet unlike the
approach discussed above, the normalized influence
scores do provide a suitable representation of the effect
size. Likelihood influence scores highlight sites that
may disrupt stable inference while topological influence
scores may identify topological stability within an
alignment.

Lewis et al. (2014) introduced a similar approach
that can be considered as a Bayesian analogue to the
influence score—the conditional posterior ordination
(CPO) scores. This cross-validation type approach
calculates the CPO score for each alignment site
and sums the scores to get the log pseudomarginal
likelihood. Similarly to the influence scores, the sitewise
scores give an indication of individual suitability of sites.
In particular, Lewis et al. demonstrated the potential of
this index in showing partition structure in the data. The
authors also proposed to combine insights from multiple
indices to assess model fitness. This stressed the point
that each statistic measures a particular type of goodness
of fit (e.g., phylogenetic signal, site fitness), and therefore
a range of test statistics can assess fitness more generally.
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Filtering Methods
In addition to the methods mentioned above, there

are also a number of measures which were originally
introduced to filter the data. These methods do not
deal with model-to-data fit directly, but do highlight
a particular form of behavior in sites which may be
affecting the fit. The ability to identify such classes
of sites might be useful in developing future residual
diagnostic tools to be applied once a lack of overall
model-to-data fit has been detected. Note that contrary
to the filtering methods, for residual diagnostics such
statistics provide a grouping of all sites permitting to
diagnose behavior in classes of sites rather than only the
most “abnormal.”

Phylogenetic models often accommodate variation in
the rate of evolution across sites (Yang 1994; Lockhart
et al. 1996). Sites with a high rate have been linked
to saturation issues, one of the causes of misleading
phylogenetic signal and long branch attraction (LBA;
Rodríguez-Ezpeleta et al. 2007). LBA incorrectly infers
distantly related taxa to be closely related due to
convergent and parallel evolution, and may result in
estimating an incorrect tree.

Methods of identifying and removing fast-evolving
sites have been proposed and used a number of times for
phylogenetic data (Hirt et al. 1999; Ruiz-Trillo et al. 1999;
Burleigh and Mathews 2004; Rodríguez-Ezpeleta et al.
2007). These studies used the substitution rate scores
directly as a metric to rank the sites. Results indicated a
reduction in nonphylogenetic signal after removing the
fast-evolving sites, leading to a more stable inference.
However, the approach is hindered by the importance
of the topology used. The topology affects the rate
estimation, and thus can heavily influence which sites
are identified as outliers. Using an inaccurate topology
could result in removing sites critical to the inference.

Rodríguez-Ezpeleta et al. (2007) confirmed the strong
influence of topology selection, suggesting the rates
should be averaged over a few best possible topologies,
prior to identifying the fast-evolving sites. A further
suggestion involved grouping taxa and investigating
the within and across group rate variation before
removing the saturated sites (Brinkmann and Philippe
1999; Lopez et al. 1999). However, it should be noted that
caution needs to be taken when specifying the groups
to prevent misspecification within the alignment data.
Both suggestions have shown to alleviate some of the
dependence on the topology. However, the former relies
on the knowledge of a few best possible topologies,
which may not necessarily be known, whilst the latter
increases the computational burden.

Instead of using (group) rates to pinpoint fast-evolving
sites, Pisani (2004) suggests a method built on the
compatibility definition of Le Quesne (1969). As a brief
explanation, “two characters are deemed compatible if
they can be mapped onto the same topology without
homoplasy.” The method calculates an incompatibility
score for each site in the alignment, which is the number
of sites incompatible with i. High incompatibility scores

indicate that the associated site could be saturated,
with most of their phylogenetic information being
lost. Compatibility methods are not dependent on the
topology, providing an advantage over the previously
discussed rate scores (Pisani 2004). For this reason,
Cummins and McInerney (2011) used the compatibility
work of Pisani to identify fast-evolving sites. The
compatibility approach removes the potential problems
of group misspecification within the alignment data,
present in the method of Brinkmann and Philippe (1999)
above. However, there is no clear definition as to when
a site is no longer an outlier and could contain actual
signal to be incorporated by the model.

