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Abstract: Ten microbial genomes have been fully se-
quenced to date, and the sequencing of many more ge-
nomes is expected to be completed before the end of the
century. The assignment of function to open reading
frames (ORFs) is progressing, and for some genomes
over 70% of functional assignments have been made.
The majority of the assigned ORFs relate to metabolic
functions. Thus, the complete genetic and biochemical
functions of a number of microbial cells may be soon
available. From a metabolic engineering standpoint,
these developments open a new realm of possibilities.
Metabolic analysis and engineering strategies can now
be built on a sound genomic basis. An important ques-
tion that now arises; how should these tasks be ap-
proached? Flux-balance analysis (FBA) has the potential
to play an important role. It is based on the fundamental
principle of mass conservation. It requires only the stoi-
chiometric matrix, the metabolic demands, and some
strain specific parameters. Importantly, no enzymatic ki-
netic data is required. In this article, we show how the
genomically defined microbial metabolic genotypes can
be analyzed by FBA. Fundamental concepts of metabolic
genotype, metabolic phenotype, metabolic redundancy
and robustness are defined and examples of their use
given. We discuss the advantage of this approach, and
how FBA is expected to find uses in the near future. FBA
is likely to become an important analysis tool for ge-
nomically based approaches to metabolic engineering,
strain design, and development. © 1998 John Wiley & Sons,
Inc. Biotechnol Bioeng 58: 162–169, 1998.
Keywords: bioinformatics; metabolic engineering; ge-
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INTRODUCTION

Considerable interest in the redirection of metabolic fluxes
for medical and industrial purposes has developed in recent
years. As a result, the field of Metabolic Engineering has
been born (Bailey, 1991; Stephanopoulos & Sinskey, 1993;
Stephanopoulos & Vallino, 1991), whose goal is to imple-

ment desirable metabolic behavior in living cells. The en-
gineering approach to analysis and design is to have a math-
ematical or computer model, e.g., a dynamic simulator, of
metabolism that is based on fundamental physicochemical
laws and principles. The metabolic engineer hopes that such
models can be used to systematically ‘‘design’’ a new
strain. The methods of recombinant DNA technology could
then be applied to achieve the desired changes in the geno-
type of the cell of interest. However, much of the experi-
mental work on strain development has followed the ‘‘con-
trolled experiment’’ approach of biology, by introducing or
deleting one or a few genes and determining the effects of
such changes on cell behavior. Using this approach, one
can, in a step-by-step fashion, develop strains that can be
used for bioprocessing. This difference has led to a recent
review in the field to conclude that ‘‘despite the recent surge
of interest in metabolic engineering, a great disparity still
exists between the power of available molecular biological
techniques and the ability to rationally analyze biochemical
networks’’ (Stephanopoulos, 1994).

While the interest in the willful manipulation of cellular
metabolism is growing, a landmark in biological history has
occurred;Haemophilus influenzaebecame the first cell
whose genetic sequence is completely known. The field of
microbial genetics has thus entered a new era where an
increasing number of microbial genomes are being com-
pletely sequenced (Fleischmann, Adams, & White, 1995;
Fraser, Gocayne, & White, 1995; Koonin, Mushegian, &
Rudd, 1996). Currently ten microbial genomes have been
fully sequenced, and this number is growing at a rapid pace
(Table I). The microbial genomes which have been com-
pletely sequenced include:Mycoplasma genitalium, Helico-
bacter pylori, Escherichia coli,and Methanococcus jan-
naschii(Bult, White, & Olsen, 1996). The identification and
functional assignment of the open reading frames (ORFs)
defines the metabolic genotype of a fully sequenced strain.
In the first completely sequenced organisms, the majority of
genes found encode for gene products involved in metabolic
functions (Ouzounis & Casari, 1996).

The impact that these developments have on metabolic
modeling and engineering of microbial strains is potentially
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quite significant. In this article, we explore this impact and
how to meet the challenges that microbial genomics has
presented biochemical and bioengineering.

