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Gravitational waves from binary neutron stars associated with short gamma-ray bursts have drawn considerable attention due to

their prospect in cosmology. For such events, the sky locations of sources can be pinpointed with techniques such as identifying

the host galaxies. However, the cosmological applications of these events still suffer from the problem of degeneracy between

luminosity distance and inclination angle. To address this issue, a technique was proposed in previous study, i.e., using the

collimation property of short gamma-ray bursts. Based on the observations, we assume that the cosine of inclination follows a

Gaussian distribution, which may act as a prior in the Bayes analysis to break the degeneracy. This paper investigates the effects

of different Gaussian priors and detector configurations on distance measurement and cosmological research. We first derive a

simplified Fisher information matrix for demonstration, and then conduct quantitative analyses via simulation. By varying the

number of third-generation detectors and the scale of prior, we generate four catalogs of 1000 events. It is shown that, in the

same detecting period, a network of detectors can recognize more and farther events than a single detector. Besides, adopting

tighter prior and employing multiple detectors both decrease the error of luminosity distance. Also considered is the performance

of a widely adopted formula in the error budget, which turns out to be a conservative choice in each case. As for cosmological

applications, for the ΛCDM model, 500, 200, 600, and 300 events are required for the four configurations to achieve 1% H0

accuracy. With all 1000 events in each catalog, H0 and Ωm can be constrained to (0.66%, 0.37%, 0.76%, 0.49%), and (0.010,

0.006, 0.013, 0.010), respectively. The results of the Gaussian process also show that the gravitational wave standard siren can

serve as a probe of cosmology at high redshifts.
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1 Introduction

Ever since the first observation of gravitational wave

(GW) emitted by binary neutron star (BNS), known as

GW170817 [1], and the coincident short gamma-ray burst

*Corresponding author (email: lxxu@dlut.edu.cn)

(SGRB) event GRB170817A [2], the method of using gravi-

tational wave standard siren (GWSS) [3] together with elec-

tromagnetic (EM) counterpart [4] to study cosmology has

come into reality. The GWs from compact binaries provide

direct measurements of the sources’ luminosity distances.

The redshift of a GW source can be independently obtained

via extra information from EM counterparts [5] or with sta-
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tistical methods, such as the dark siren [6-8]. Among var-

ious EM counterparts, SGRB, which is usually associated

with BNS, appears especially useful. By identifying the host

galaxy of SGRB, it is possible to determine the redshift and

sky position of a GW source at the same time. Moreover,

the collimation property of SGRB can also give a clue to the

source’s orientation. Although GW sources of other types

are also reported possessing possible counterparts [9-12], we

are particularly interested in the cosmological applications of

BNS-SGRB events.

The second-generation GW detectors, e.g., advanced

Laser Interferometer Gravitational-Wave Observatory

(LIGO)-Hanford, advanced LIGO-Livingston, advanced

Virgo, Kagra, and LIGO India, will soon operate with target

sensitivity. Meanwhile, ground-based third-generation (3G)

GW detectors, such as the Einstein Telescope (ET) in Eu-

rope [13, 14] and Cosmic Explorer (CE) [15, 16] in the US,

as well as space interferometers like Tianqin in China, are

also in the design phase. One of the key advantages of the

3G GW detectors is the extended sensitivity at low frequen-

cies, which increases the detecting period of a single BNS

event to several hours. Consequently, the time dependence

of the detector tensor would become significant, and even

an individual detector could be effectively treated as a net-

work [17, 18]. With the improvement in sensitivity and com-

pleteness of the network, we can reasonably expect GWSS to

become a powerful tool for cosmology, comparable to other

probes, such as the cosmic microwave background or Type

Ia supernova (SN) in the era of 3G GW detectors. Ref. [19]

offers an introduction to ET’s detection capabilities as well

as potential astrophysical and cosmological applications in

detail.

The cosmological applications of GW signals rely on de-

termining source parameters, especially the luminosity dis-

tance. Intrinsic parameters, such as the component masses,

can be measured with exquisite accuracy from the phase of

GW [20]. In the presence of counterparts such as SGRB, it

is possible to precisely probe the sky position of the source

by identifying the host galaxy. Unfortunately, since lumi-

nosity distance degenerates with the inclination angle, using

GWSS as an absolute distance probe requires a mechanism to

break the degeneracy [21]. Employing a network of detectors

contributes to decreasing the uncertainty of distance [22]. In

recent years, a customary practice is to neglect the distance-

inclination correlation at the first place and account for the

influence of correlation by multiplying a factor of 2 [23]. We

argue that the validity of this method should be evaluated by

quantitative analysis.

Several recent studies have shown that information on

SGRB signals may help break the degeneracy. The authors

of ref. [24] applied a Bayesian framework to 1000 simu-

lated joint detections by advanced LIGO and advanced Virgo

to demonstrate that combined SGRB and GW observations

could improve the estimations of progenitor distance and in-

clination angle. Besides, investigated in ref. [25] is the role

of EM measurement in the analysis of GW data to improve

the precision of luminosity distance, and hence that of the

Hubble constant. This approach was tested on GW170817

and simulated events observed by the HLV and HLVJI net-

works. Another demonstration of the idea can be found in ref.

[26]. Based on these pioneering studies, our research is ded-

icated to investigating how knowledge of SGRB affect the

measurement of luminosity distance, and its further influ-

ence on cosmology, with both model-dependent and model-

independent methods.

In this paper, we adopt a method inspired by refs. [21,

24, 25]. To solve the problem of degeneracy, we employ the

propertie of SGRB in the form of a Gaussian prior on the

inclination angle. The posterior distribution of parameters is

then calculated using the Fisher information matrix (FIM). In

the simplified regime where there is only one stationary in-

terferometer, the FIM of luminosity distance and inclination

can be analytically deduced, giving intuitive explanations to

the problem of degeneracy and how it is broken by the prior.

By varying the number of 3G GW detectors and the scale of

prior, four catalogs of GW events are simulated to test the

abovementioned pipeline of parameter estimation.

We give a detailed description of our methods in sect. 2,

including the detector response of 3G GW detectors, the ma-

nipulations of FIM based on SGRB prior, and the settings of

simulations. Presented in sect. 3 is the error analysis of simu-

lated GW catalogs, followed by the application of mock data

to the ΛCDM model and Gaussian process (GP). We further

study the effects of altering the form of prior and star for-

mation rate (SFR) model in sect. 4. The concluding remarks

are given in sect. 5. In this paper, we adopt the natural units

G = c = 1.