Goremykin et al. (2010) suggested a different method
to pinpoint saturated sites within an alignment. The
premise was to identify an index that is topology-free
and permits an ordering of sites for filtering. For each site
the method calculates the observed variability distance
(OV distance), which is the proportion of mismatched
sequence pairs over all sequence pairs. The method
then orders the sites according to their OV-distance
in decreasing order and removes sites until a stable
topology is obtained. A study by Zhong et al. (2011)
used the approach to drop the most varied sites from a
chloroplast genome alignment. General results indicated
removing sites based on their OV scores was useful in
pinpointing the fast-evolving sites, resulting in a more
robust tree inference. Similarly to the other filtering
methods, this approach also falls short from the lack of
formal cut-off boundary to determine which sites are
considered fast-evolving.

It should be stressed again that as both the
OV distances and compatibility scores are computed
without any knowledge of the inferred model, they
cannot be used directly to assess model-to-data fitness.
However, the indices could be useful in combination
with other postinference indices (e.g., Misfits) to identify
usual sites.

Selecting a suitable and optimal boundary for
filtering methods is mostly subjective and potentially
problematic. The work of Cummins and McInerney
(2011) acknowledged the limits to stripping data and
removing sites for this reason, but offered the approach
as a useful tool in data exploration. This idea of exploring
the data for specific behavior os sites aligns neatly with
the aims underpinning residual diagnostic tools.

Taxon Sampling
The above methods mainly deal with identifying

sequence sites or characters which are badly explained
by an inferred model. However, model fit can also be
improved by investigating the impact of a taxon on the
fit between model and data. This moves away from
considering the effect of a column in the data matrix X
but rather assesses the impact of the row on the inference.

Mariadassou et al. (2012) defined a measure to assess
the influence of each taxon on the phylogeny—the
taxon influence index (TII). This measure was used
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to detect influential taxa which strongly impacted
the phylogenetic estimates. The taxon influence index
quantifies the effect of removing a taxon on the stability
of the tree inference. Using any inference method, we
define T∗ to be the tree inferred from the complete
alignment. Let Tk be a smaller tree, inferred from the
alignment lacking taxon k. Taxon k is then excluded from
T∗ to produce tree T∗

k . Thus, the TII is defined as the
distance between trees Tk and T∗

k , such that

TII(k)=d(Tk,T
∗
k ). (5)

Small values for the TII indicate that taxon k does not
change tree T, with larger scores correspond to more
influential taxa. This influence can either highlight a
node introducing or resolving bias.

Mariadassou et al. (2012) presented a case study to
demonstrate the performance of the index. The majority
of taxa showed weak influence on the phylogeny.
However, a fraction of taxa were found to be highly
influential, altering the phylogeny even in clades only
loosely related to them. Such an observation can be
seen as a sign of long branch attraction (LBA). Several
methods to detect LBA have been proposed (e.g.,
Bergsten 2005), and it might be worthwhile studying
the performance of TII with those methods. However,
it also needs to be stressed that a common solution to
LBA is to add taxa. Such taxa would most certainly be
identified as influential since they resolve the observed
LBA issue. Thus, one needs to be careful before treating
high influence as detrimental to the inference.

CONCLUSIONS

Despite the substantial development of phylogenetic
inference over the last few decades, one area still remains
very much wanting—the test for goodness of fit between
model and data.

Assessing model-to-data fitness is a critical protocol
within any statistical model building process. It is
imperative for the selected best model to reflect what
the data is telling us, and to reflect it accurately. Or in
the words of Gelman et al. (1995):

We do not like to ask, “Is our model true or
false?,” since probability models in most data
analyses will not be perfectly true. ... The
more relevant question is, “Do the model’s
deficiencies have a noticeable effect on the
substantive inferences?”

This reinforces the importance of whether the model-to-
data fit is indeed adequate or not. An inadequate model
fit would affect any future inferences made based on
this model. Furthermore, given that we determine an
inadequate model-to-data fit, consequent steps need to
be taken to assess where the violations occur, and thus
how to adapt for these.