BIOINFORMATICS AND
MICROBIAL METABOLISM

The biological information pouring out of laboratories
worldwide is rapidly being organized into databases. The
number of biological databases has grown to exceed 100
(Karp, 1996a) and many are available on the World Wide
Web (Botstein & Cherry, 1997). These databases include
information about issues such as DNA sequences, ORF as-
signments, protein structures, and the proteins expressed in
a bacterium under a particular condition.

One important current challenge is to provide for
database interoperability (Karp, 1996a). This allows the
exploration of the function of a gene in the context of its
physiological function, such as an enzyme in intermediary
metabolism. A user could link together the sequence of
an enzyme, the three-dimensional nature of the protein, and
its biochemical function. Interoperability should also allow
for the comparison of the genetic content and the biochemi-
cal functionality of two cells. Thus, within just a few years
one will be able to browse through the genetic and bio-
chemical information available for a variety of species.
Presently, this is possible for some of the fully sequenced
microbial strains (Karp, 1996b), and an effectively complete
database of the genetic and biochemical characteristics are
available at the stroke of a key.

From a metabolic engineering standpoint, the promise of
these databases is important; soon the complete metabolic
genotype of a strain to be engineered may become available.
The ambiguities associated with what metabolic transfor-
mations that take place in a particular cell of interest will be
reduced, if not eliminated. Thus, the scope of a quantitative
systems analysis of microbial metabolism will be defined.
The selection of the methods that are suitable to carry out
such analysis will be chosen based on the biological data
that is at hand, and using these methods, realistic models of
whole cells may now be achievable. How will such models
be formulated?

FLUX BALANCING

In recent years, an approach to the analysis of metabolic
behavior has been developed that relies on balancing meta-
bolic fluxes. This approach is based on the fundamental law
of mass conservation, and the flux-balance method is able to
provide insightful information about the systemic con-
straints placed on metabolic function. Flux-balance analysis
(FBA) is performed under steady-state conditions, and it
requires information only about the stoichiometry of meta-
bolic pathways, metabolic demands, and a few strain spe-
cific parameters. Pathway flux distributions are obtained
using different solution methods, but no information on me-
tabolite concentrations or transient behavior results from
this type analysis.

The fundamental principle underlying FBA is the conser-
vation of mass. A flux balance can be written for each
metabolite (Xi) within a metabolic system to yield the dy-
namic mass balance equations that interconnect the various
metabolites. Equating the rate of accumulation ofXi to its
net rate of production, the dynamic mass balance forXi is:

dXi

dt
= Vsyn− Vdeg− ~Vuse− Vtrans! (1)

where the subscripts,syn and deg refer to the metabolic
synthesis and degradation of metaboliteXi. The uptake
or secretion flux,Vtrans, can be determined experimen-
tally. The growth and maintenance requirements,Vuse, can
be accurately estimated from cellular composition (Ingra-
ham, Maalce, & Neidhardt, 1983; Neidhardt, Ingraham, &
Schaechter, 1990; Varma & Palsson, 1993). Equation (1)
therefore, can be written as:

dXi

dt
= Vsyn− Vdeg− bi (2)

wherebi is the net transport out of our defined metabolic
system. Generally, for a metabolic network that containsm
metabolites andn metabolic fluxes, all the transient material
balances can be represented by a single matrix equation,

dX

dt
= S · v − b (3)

whereX is anm dimensional vector of metabolite amounts
per cell, v is the vector ofn metabolic fluxes,S is the
stoichiometricm × n matrix, andb is the vector of known
metabolic demands. The element Sij is the stoichiometric
coefficient that indicates the amount of theith compound
produced per unit flux of thejth reaction.

The time constants characterizing metabolic transients
are typically very rapid compared to the time constants of
cell growth and process dynamics, and the transient mass
balances can be simplified to only consider the steady-state

Table I. Completely sequenced organisms (TIGR-Web Site, 1997).