2 Methodology

2.1 Gravitational wave detector response

The detector response of GWs from coalescing compact bi-

nary is briefly summarized in this section. We calculate the

coefficients of vectors and tensors with respect to an imagi-

nary geocentric frame. Given a binary system at sky position

n̂ = n̂ (θ, φ) with the orientation of the angular momentum L̂,

a pair of axes can be constructed as follows:

X̂ =
n̂× L̂

|n̂× L̂|
, Ŷ = − n̂× X̂

|n̂× X̂|
, (1)
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where n̂, L̂ are both unit vectors, and we define the inclina-

tion angle as ι = arccos
(

n̂ · L̂
)

. The pair {X̂, Ŷ} spans the

projected orbital plane orthogonal to n̂, where X̂ and Ŷ are

along the major and minor axes, respectively. By denoting

the angle between X̂ and the orbit’s line of nodes as the polar-

ization angle ψ, the coefficients of X̂ and Ŷ can be explicitly

calculated [27]. The GW tensor in transverse traceless (TT)

gauge is the sum of two polarizations

hTT(t) = h+(t)e+ + h×(t)e×, (2)

where e+,× are the basis tensors of polarization, defined as:

e+ = X̂ ⊗ X̂ − Ŷ ⊗ Ŷ, e× = X̂ ⊗ Ŷ + Ŷ ⊗ X̂. (3)

Under incoming GW, the output of a ground-based Michel-

son interferometer (labeled I) is a timeseries:

hI(t) =
∑

i j

hTT
i j (t)DI,i j(t), (4)

where the detector tensor of an interferometer with arms l̂

and m̂ is DI =
(

l̂ ⊗ l̂ − m̂⊗ m̂
)

/2, and the time-dependence

of DI comes from the rotation of the Earth. For simplicity,

we assume that the Earth is a perfect sphere with radius R

and rotational angular velocity Ω. For an interferometer at

r̂ = r̂(π/2 − φI , λI = λI0 + Ωt) (λI0 and φI are the east longi-

tude and north latitude, respectively), whose l̂ arm is oriented

at angle γI north of east and m̂ arm at γI + ζI , the unit vectors

l̂, m̂ can be expressed as:

l̂ = cos γIe
E
I + sin γIe

N
I ,

m̂ = cos(γI + ζI)e
E
I + sin(γI + ζI)e

N
I ,

(5)

where eE
I

and eN
I

are the unit vectors pointing to the east and

north on the Earth’s surface. Combining eqs. (2) and (4), the

time-domain detector response reads

hI(t) = h+(t)F+I (t) + h×(t)F×I (t), (6)

where F
+,×
I
= Σi jDI,i je

+,×
i j

are the antenna pattern functions.

A coalescing BNS system is characterized by component

mass (m1,m2), luminosity distance dL, time and phase of coa-

lescence (tc, φc); thus, the mass ratio is η = m1m2/(m1+m2)2,

and the redshifted chirp mass isMc = (1 + z)(m1 + m2)η3/5.

The orbital frequency varies negligibly over a single GW

cycle during the inspiral section of BNS coalescence, which

makes it possible to compute the Fourier transform of hI with

the stationary phase approximation [17]. In this paper, we

adopt the restricted post-Newtonian (PN) approximation and

calculate the waveform to the 3.5 PN order [17]:

h̃I( f ) = AQI f −7/6 exp[i(2π f tc − π/4 + 2Ψ( f /2)

− φI,(2,0) + 2π f n̂ · r̂)], (7)

where the 2π f n̂ · r̂ term is included to account for the time

of GW propagating from the Earth’s center to the detector.

Other terms are defined as follows:

A =

√

5π

96
π
−7/6M5/6

c d−1
L , (8)

QI =

√

(1 + cos2ι)2(F+
I

)2 + 4cos2ι(F×
I

)2, (9)

Ψ( f ) = −φc +
3

256η

7
∑

i=0

ψi(2πM f )i/3, (10)

φI,(2,0) = tan−1

[

−
2cosιF×

I

(1 + cos2ι)F+
I

]

, (11)

where dL and ι are the luminosity distance and inclination

angle, respectively, and M represents the redshifted total

mass, defined as M = (1 + z)(m1 + m2). Detailed expres-

sions for the PN coefficients ψi can be found in ref. [28].

Notably, the time-dependence of F
+,×
I

should be converted

to frequency-dependence through F
+,×
I

( f ) = F
+,×
I

(t f ) where

t f = tc − (5/256)M−5/3
c (π f )−8/3. This principle also applies

to r̂.

Three 3G detectors will be considered in the following re-

search: ET in Europe, CE in Idaho, USA, and an assumed

CE-like detector in New South Wales, Australia. The param-

eters {λI0, φI , γI , ζI} are listed in Table III of ref. [29] and Ta-

ble 1 of this paper. Besides, we choose the sensitivity curves

of ET and CE as ET-D and CE2-40-CBO, whose definitions

can be found in ref. [29]. We denote the network of ET and

two CE-like detectors as ET + CE.

2.2 Fisher information matrix

The detector response of GW entirely depends on nine pa-

rameters: {tc, φc, η,Mc, θ, φ, ψ, ι, dL}. Alternatively, one can

use GW signal to constrain these parameters, among which

we are particularly interested in dL. Suppose that we have a

set of observational data D and a model H with N parameters

dubbed λ. According to the Bayesian theorem, the posterior

of λ is

p (λ|D,H) =
p (D|λ,H) p (λ|H)

p (D|H)
, (12)

where p (D|λ,H) denotes the likelihood function, and p (λ|H)

is the prior. The normalization factor p (D|H) can be

Table 1 Configurations of the 3G gravitational wave detectors, includ-

ing the longitudes λI0, latitudes φI , orientations γI , and angles between two

arms ζI . All angles are in radians. The locations of detectors do not represent

candidates under active consideration

Detector λI0 φI γI ζI

ET 0.183338 0.761512 2.802430 π/3

CE (USA) –1.969170 0.764918 0 π/2

CE (AUS) 2.530730 –0.593412 0.785398 π/2
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calculated by requiring
∫

dN
λp (λ|D,H) = 1. If we choose

flat priors on all parameters, then the posterior is proportional

to the likelihood function.