Combining these ideas, we have the following
approach for assessing a model once it has been
determined as the “best”:

1. Is the overall model-to-data fit adequate or not?

2. Given the model fit is not adequate, where do the
model-to-data fit violations occur?

3. Given that we have found the violations, how do
we then deal with this?

The first stage concerns the use of goodness of
fit statistics to assess the absolute fit between model
and data. In the phylogenetic context a couple
of approaches have been proposed in a maximum
likelihood framework. However, due to the nature
of phylogenetic data, the power-divergence statistics
quickly become unsuitable for our problem. To
alleviate some of these issues, marginalized tests were
introduced. Unfortunately, the lone explicit proposal
(Waddell et al. 2009) uses a complex grouping criteria,
which has prevented any implementation in software,
let alone an efficient and easily applied one. Due to the
nature of phylogenetic data, the use of nonparametric
statistics could alleviate the dependency on predefined
distributions.

Goodness of fit assessment is an area in which
Bayesian methods are ahead of their frequentist
counterpart. Bayesian statistics employs the PP
distribution of states to simulate a distribution of
an adequacy statistic (e.g., Bollback 2002; Foster 2004;
Brown 2014b). The statistics used to assess the fit
resemble the likelihood statistics discussed above.
However, the Bayesian approaches take the uncertainty
in model parameters into account (including the
topology and branch lengths, e.g., Bollback 2002). Foster
(2004) found the multinomial test statistic to be less
than satisfactory and not sensitive enough to detect
inadequate model-to-data fit. In addition, the power of
the multinomial test statistic can be affected by a number
of factors. Most notably the statistic loses power if the
model assumptions are violated and can lead to high
confidence in potentially wrong topologies (Bollback
2002). PP tests have shown promise in addressing the
issue and are constantly adapted and developed to
provide robust results (e.g., Duchêne et al. 2016, 2018).
Finding adequate analogs for maximum likelihood
inference remains an open challenge.

From a practical perspective, rejecting the fit of a
model is only an initial step. In fact, this is only useful if it
provides an indication of how to continue the inference.
In such a case, the need for a set of residual diagnostic
tools becomes critical, leading us to the second stage
when assessing model fit.

Over the years a number of promising approaches
have been proposed; most notably the use of likelihood
and influence scores (Bar-Hen et al. 2008; Nguyen et al.
2011). All the discussed methods (Misfits, OV distance,
influence scores etc.) offer a number of ways to classify
and highlight sites which display behavior deviating
from that expected under the fitted model or deemed
as “noisy.”

However, one common observation is evident
across all residual diagnostic methods—the inconsistent
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perception of what a “noisy” site is. This issue
might arise from the multifaceted idea of noise itself.
For example, sites that have accumulated too many
mutations over time, that is sites that accrue a lot
of changes on any topology, are considered as noisy.
Further, sites might have been subject to horizontal
transfer, that is the model would infer a different splitting
pattern for the site compared to the rest.

From this it becomes apparent that we firstly need
to determine what a good diagnostic method should
discover. In such a situation, it might be important to
determine which noise type is identified by which of
the currently proposed approaches. This could allow
methods to also pinpoint not only which sites may be
causing the inadequate model fit, but also why this might
be the case.

This leads us to the third stage of our process—given
we have found the sites that do not fit our model well,
what do we do then? Standard regression practice asks
for removal of influential sites from the inference but
keeping track of the culprits for further assessment
as they might provide an interesting exception to the
story. In phylogenetics such methods are still needed to
improve in part due to the nature of data and model. As
in many complex models, pinpointing a model violation
to a particular source can be incredibly difficult since
parameters might interact, are hierarchically linked, or
the violation is not modelled. Rather than pinpointing a
source of violation to a single source why not provide a
spectrum assessment (e.g., 70% chance that the violation
is due to horizontal transfer, 20% chance that it is due to
a long branch attraction, and 10% chance that it is simply
due to noise).