Genome size (Mb)

Haemophilus influenzae 1.83
Mycoplasma genitalium 0.58
Methanococcus jannaschii 1.66
Synechocystis sp.(PCC 6803) 3.57
Mycoplasma pneumoniae 0.81
Saccharomyces cerevisiae 13
Escherichia coliK-12 4.60
Helicobacter pylori 1.66
Borrelia burgdorferii 1.30
Archaeoglobus fulgidus 2.20
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behavior. Eliminating the time derivative in Equation (3)
yields,

S z v 4 b (4)

This equation simply states that over long periods of time,
the formation of fluxes of a metabolite must be balanced by
the degradation fluxes. Otherwise, significant amounts of
the metabolite will accumulate inside the metabolic net-
work. Note that this balance equation is formally analogous
to Kirchhoff’s current law used in electrical circuit analysis.

The flux-balance equation is typically under-determined
(m < n), and cannot be solved using Gaussian elimination.
Thus, additional information is needed to solve for all the
metabolic fluxes. Various techniques have been used to
solve this equation. Several researchers have made suffi-
cient measurements of external fluxes to either completely
determine or over-determine the system (Jorgensen,
Nielsen, & Villadsen, 1995; Papoutsakis & Meyer, 1985a;
Papoutsakis & Meyer, 1985b; Papoutsakis, 1984; Pons,
Dussap, Pequignot, & Gros, 1996; Vallino & Stephanopou-
los, 1993). In order for measurements of only the external
fluxes to completely determine the system, additional as-
sumptions are required, such as neglecting certain reactions
occurring within the cell.

For these completely sequenced organisms, cellular me-
tabolism is defined, and the cellular inventory of metabolic
gene products is expressed in the stoichiometric matrix (S).
The metabolic genotype of an organism then is defined by
all the allowable reactions that can occur with a given gene
set. Mathematically, the metabolic capabilities of a meta-
bolic genotype is defined as the null space ofS (Fig. 1). The
null space ofS is typically large, and it represents the flex-
ibility that a cell has in determining the use of its metabolic
capabilities. The measurement of the external fluxes alone is
not sufficient to uniquely determine the full metabolic flux
map.

In addition to the measurement of external fluxes, internal
metabolic fluxes have been measured and used to determine
metabolic flux distributions (Delgado & Liao, 1997; Sauer
et al., 1997; Zupke & Stephanopoulos, 1994, 1995). These
measurements are sufficient to determine subsystems of the
complete metabolic genotype, and frequently this is ad-
equate to answer the desired questions. However, the mea-
surement of internal fluxes is not always practical, and these
measurements can only allow for the determination of the
metabolic fluxes in subsystems of the metabolic network.

The measurement of metabolic fluxes is thus important to
determine how a cell chooses to use its metabolism under a
given condition. Because such measurements are difficult
and not generally available, alternative approaches that can
be used to explore the capabilities of a metabolic genotype
become important. The metabolic capabilities of an organ-
ism can be explored using linear programming (LP). The
application of LP to metabolic systems has recently been
reviewed (Bonarius, Schmid, & Tramper, 1997; Varma &
Palsson, 1994a). Linear Programming has been used to de-
termine a number of metabolic functions (Table II), includ-

ing the biochemical production capabilities and calculate
maximum yields, the population stability of genetically en-
gineered strains, prediction of metabolic responses to oxy-
gen availability, and to describe cellular behavior in batch,
fed-batch, and continuous culture (Varma & Palsson,
1994b) (Table II). Based on these studies, it has been hy-
pothesized that metabolism operates in a stoichiometrically
optimal fashion, and that its behavior in wild-type strains
can be predicted based on the metabolic genotype.

Thus, with the availability of complete genetic sequences,
the fundamental questions regarding the metabolic reper-
toire of a cell have been answered, and metabolic engineer-
ing techniques can be applied to these completely se-
quenced organisms to generate complete models of single
cells. This opens the possibility to further improve industrial
processes and, in a broader sense, broaden the understand-
ing of cellular metabolic physiology. The outline of the
process that must integrate microbial genomics, metabolic
biochemistry, strain specific information, and methods of
systems science are outlined in Figure 2. How the process
takes place is illustrated via the following example.