In general, the results of full Bayesian analysis are more

precise and rigorous than those of FIM, and the Bayesian

method is already adopted in topics such as GWSS [30] and

dark siren. While, it has been shown that the results of FIM

agree with sophisticated Bayesian parameter estimation in

the condition of high signal-to-noise ratio (SNR) [31, 32],

which, as will be seen later, is always satisfied in our sim-

ulation. The implementations of FIM in the context of GW

parameter estimation can be found in recent research such as

refs. [33-35]. More importantly, we are especially concerned

about the relationship between luminosity distance and incli-

nation, and the simplified FIM of these two parameters can

provide intuitive explanations to the problem of degeneracy

and how it is broken by the prior. Therefore, in this paper,

we will implement FIM as the primary approach of parame-

ter estimation.

Following ref. [22], the joint posterior distribution of pa-

rameters can be approximated by a multidimensional Gaus-

sian form:

p (Δλ) ∝ exp

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1

2

∑

i j

Δλi Γi jΔλ j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (13)

where

Γi j =

Nd
∑

I

ΓI,i j =

Nd
∑

I

(

∂h̃I

∂λi

∂h̃I

∂λi

)

(14)

is the FIM of a detector network comprising Nd interferome-

ters (Nd = 3 for ET, Nd = 5 for ET + CE) and Δλ represent

the deviations of λ to their “true” values. The inner product

of any two functions ã( f ) and b̃( f ) is

(

ã b̃
)

= 4ℜ
[∫ fupper

flower

d f
ã∗( f )b̃( f )

S h,I( f )

]

, (15)

S h,I( f ) being the one-sided noise power spectrum density

(PSD) of the Ith detector. We set flower = 1 Hz and fupper =

2 fLSO = 1/(63/2
πM), sufficient to cover the inspiral section

of BNS coalescence, where M = (1 + z)(m1 + m2) is the

redshifted total mass (see refs. [36-38] for the PSDs of ET

and CE). We will find it convenient to give the definition

of SNR:

ρ =

√

∑

ρ2
I
=

√

∑

(h̃I |h̃I). (16)

According to eq. (7),

ρ2
I =

5M5/3
c

24π4/3d2
L

∫ fupper

flower

Q2
I
d f

f 7/3S h,I( f )
. (17)

Once we have Γi j, it is straightforward to evaluate the ac-

curacies of parameters, characterized by the covariant ma-

trix Σ = Γ−1. Thus, the root-mean-square (RMS) error of λi

is σΔλi
=
√
Σii, and the covariance between two parameters

(

λi, λ j

)

is ci j = Σi j/
√

ΣiiΣ j j.

For each BNS-SGRB event, the sky position (θ, φ) of the

GW source can be pinpointed by techniques such as identi-

fying the host galaxy. Moreover, the mock data challenge of

the 3G GW detector [39] indicates that the mass parameters

can be constrained to great accuracy. Since our interest is

on the determination of luminosity distance, parameters such

as tc and φc, which only appear in the expression of phase,

have negligible impact. These considerations leave (ψ, ι, dL)

to be determined. Further investigations on the parameter

space [21,22,40] have shown that the correlation between dL

and ι is overwhelmingly intensive; thus, we focus only on the

covariant matrix of dL and ι and assume that other parameters

are perfectly constrained.

It then comes down to calculating the derivatives of h̃I( f ).

Below are some relevant expressions, and the derivatives

with respect to other parameters can be found in [41, 42]:

∂ ln h̃I

∂dL

= − 1

dL

, (18)

∂ ln h̃I

∂v
=

1

QI

∂QI

∂v
− i
∂φI,(2,0)

∂v

=
2v

(

1 + v2
) (

F+
I

)2
+ 4v

(

F×
I

)2

Q2
I

+ i
2
(

1 − v2
)

F+
I

F×
I

Q2
I

≡ v1,I + iv2,I , (19)

where we have replaced the parameter ι by v = cos ι for

convenience, and the real and imaginary parts of ∂ ln h̃I/∂v

are abbreviated as v1,I and v2,I , respectively. Substituting

eqs. (18) and (19) into eq. (14), we have

ΓI,dLdL
=
ρ2

I

d2
L

,

ΓI,dLv = ΓI,vdL
= − 4

dL

∫

v1,I |h̃I |2d f

S h,I

,

ΓI,vv = 4

∫

(

v2
1,I
+ v2

2,I

)

|h̃I |2d f

S h,I

.

(20)

Generally, v1,I and v2,I are frequency-dependent due to the

rotation of the Earth, and fixing the Earth’s orientation would

increase resulting errors. However, the form of FIM would

become quite simple under this assumption:

ΓI =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρ2/d2
L

−v1,Iρ
2/dL

−v1,Iρ
2/dL

(

v2
1,I
+ v2

2,I

)

ρ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (21)

where the elements are arranged in the order (dL, v). Further,

in the case where there is only one interferometer (Nd = 1),
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dropping the suffix I, the inverse of FIM is as follows:

Σ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

v2
1
+ v2

2

)

d2
L
/v2

2
ρ2 v1dL/v

2
2
ρ2

v1dL/v
2
2
ρ2 1/v2

2
ρ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

Next, we will illustrate our technique of handling FIM un-

der these simplifications and perform qualitative analyses.

Whereas the full expression eq. (20) will be used in the sim-

ulation (sect. 2.4).

The SGRBs are believed to be strongly beamed phenom-

ena [43-45], which was confirmed by recent investigations

on GRB 170817A. From theoretical expectation, it is usually

assumed that for SGRB induced by BNS coalescence, the

viewing angle of SGRB is identical to the inclination angle

ι. Ref. [46] proposed that ι follows Gaussian jet profile with

mean value 0 and standard deviation σι = 0.057+0.025
−0.023

rad,

while ref. [47] constrained σι = 4.7+1.1
−1.1

degree. In other pre-

vious research [21,40], it was assumed that SGRB is confined

within 25◦. As a result, the behavior of Σ near v = cos ι → 1

(face-on) is the most relevant.