In addition, we could think about not only pinpointing
specific observations that display poor model-to-data
fit, but rather the specific parameters. For example,
if the parameter of interest was the topology, then
investigating clades would be beneficial. This is
something already done in bootstrapping approaches
and would be a useful idea to explore when assessing
goodness of fit.

However, the question still remains—how do we
handle observations displaying poor model-to-data
fit? If the sites are resulting in the wrong processes
being determined, then removing them might be the
best solution. However, if the sites are compounding
processes that contain useful signal, these should not
be removed, but rather have their potential behavior
explored. Exploring such sites would allow better
assessment of the behavior and be extremely useful in
modelling the underlying biological processes. However,
at present it is not obvious which steps to take
next. Without an established approach on how to
handle such sites, employing residual diagnostic tools
quickly becomes redundant. Ideally, the development
of informative statistics (both at the omnibus and site
level) would help direct the next steps to take in the
model-building process.

Whilst considering the open challenges in model
adequacy assessment, we should also emphasize the

need for an implementation of these tools. This step
again seems trivial, but unfortunately is one of the major
reasons behind the lack of application for these tests in
phylogenetic practice. Implementation of these tools in
software is fairly rare (both at the omnibus and site level),
causing many methods (i.e., deviance statistic, Misfits,
influence scores, OV distance etc.) to be often overlooked
and ignored within practice. Combining with popular
inference tools such as RAxML (Stamatakis 2014) would
be advantageous. Creating an available implementation
for users across a range of disciplines (statistics, biology,
computer science etc.) would aid in encouraging their
use.

This discussion would be incomplete without
acknowledging we are in the era of genomics, with
the increasing size of phylogenetic data sets. In such
a situation, the feasibility of approaches pinpointing
specific sites quickly comes into question: as the
alignment increases in length, how much impact will
a single site really have on the model fitted? Assessing
the influence of a single site seems not only overkill
for large data but quickly becomes computationally
intensive. This is a consideration that may be useful
when developing new tools in the field.

In the era of genomics, we may also consider that
the unit of influence on model-to-data fit might not
necessarily be a site, but in fact a gene or partition.
Genomics presents an increasing amount of biologically
processes, suggesting the impact of a single site may
no longer be of key interest. A number of people are
currently working on this idea, by considering wider
scale mechanisms in the genome and a more realistic
approach to pinpoint these (Delsuc et al. 2005; Lanfear
et al. 2012).

Further, Zhong et al. (2011) indicate an issue of the
central limit theorem. We have sufficient data to be very
confident about our inference. But this confidence comes
not from low variability in the model but from the sample
size. In these cases, an evaluation of the model variability
(through cross-validation approaches) should be used
to test for systematic errors. Such approaches have been
suggested in the Bayesian framework (e.g., Duchêne et al.
2016) based on the cross-validation work of Lartillot et
al. (2007).

Finally, we need to consider that the more tests we
perform, the more prone we are to find something. In
such cases we could become victim to Type 3 errors,
mistaking statistical significance for practical relevance.
For instance, in Nguyen et al. (2011) the Misfits approach
identifies four mutations to explain the deviation
between a mitochondrial genome alignment and the
model. This was shown to be statistically significant and
spun into a story about functional differences. Still, four
changes in a 16 kb alignment seems not that relevant.
In such a situation it could be more useful to assess
the impact of regions of sites along the alignment, as
opposed to the individual effects. However, this seems
almost like a “running before you walk philosophy,” and
still requires useful fitness tools to be developed (albeit
at the site or region level).
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When looking into the previously proposed methods,
it becomes apparent that adapting goodness of fit tools
to the phylogenetic framework is not an easy process.
Nonetheless, this does not remove the need for such
a critical step within any model building process. For
instance, how useful is a model if we really have no
understanding of how well that model fits our data?
The development of powerful statistics and availability
within an accessible implementation would hopefully
increase the use of goodness of fit procedures in
phylogenetics. An ideal set of such statistics will help
identify missing or unnecessary parameters, visualize
the variability within a sequence alignment, and provide
an overall level of confidence in the aspects of interest
within an inference. Any approach addressing these
points should lead to an increased use of model-to-data
fitness statistics.
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