Figure 1. A schematic illustration of the solution domain that is defined
by flux balance constraints. The domain illustrated has been called the
metabolic genotype,because it represents all possible flux distributions
with the set of metabolic enzymes given, whereas a specific solution has
been called themetabolic phenotype,because it represents a particular flux
distribution occurring under a defined set of conditions (Varma & Palsson,
1994a). The assessment of the metabolic flexibility in the use of this
domain leads to the indicated definitions of redundancy and robustness.
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EXAMPLE: FLEXIBILITY IN ESCHERICHIA COLI
CENTRAL METABOLISM

Escherichia coliis arguably the best-studied microorgan-
ism. Additionally, the complete genetic sequence for the
K-12 strain has recently been established (TIGR-Web Site,
1997). With such extensive knowledge regardingE. coli, it
has served as a model organism for many studies. A ge-
nomically complete stoichiometric model forE. coli has
been constructed. The model consists of 594 reactions and
transport process that involve 334 metabolites. Using this
model, the flexibility thatE. coli has in metabolic flux dis-
tributions was examined during growth on glucose. Meta-
bolic flexibility is the manifestation of two principal prop-
erties: redundancy and robustness (Fig. 1).

Figure 3A shows the metabolic flux distribution for the
complete gene set present inE. coli for maximal biomass
yield on glucose. The computed value for biomass yield
(0.489 g DW/g glucose) compares quantitatively with ex-
perimental data. The ability ofE. coli to respond to the loss
of an enzymatic function (through gene mutation or inhibi-
tion of activity) can be assessed by removing a gene from
the basic gene set. Figures 3B and C show the optimal
metabolic flux distribution when thesucAgene or thesdh
gene is removed from the basic gene set, respectively. The

sucA gene codes for an essential component of the 2-
oxoglutarate dehydrogenase complex, and thesdh gene
codes for the succinate dehydrogenase enzyme.

A mutant defective in thesdh gene product has been
shown to be able to grow on glucose minimal medium
(Creaghan & Guest, 1978). The in silico predicted meta-
bolic flux distribution for optimal biomass synthesis for
such a mutant is shown in Figure 3B. The energy needs of
this mutant are greatly increased, and for optimal biomass
synthesis, the pentose phosphate pathway must support
large fluxes to generate redox potential to be used in energy
generation.

Figure 3C shows the in silico metabolic flux distribution
for maximal biomass synthesis in asucA mutant. The in
silico analysis shows that the ability of thesucAmutant to
synthesize biomass is nearly equivalent to the ability of the
complete gene set. Experiment results have shown that mu-
tants in thesucAgene are able to grow anaerobically on
glucose, but unable to grow aerobically. However, rever-
tants arise that inactivate thesdhgene product and are able
to grow aerobically on glucose minimal medium (Creaghan
& Guest, 1978). Figure 3D shows the in silico predicted
metabolic flux distribution for thissdh sucAdouble mutant.

This example shows the stoichiometric redundancy in
central metabolism under the conditions considered. The
metabolic network has the stoichiometric flexibility to re-
distribute its metabolic fluxes with remarkably little change
in its ability to support biomass synthesis, even if faced with
the loss of key enzymes.

The other key metabolic property that leads to metabolic
flexibility is robustness. Robustness can be defined as the
ability of the metabolic network to adjust to decreased
fluxes through a particular enzyme without significant
changes in overall metabolic function (Fig. 1). Figure 4
shows how the biomass yield will be effected by decreasing
the activity of the succinate dehydrogenase enzyme. The
results show how the activity of this enzyme can be signifi-
cantly reduced without affecting the organisms ability to
support biomass synthesis. The results also show how the
robustness is decreased and flexibility is lost once the basic
gene set is changed.

Figure 2. A schematic representing the process of formulating genomi-
cally metabolic models for microorganisms.

Table II. Questions that can be addressed using flux-balance analysis.

Question Objective Reference

What are the biochemical production
capabilities?

Maximize metabolite product Varma, Boesch, & Palsson, 1993

What is the maximal growth rate and
biomass yield?

Maximize growth rate Varma & Palsson, 1993; Varma & Palsson,
1994b

How efficiently can metabolism channel
metabolites through the network?

Minimize the Euclidean norm Bonarius et al., 1996

How energetically efficient can metabolism
operate?