Since face-on and face-off are equivalent, we focus only

on positive values of v. It is easy to figure that when v → 1,

v1 → 1 and v2 → 0; thus, the errors of dL and v (dubbed σΔdL

and σΔv) diverge, and the correlation cdLv = v1/

√

v2
1
+ v2

2
ap-

proaches 1, meaning that dL and v are intensively degenerate.

Moreover, in the limit of v = 1, Γ is singular so that Σ cannot

be well-defined, despite the fact that SNR actually increases

for larger v.

To address this issue, several methods have been proposed.

In recent years, a customary practice in the distance mea-

surement of GW, as depicted by ref. [23], is neglecting the

correlation between dL and v, calculating the error of dL at

v = 1 as dL/ρ, and accounting for the influence of varying

v with a factor of 2 (i.e., σΔdL
= 2dL/ρ, dubbed σΔdL,0 here-

after) [38, 48-50]. We argue that this is different from con-

sidering the correlation at the first place; thus, the validity of

using σΔdL,0 should be assessed.

2.3 Short gamma-ray burst prior

In this section, we attempt to solve the problem of degener-

acy by considering a nonuniform prior on v, assuming that

we have knowledge about the properties of SGRB before de-

tection. As stated in sect. 2.2, SGRB should be preferentially

beamed along the orbital momentum axis of BNS. Follow-

ing refs. [21, 40], the prior on v takes a Gaussian form with

standard deviation σv:

pv(v) ∝ exp

[

− (1 − v)2

2σ2
v

]

. (23)

This is a pessimistic scenario where the inclination angle is

determined with an accuracy of, e.g., ∼5◦ at 1σ [46, 47].

Moreover, σv is a global parameter so that a single value

can be used to describe a whole population of astrophysi-

cal events that are uncorrelated. Combining eqs. (12), (13)

and (23), the posterior distribution of parameters is as fol-

lows:

p(Δλ) ∝ exp

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1

2

∑

i j

Δλi Γi jΔλ j −
(1 − v)2

2σ2
v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (24)

where ∆λ = (ΔdL,Δv).

In general, the distribution given by eq. (24) is non-

Gaussian due to the “true” value of v is usually not exactly

1. However, we do not expect the errors to deviate from the

face-on case considerably. As a schematic demonstration,

we first analyze the situation where the “true” value of v is 1.

In that case, p(Δλ) returns to the two-dimensional Gaussian

form. Therefore, we can still describe the parameter accu-

racies in the framework of FIM. For the simplified regime

described in sect. 2.2, we have

Γ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρ2/d2
L
−ρ2/dL

−ρ2/dL ρ
2 + 1/σ2

v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,Σ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d2
L
/ρ2 + d2

L
σ2

v dLσ
2
v

dLσ
2
v σ2

v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

Interestingly, σΔdL
/dL =

√

1/ρ2 + σ2
v gives an estimation

comparable toσΔdL,0 = 2dL/ρ, and the catastrophic error near

v = 1 is avoided. Besides, dL is better constrained when ρ is

larger or σv is smaller, consistent with intuition. Also no-

table is that the correlation cdLv = σv/
√

1/ρ2 + σ2
v is always

smaller than 1.

In the simplified regime, we further consider the situation

where v � 1 and investigate the effect of varying v. To this

end, a bunch of events detected by an interferometer with

ET-D sensitivity is simulated, with the mass parameters of

GW170817 (Mc = 1.188Msun,m2/m1 = 0.85), located at

redshifts 0.5, 1, 2, and 5. For reasons given below, two val-

ues of σv (0.05 and 0.003) are adopted. When v � 1, eq. (25)

cease to be valid, and the FIM depends on F+/×, hence the

angles θ, φ, ψ; thus, we average σΔdL
over these parameters.

Shown in Figure 1 are the relative errors of dL as func-

tions of v, with v ranging from 0.75 to 1, equivalent to the 5σ

range for σv = 0.05. The solid and dashed lines correspond

to the results of σv = 0.05 and σv = 0.003, respectively.

In each case, the error of dL decreases as v approaches 1.

Moreover, with tighter prior on v, one can estimate dL more

accurately, and the influence of σv becomes insignificant for

distant events whose SNRs are relatively lower.

Notably, eq. (25) merely serves to provide a qualitative

illustration, and we will use the full expression eq. (24) in

simulation. The error of luminosity distance is calculated by

integrating over the entire distribution, following the defini-

tion in statistics.
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Figure 1 (Color online) The relative errors of dL as functions of v at red-

shifts 0.5, 1, 2, and 5. The solid and dashed lines correspond to the results of

σv = 0.05 and σv = 0.003, respectively.

In this paper, two values of σv will be considered: σv =

0.05, consistent with refs. [21,40] andσv = 0.003, equivalent

to the 1σ range of refs. [47, 48]. The first value seems rather

large compared with the observation of GRB 170817A [47],

yet it can act as an upper bound for future observations. Al-

though future SGRB observations may give σv other than

these two values, our research give a clue on the changes of

results when σv varies.

The overall performance of our method depends on the

distribution of source parameters. Details are presented

in sect. 2.4.

2.4 Simulation

The fiducial cosmological model is flat ΛCDM with param-

eters H0 = 67.8 km s−1 Mpc−1 and Ωm = 0.308; thus, we

have

dL(z) =
1 + z

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 + 1 −Ωm

. (26)

The redshifts of sources are drawn from the distribution

Rz(z) =
Rmerge(z)

1 + z

dV(z)

dz
=

4πd2
L
(z)Rmerge(z)

(1 + z)3H(z)
, (27)

where the second equality comes from the definition of co-

moving volume, and H(z) is the Hubble parameter at red-

shift z. The merger rate of BNS Rmerge(z) is calculated

in the source frame, which is the convolution of neutron

star (NS) formation rate Rf and a time-delay distribution

Pd(td) [48, 51]:

Rmerge(z) =

∫ tmax

tmin

Rf [t(z) − td] Pd (td) dtd, (28)

where td is the time between the formation and merger. By

neglecting the lifetime and mass variation of the progenitor

star [52], Rf follows the SFR

SFR(z) = k
a exp[b(z − zm)]

a − b + b exp[a(z − zm)]
(29)

with parameters of the “Fiducial + PopIII” model [53]. Fur-

ther, we assume Pd(td) ∝ t−1
d

for tmin = 20 Myr and tmax = tH,

tH is the Hubble time.

As for other parameters, the sky location n̂ = n̂(θ, φ), po-

larization ψ, time and phase of coalescence (tc, φc) are sam-

pled from uniform distributions, and v is drawn from eq. (23).

The component masses of BNS follow Gaussian distribution

N(1.33, 0.09)Msun, according to ref. [54]. Besides, we clas-

sify a GW event as detectable if the total SNR exceeds the

threshold of ρthreshold = 12 for ET + CE or 8 for ET. We set

a lower threshold for ET to not limit its observation depth,

making the population detected by ET and ET + CE compa-

rable. These thresholds are widely adopted in the literature.

Notably, current SGRB observations accumulate at only

low redshifts, which is partly because the apparent luminos-

ity of SGRB decreases with distance, and an event has to

exceed the flux limit of the detector to be detected. How-

ever, from the theoretical perspective, coalescing BNS can

be accompanied by SGRB provided proper conditions are

satisfied. Therefore, we optimistically assume that SGRB

counterparts at redshifts higher than the range of current ob-

servation can be detected in the future. We believe that with

a reliable prediction of the SGRB detection rate, the analy-

sis of our study would become more practical, while this is

beyond the scope of this paper.

We do not intend to predict the exact detection rate of

BNS-SGRB events, given that we only have very few ob-

servations to date. Contrariwise, we will generate a catalog

comprising 1000 events (for each configuration), and for ev-

ery single event, the detecting criteria of both GW and SGRB

are satisfied. This requires that more than 1000 sources

should be simulated, and then the rate of acceptance is de-

fined as 1000 divided by the number of all (qualified or un-

qualified) sources. For current SGRB observation by Swift,

the number of SGRBs with redshift measurement is less than

10 per year. However, the authors of ref. [48] simulated GW

detection with an ET + CE + CE network, assuming that

a THESEUS-type [55-57] satellite will be used for coinci-

dence searches, and they obtained 907 GW-SGRB joint de-

tections in 10 years of data collection if the mass distribution

of BNS is Gaussian (as is assumed in our study). Therefore,

we consider it reasonable to expect 1000 joint events with the

help of future THESEUS telescope. Next, we will study how

many events are sufficient for the target accuracy required by

cosmological research. Four configurations will be consid-

ered in this paper: {A: ET + CE / σv = 0.05, B: ET + CE/

σv = 0.003, C: ET / σv = 0.05, D: ET / σv = 0.003}.



M. Du, et al. Sci. China-Phys. Mech. Astron. January (2022) Vol. 65 No. 1 219811-7

3 Results

3.1 Simulated catalogs

In the former section, four catalogs of 1000 GW events were

simulated. Shown in Figure 2 are the redshift distributions

of sources, where the curves labeled “theory” are plotted ac-

cording to eq. (27). It is worth noting that the histograms of A

and B fit the theoretical curve well. Indeed, up to 78.9%(A)/

82.4%(B) of the entire samples pass the SNR threshold of

ET + CE.

On the other hand, data in catalogs C and D tend to dis-

tribute at lower redshifts, since SNR is inversely propor-

tional to dL, and the SNR of an event is relatively lower

when observed by ET alone. The rates of acceptance drop

to 35.7%(C) / 43.5%(D).

In addition, the statistical characteristics (µ, σ) of SNR

for the four catalogs are: A(22.45, 13.68), B(22.68, 14.16),

C(13.08, 8.53), and D(13.48, 8.60). Obviously, using

tighter prior on v and more detectors do improve the overall

precision.

With these ready-to-use data, we then evaluate the accu-

racy of distance measurement.

3.2 Error analysis

We uniformly divide the redshift range z ∈ (0, 5) for A and B

or z ∈ (0, 3.5) for C and D into 10 bins, and calculate the aver-

age fractional error of dL in each bin. The results are plotted

as functions of redshift in Figure 3. Again, it is obvious that

smaller σv and more detectors both lead to smaller errors at

given redshifts. Specifically, the improvement of accuracy

due to more detectors is evident in the whole redshift range,

almost halving the uncertainty in each bin. While the impact

of smaller σv turns out to be more evident at low redshifts.

This tendency can be explained by the simplified expression

eq. (25). At low redshifts, the average SNR is relatively high;

thus, the error induced by σv overwhelms the 1/ρ term, mak-

ing the alteration of σv more significant.

Besides, by means of simulation, ref. [35] found that with-

Theory Theory

Figure 2 (Color online) The redshift distributions of simulated gravitational wave sources. P(z) denotes the distribution of sources, normalized in the redshift

range z ∈ (0, 10). Shown in the two panels are the events detected by 3G GW detector network (ET + CE) and single detector (ET), respectively. In each panel,

the histogram in blue (red) corresponds to σv = 0.05 (σv = 0.003). The red curve with label “theory” is plotted according to eq. (27).

Lensing Lensing

(a) (b)

Figure 3 (Color online) Average fractional errors of dL in redshift bins. The results of catalogs A and B are plotted in (a), and those of C and D are shown in

(b). In both panels, the blue (red) curves correspond to σv = 0.05 (σv = 0.003), respectively. For comparison, σΔdL ,0/dL for each configuration is also shown,

and the black dash-dotted lines represent the errors induced by lensing.
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out the help of the EM counterpart, the average relative error

of dL in z ∈ (0, 1) was 0.48 for ET and 0.33 for the ET +

LISA + B-DECIGO network, whereas, in the presence of

SGRB, we have σΔdL
/dL < 0.1 in the same range for each

configuration. This is direct evidence of the benefit of the

EM counterpart.

With dashed curve, we also plot σΔdL,0/dL in the same fig-

ure for comparison. In each case, adopting σΔdL,0 causes

overestimation, meaning that it is a rather conservative

choice for the error analysis.

Another factor usually accounted for is the systematic er-

ror due to weak lensing [58, 59], which is a major source of

error on dL for high-redshift standard sirens

σΔdL,lens

dL

= 0.066

[

1 − (1 + z)−0.25

0.25

]1.8

. (30)

Thus, the total error can be expressed as:

σΔdL,tot =

√

σ2
ΔdL,lens

+ σ2
ΔdL
. (31)

We also plot the lensing errors in Figure 3. In each panel,

the contribution of lensing is comparable to the instrumental

noises.