Minimize ATP production or minimize
nutrient uptake

Majewski & Domach, 1990; Savinell &
Palsson, 1992; Fell & Small, 1986

What is the tradeoff between biomass
production and metabolite
overproduction?

Maximize biomass production for a given
metabolite production

Varma et al., 1993
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THE FUTURE OF FLUX-BALANCE ANALYSIS

As more organisms become fully sequenced and all of the
components of their metabolic machinery are characterized,
the utilization of FBA for organism-specific analysis and
the determination of metabolic phenotypes is sure to grow.
This capability will create the need for organized data com-
pilation so as to accurately determine the net transport of
metabolites out of the defined metabolic system in organism
specific cases, that is defining theb vector. Uptake rates,
secretion rates, and other related cellular characteristics will
need to be determined and compiled into online organism-
specific databases providing all of the necessary informa-
tion to perform FBA for a particular organism. Together,
FBA and genomics will aid in the understanding of the

genotype-phenotype relationship and elucidation of the un-
derlying interconnectivity which determine this relation-
ship. Perhaps, the greatest asset of FBA is its sole reliance
on stoichiometric characteristics and successful neglect of
kinetic parameters of the system in question. However, the
stoichiometry of the metabolic network does not uniquely
specify the fluxes through the cell’s pathways, because there
is a plurality of feasible solutions in the under-determined
cases. The particular flux distribution chosen by the cells is
a function of regulatory mechanisms within the cell that
determine the kinetic characteristics of cellular enzymes as
well as enzyme expression. Thus, the flux-balance con-
straints placed upon a metabolic system by its stoichiometry
define a wider limit of metabolic behavior. These stoichio-

Figure 3. Re-routing of metabolic fluxes when enzyme function is lost.A. Flux distribution for the basic gene set. Biomass yield is 0.489 g DW/g glucose.
B. Flux distribution for maximal biomass yield forsdhmutant. Biomass yield is 0.476 g DW/g glucose.C. Flux distribution for maximal biomass yield
for sucAmutant. Biomass yield is 0.489 g DW/g glucose.D. Flux distribution forsdh sucAdouble mutant. Biomass yield is 0.476 g DW/g glucose. The
solid lines represent enzymes that are being utilized with the corresponding flux value noted. The fluxes are relative to the glucose uptake rate (10.5 mmol
glucose/h/g DW) (Varma & Palsson, 1994b). The gray lines represent enzymes that are not being utilized.
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metrically set limits are further narrowed by the kinetic and
regulatory function of metabolic enzymes. In some cases,
computational or in silico results of FBA are in disagree-
ment with experimental data. Our experience shows that
these discrepancies can often be accounted for when known
regulatory loops are considered. Thus, a future challenge to
FBA will be to incorporate methods that account for known
regulation of gene expression.

‘‘Cells obey the laws of [physics and] chemistry’’ (Wat-
son, 1972), to which we humbly add, that includes conser-
vation of mass as well. Based on this fundamental rationale,
FBA has been developed under the assumption that meta-
bolic transients are sufficiently rapid to allow the imposition
of the steady-state assumption. This line of reasoning leads
to the development of the basic flux-balance equations.

Given the limited amount of information that is needed
for FBA and the growing genomic databases from which
some of this information can be derived, it seems quite
likely that this approach to the analysis of metabolism will
expand in scope, and grow in its application to metabolic
networks of practical importance.

MODAL ANALYSIS

Flux-balance analysis will define the boundaries of possible
flux distributions achievable with a defined basic gene set.
However, FBA cannot be used to determine the dynamics of
metabolic behavior within these boundaries. Each bio-
chemical event occurring within a living cell proceeds at a
characteristic rate. Each of the individual events contributes
to the overall response. The interaction of all the events
leads to systemic motion on several time scales, which are
usually distributed over several orders of magnitude. An
approach developed in the mid-1980s allows for the decom-
position of dynamic systems into dynamically independent
systems (or modes) that move on qualitatively different time
scales. This method, known as modal analysis, allows for

the incorporation of order of magnitude dynamic informa-
tion. This technique has been applied to dynamic models of
metabolism (Palsson, Joshi, & Ozturk, 1987), kinetic mod-
els of enzyme action (Palsson, 1987; Palsson, Jamier, &
Lightfoot, 1984; Palsson & Lightfoot, 1984; Palsson, Pal-
sson, & Lightfoot, 1985), complex bacterial growth models
(Joshi & Palsson, 1987; Palsson & Joshi, 1987), and plas-
mid replication (Keasling & Palsson, 1989a & b). As evi-
denced by numerous examples, modal analysis provides us
with a useful method for the analysis and conceptualization
of metabolic dynamics.