So far, we have obtained four groups of {z, dL, σΔdL,tot} val-

ues. However, these (z, dL) pairs strictly satisfy the functional

relationship eq. (26), which violates the stochastic nature of

the universe. Thus, we will generate the luminosity distances

by Gaussian distribution N(dL, σΔdL,tot), which is a good ap-

proximation when the error is not too large. The data points

as well as associated errors for the four configurations are

shown in Figure 4.

3.3 ΛCDM cosmology

To determine how many events are required to achieve ac-

ceptable precision for cosmological parameters, again we

make use of the FIM. Under flat ΛCDM model, the FIM of

parameters p = (H0,Ωm) is as follows:

ΓΛCDM
i j =

∑

n

∂dL(zn)

∂pi

∂dL(zn)

∂p j

σ−2
ΔdL,tot,n, (32)

where the partial derivatives are calculated according to

eq. (26), and the covariant matrix is ΣΛCDM =
(

ΓΛCDM
)−1

.

Therefore, σH0
=

√

ΣΛCDM
11

and σΩm
=

√

ΣΛCDM
22

. For each

configuration, we randomly select 100N (N = 1, 2, ..., 10)

events to compose 10 subsets, and these subsets are used in

sequence to compute 10 FIMs.

The errors of parameters are presented in Figure 5. Both

σH0
and σΩm

scale roughly as 1/
√

N. For each parameter,

the improvement in accuracy from large σv to small σv is

significant , while for H0, the influence of detector number

seems moderate at given N. As a matter of fact, the detecting

capability of ET is poorer than that of the ET + CE network.

Judging from the rates of acceptance, the number of events

recognized by ET is only about half of ET + CE in the same

detecting period. Thus, the values of N should be different

when it comes to the comparison between single and multi-

ple detectors (e.g., N = 2 for ET and N = 4 for ET +CE, with

σv fixed), and it turns out that the impact of detector number

is even more significant than that of σv value. Analyses in the

preceding sections are not affected by this factor since only

the individual and average errors are involved there.

To achieve 1% accuracy of H0, the numbers of events re-

quired for the four configurations are about 500, 200, 600,

and 300, respectively. With all 1000 events, H0 can be con-

strained to 0.66%, 0.37%, 0.76%, and 0.49%, while the er-

rors of Ωm are 0.010, 0.006, 0.013, and 0.010, respectively.

These results are comparable to those of ref. [19], which

declared that a subpercent level accuracy on H0 could be

reached by ET.

As supplement, we also present the results of full Bayesian

analysis, performed with the public code CosmoMC [60].

Figure 6 and Table 2 show the posterior distributions of pa-

rameters p = (H0,Ωm) constrained from four catalogs of

1000 events. The blue contours correspond to the results

obtained by adopting σΔdL,0. After simple calculation, it is

easy to verify that the results of Markov chain Monte Carlo

(MCMC) are compatible to those of FIM. And very reason-

ably, using σΔdL,0 leads to overestimation, regardless of the

number of detectors or the value of σv, consistent with our

analysis in sect. 3.2.

3.4 Cosmology with generic H(z)

Despite model-independent approaches, GP [61], as a non-

parametrization method, can extract information from obser-

vational data without any hypothetic functional form. There-

fore, GP allows us to study how accurately a generic function

H(z) can be evaluated from data. To this end, we first calcu-

late dL(z) as a GP

dL(z) ∼ GP [µ(z), k(z, z′)
]

, (33)

where µ(z) and k(z, z′) are the mean value and covariance

function, respectively. Then, H(z) can be obtained via

H(z) =
c(1 + z)2

d′
L
(z)(1 + z) − dL(z)

, (34)

where ′ denotes the derivative of redshift. The only assump-

tion behind eq. (34) is that the geometry of the universe is

depicted by the flat Friedmann-Robertson-Walker metric.
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Figure 4 (Color online) Mock data generated from four simulations. From left to right and top to bottom are the data of catalogs A, B, C, and D, respectively.

Data at higher redshifts are rather sparse, hence not shown in this figure. The colored areas represent the average 1σ ranges calculated in redshift bins. Note

that the upper limits of x-axes are different for single and multiple detectors.

Number of events Number of events

(a) (b)

Figure 5 (Color online) Errors of the ΛCDM parameters H0 (a) and Ωm (b). The asymptotic behavior of simulation A is shown with dotted curve in each

panel. We set the target fractional accuracy of H0 to 1%, which is represented by a grey horizontal line in (a).

Using the open-source code Gaussian Processes in Python

(GAPP), we reconstruct H(z) from the four catalogs, and the

resulting mean values and errors up to 2σ are presented in

Figure 7. Future GWSS has the advantage of deeper detec-

tion depth than conventional standard candles, such as SN

Ia. For example, the recently released Pantheon sample [62]

consists of 1048 SNe Ia with maximum redshift 2.26, and

most of them are within the range of z < 1. While, as is

shown in Figure 7, GWSS can constrain H(z) to consider-

able accuracy at relatively high redshifts. The 1σ precision

of 10% can be maintained to redshift 3.12, 3.34, 2.37, and

2.53 by configurations A, B, C, and D, respectively. Besides,

the H(z) functions reconstructed from A and B agree with the

fiducial model (blue curves), even when z → 3.5, whereas,
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Figure 6 (Color online) Posterior distributions of the cosmological parameters. The subfigures are arranged in the same order as Figure 4. Shown with

contours are the 1 σ and 2 σ ranges of parameters, whereas marginal distributions are plotted with curves. The red (blue) contours correspond to simulation

results (adopting σΔdL ,0).

Table 2 1σ (68%) ranges of ΛCDM parameters constrained with the Markov chain Monte Carlo (MCMC) method. Results in the second and third rows are

obtained from simulation, whereas the last two rows show the results obtained by adopting σΔdL ,0

H0 Ωm H0 (with σΔdL ,0) Ωm (with σΔdL ,0)

A 68.37 ± 0.38 0.2955 ± 0.0097 67.93 ± 0.45 0.304 ± 0.010

B 67.74 ± 0.24 0.3096 ± 0.0065 67.71 ± 0.43 0.311 ± 0.011

C 66.88 ± 0.53 0.329 ± 0.015 67.72 ± 0.56 0.308 ± 0.017

D 67.21 ± 0.35 0.326 ± 0.011 67.17 ± 0.65 0.327 ± 0.020

for C and D, ΛCDM exceeds the 1σ ranges at z = 1.90 and

z = 2.15. In conclusion, adopting multiple detectors and

tighter prior both contribute to a precise and unbiased mea-

surement.