Unexpectedly, the dynamically independent modes
proved to contain some very insightful information. When
applied to the Michaelis-Menten mechanism, modal analy-
sis demonstrated the quasi-equilibrium and quasi-steady-
state assumptions (Palsson, 1987; Palsson & Lightfoot,
1984). When applied to a complex growth model ofE. coli,
modal analysis lead to a dramatic model simplification by
reducing the description of the growth process to the growth
of the three pools of macromolecules (Joshi & Palsson,
1987; Palsson & Joshi, 1987).

Perhaps most importantly, modal analysis of red blood
cell metabolism (Joshi & Palsson, 1989; Palsson et al.,
1987) lead to the discovery of metabolic pools that had
direct metabolic physiological significance. These pools in-
cluded: (1) the adenosine moiety (carrier of phosphate
bonds), (2) the high energy phosphate bond on the adeno-
sines, (3) the high energy bonds on the glycolytic interme-
diates, and (4) the important 2,3 diphosphoglycerol regula-
tor of hemoglobin binding to oxygen. Each pool moved on
one or more time scales. Pool 1 moved on a 2.5 d time scale,
pools 2 and 3 on a 45 min time scale, and pool 4 moved on
a 12 h time scale. All have physiological significance and
correspond to experimental observations; the overall energy
charge moves on the order of 1 h, oxygen binding to he-
moglobin on the order of 12 h, and the loss of the adenosine
carrier moves on the order of a few days.

Thus, modal analysis reveals an interesting (metabolic)
function vs. (temporal) structure relationship in red blood
cell metabolism. The results of these analyses suggest that
only approximate kinetic information with precise stoichi-
ometry suffices to set the elements of dynamic pool forma-
tion. Therefore, it might be possible to combine FBA and
approximate enzyme kinetic information to analyze the ba-
sic modalities of metabolic dynamics.

CONCLUSIONS

Biotechnology is about to enter a new era. An era in which
bioinformatics will lead to the discovery of biological
‘‘rules’’ and ‘‘principles’’ upon which design of biological
systems will rely. To accomplish this goal, we must com-
plete the analysis of the hierarchical genetics-to-physiology
relationship. This accomplishment will rely on the employ-
ment of engineering methods for operation and design of
integrated systems, of which cells are spectacularly elabo-

Figure 4. Robustness in metabolism when enzyme function is attenuated.
Maximal biomass yields for growth on glucose during restricted flux
through the sdh gene product for the basic gene set (thick line), and for the
sucA mutant (thin line). The allowable flux through the enzyme was re-
duced from the value that allowed for maximal biomass synthesis.

EDWARDS AND PALSSON: METABOLIC ENGINEERING AND BIOINFORMATICS 167



rate examples. In the process of applying these methods,
key features of biological systems, such as physiological
behavior and change through evolution, must be given pri-
mary consideration.

Metabolic engineering, in particular, is likely to be at the
forefront of these developments. This expectation is based
on the fact that the fundamentals of metabolism are well
known, complete genetic information is now available for
microbial genomes, the capability to change the genomic
content of bacteria almost at will is at hand, and the methods
for metabolic analysis are being developed. The ability to
design bacteria based on biological principles and alteration
of underlying genetic components is likely to lead to the
realization of the potential that metabolic engineering holds.

Many of the ideas and developments presented here were a result
of Bernhard O. Palsson’s stay at the Biotechnology Department
at the Danish Technical University in 1996. Many thanks to
Professors John Villadsen and Jens Nielsen at the DTU, and to
Ramprasad Ramakrishna and Christophe Schilling for preparing
the figures and proofreading the manuscript.
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