The constraining ability of future GW data can be bet-

ter demonstrated when compared with current observations.

Compiled by ref. [63] are the Hubble parameters measured

at different redshifts within z ∈ (0, 2) (observational Hubble



M. Du, et al. Sci. China-Phys. Mech. Astron. January (2022) Vol. 65 No. 1 219811-11
H

(z
) 

(k
m

 s
-

1
 M

p
c
-

1
)

H
(z

) 
(k

m
 s

-
1
 M

p
c
-

1
)

H
(z

) 
(k

m
 s

-
1
 M

p
c
-

1
)

H
(z

) 
(k

m
 s

-
1
 M

p
c
-

1
)

Figure 7 (Color online) Results of Gaussian process for simulations A, B, C, and D, arranged in the same order as Figure 4. The 10% ranges around H(z) are

plotted to check the detection depth of third-generation gravitational wave detectors. The blue lines correspond to the fiducial ΛCDM model.

data, OHD) via methods such as the cosmic chronometer and

baryon acoustic oscillation. The OHD with error bars and the

results of GP are shown in the upper panel of Figure 8. For

comparison, the mean values and fractional uncertainties of

H(z) from GW data and OHD are summarized in the upper

and lower panels, respectively. In almost the whole redshift

range, H(z) can be measured more accurately from each GW

catalog than from OHD.

4 Further comparisons

The entire pipeline of simulation and data processing is based

on several models and hypotheses, such as the distribution

of inclination angle and the SFR model. In this section, we

make alterations to them and investigate what difference will

be brought about.

4.1 Varied v̄ vs. fixed v̄

In this section, we investigate the impact of varied mean

value of v in the prior, i.e., replacing eq. (23) with

pv(v) ∝ exp

[

− (v − v̄)2

2σ2
v

]

, (35)

v̄ being the “true” source parameter. This analysis is per-

formed to simulate a situation where v̄ is already determined

from the SGRB observation with precision σv; thus, the data

of SGRB and GW are employed in a more joint manner. In

the simplified regime where there is only one stationary inter-

ferometer, the consequence of using eq. (35) can be derived

analytically:

σΔdL

dL

=

√

1

ρ2
+ Kσ2

v , K =
v2

1

1 + v2
2
σ2

vρ
2
. (36)

By numerical calculation, it is easy to confirm that K > 1

for the typical values of v1, v2, and ρ; thus, varying v̄ usually

increases error compared with eq. (25). It should be noted

that eq. (25) is estimated in the face-on limit, while eq. (36)

is valid whether v is 1 or not; thus, the performances of these

two priors remain to be compared through simulation. Be-

sides, in practice, the uncertainties of v constrained from

SGRB data vary among events; thus, using a single value

σv is a rather rough choice.

Following the prescription of error budget given in

sect. 3.2, we apply eq. (35) to the simulated GW catalogs,

and the instrumental errors are shown in Figure 9 as solid

curves. For comparison, we also plot the results of eq. (23)

in the same figure with dotted curves. It is obvious that vary-
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Data

Figure 8 (Color online) The observational Hubble data and reconstructed

H(z) function, compared with the results of gravitational waves. Upper

panel: observational Hubble data and mean values of H(z). Lower panel:

relative errors of H(z).

Figure 9 (Color online) The instrumental errors of dL as functions of

redshift. The solid and dotted curves are obtained by adopting eqs. (23)

and (36), respectively, and the results of the four configurations are plotted

with different colors.

ing v̄ increases the errors of dL. Besides, for the cosmolog-

ical parameters p = {H0,Ωm}, we have σH0
/H0 = 0.74%,

0.37%, 0.84%, 0.51% and σΩm
= 0.011, 0.006, 0.014, 0.010,

respectively, which are also slightly larger than those of fixed

v̄. Moreover, the influence of adopting eq. (36) is more ev-

ident when σv = 0.05 since v is allowed to vary in a wider

range in this case.

4.2 Other star formation rate models

The simulation of GW sources is based on the hypothesis

that the NS formation follows the SFR. While, as a matter of

fact, the high-redshift SFR is uncertain at present. Pioneering

studies [64-66] have revealed that GRBs observed by Swift

provide a biased measurement of the SFR history, with an en-

hancement of ∼ (1 + z)0.5. Ref. [64] reported that this factor

could be readily explained if GRBs occur primarily in low-

metallicity galaxies proportionally more numerous at earlier

times. However, after considering this trend, the SFR beyond

z = 4 derived from GRBs is still much higher than that from

other surveys, such as ultraviolet (UV) and far-infrared (FIR)

measurements. Ref. [65] provided an explanation for the

high-redshift GRB rate excess by considering the GRBs pro-

duced by rapidly rotating metal-poor stars from low masses.

It is beyond the scope of this paper to explore the phys-

ical origins of the discrepancies between different SFR sur-

veys. On the contrary, apart from Fiducial + PopIII (eq. (29)),

we adopt two additional SFR models, one inferred from

GRBs [66] (dubbed Kistler):

SFR(z) ∝
⎡

⎢

⎢

⎢

⎢

⎢

⎣

(1 + z)aζ +

(

1 + z

B

)bζ

+

(

1 + z

C

)cζ
⎤

⎥

⎥

⎥

⎥

⎥

⎦

1/ζ

, (37)

with {a, b, c, B,C, ζ} = {3.4,−0.3,−2.5, 5160, 11.5,−10}, and

the other from UV and FIR measurements [65, 67] (dubbed

Hopkins):

SFR(z) ∝

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(1 + z)3.44, z < 0.97,

(1 + z)−0.26, 0.97 < z < 4.48,

(1 + z)−7.8, 4.48 < z.

(38)

The simulated GW catalogs are compared in Figure 10.

For clarity, we only present the events obtained under config-

uration B. The red, blue, and black histograms represent the

distributions of GW sources generated from Hopkins, Kistler,

and Fiducial + PopIII, respectively, and curves with the same

colors correspond to the theoretical BNS merger rates. For

both Hopkins and Kistler, the peaks of P(z) come at lower

redshifts (z = 1.1) than Fiducial + PopIII (z = 1.5), and the

high-redshift merger rates are slightly larger, especially for

Kistler, due to the so-called “GRB rate excess” phenomenon.

Under configuration B, the uncertainties of cosmologi-

cal parameters are σH0
/H0 = 0.295%, 0.349%, 0.367% and

σΩm
= 0.0057, 0.0064, 0.0064, for Hopkins, Kistler, and

Fiducial + PopIII, respectively. The errors of each param-

eter are in the same order of magnitude. The comparison be-

tween simulations agrees with intuition, i.e., parameters can

be better constrained from catalogs with more low-redshift

(high-SNR) events.

4.3 Other short gamma-ray burst models

In former sections, we have assumed that SGRB follows

a Gaussian distribution peaked at v = 1, in concordance
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with refs. [21, 40]. The modeling of SGRB plays a crucial

role in the process of parameter estimation, and several mod-

els, such as the jet and cocoon scenarios [46], have been pro-

posed to describe the SGRB features in the afterglow of GW.

Therefore, we discuss this issue by comparing our model

with the Gaussian structured jet profile

pι(ι) ∝
[

− ι
2

2σ2
ι

]

, (39)

which is a Gaussian distribution on ι with standard deviation

σι. Ref. [46] constrained σι = 0.091+0.037
−0.040

rad, 0.057+0.025
−0.023

rad, and 0.076+0.026
−0.027

rad from different data combinations,

whereas ref. [47] reported σι = 4.7+1.1
−1.1

degree. These values

are very close to our choice of σv = 0.003; thus, we adopt

σι = cos−1(1 − 0.003) = 0.077, replace eq. (23) by eq. (39),

and repeat simulations B and D.

It appears that the instrumental errors σΔdL
/dL(z) of dif-

ferent priors are indistinguishable (Figure 11). Thus, we

further calculate the uncertainties of ΛCDM parameters.

Figure 10 (Color online) The redshift distributions of gravitational wave

events (configuration B) simulated according to different star formation rate

models. The red, blue, and black histograms represent the results of SFR

models, Hopkins, Kistler, and Fiducial + PopIII, respectively, and the curves

with the same colors correspond to the theoretical BNS merger rates.

Figure 11 (Color online) Relative errors of dL as functions of redshift. Re-

sults obtained by adopting pι(ι) (or pv(v)) are plotted with solid (or dotted)

curves, and blue (or red) curves correspond to configuration B (or D).

With eq. (39), we obtain σH0
/H0 = 0.34%, 0.58% and σΩm

=

0.006, 0.011 for B, D, respectively. The results of adopting

pι(ι) are only barely different from those of pv(v) since they

both indicate that ι is confined in a small range (< 5◦) around

0.

5 Conclusion

In this paper, we address the problem of degeneracy between

luminosity distance and inclination angle in the estimation

of GW parameters, especially near the face-on limit. For

GW-SGRB events, the sky locations of sources can be pin-

pointed with techniques such as identifying the host galaxies,

and the mass parameters can be determined with exquisite

accuracy from the phase of GW; thus, we are particularly

concerned about the correlation between dL and v = cos ι.

We first calculate the FIM of these two parameters and then

consider a Gaussian prior on the inclination according to our

knowledge about SGRB. This pipeline is tested via simula-

tion. Four catalogs, each with 1000 events detected by the 3G

GW detectors, are simulated, and the settings are {A: ET +

CE / σv = 0.05, B: ET + CE / σv = 0.003, C: ET / σv = 0.05,

D: ET / σv = 0.003}. Although future SGRB observations

may give σv other than these two values, our research may

give a clue to the changes in results when σv varies.

It turns out that the detector network, ET + CE, can rec-

ognize more and farther events than a single detector ET in

the same detecting period. By analyzing the error of dL, we

find that using more detectors and tighter prior on the incli-

nation can both improve the precison of measurement. Also

considered is the performance of a widely adopted formula

σΔdL,0 = 2dL/ρ, which overestimates the error of dL for each

configuration.

The simulated catalogs are further applied to constrain

cosmological parameters. For ΛCDM cosmology, 500, 200,

600, and 300 events are required for the four configurations

to achieve 1% H0 accuracy. With all 1000 events, H0 is con-

strained to 0.66%, 0.37%, 0.76%, and 0.49%, whereas the

errors of Ωm are 0.010, 0.006, 0.013, and 0.010, respectively.

The MCMC method produces results compatible with those

of FIM. Regarding the Hubble parameter as a free function

of redshift and using the GP method, we find that H(z) can

be measured with uncertainties less than 10% up to redshifts

3.12, 3.34, 2.37, and 2.53, indicating that future GWSS can

probe cosmology at higher redshift than the observed stan-

dard candles to date. The advantage of future GWSS over

current OHD is also obvious. Besides, adopting more detec-

tors and tighter prior both contribute to a precise and unbi-

ased result.

In addition, we have also considered the effect of altering
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some of the formulae and models used in the simulation and

data processing, such as SFR and the distribution of inclina-

tion angle. Detailed analyses can be found in sect. 4.

In this paper, the prior distributions of inclination are

based only on limited observations. With upcoming detec-

tions of SGRBs and GWs, as well as more reliable estima-

tions of the joint event rate, we expect that more rigorous

results can be achieved.
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Cuoco, G. Dálya, S. D’Antonio, L. E. H. Datrier, V. Dattilo, M. Davier,

J. Degallaix, M. D. Laurentis, S. Deléglise, W. D. Pozzo, M. Denys,

R. D. Pietri, R. D. Rosa, C. D. Rossi, R. DeSalvo, T. Dietrich, L. D.

Fiore, M. D. Giovanni, T. D. Girolamo, A. D. Lieto, S. D. Pace, I. D.

Palma, F. D. Renzo, Z. Doctor, M. Drago, J. G. Ducoin, M. Eisen-

mann, R. C. Essick, D. Estevez, V. Fafone, S. Farinon, W. M. Farr,

F. Feng, I. Ferrante, F. Ferrini, F. Fidecaro, I. Fiori, D. Fiorucci, R.

Flaminio, J. A. Font, J. D. Fournier, S. Frasca, F. Frasconi, V. Frey,

J. R. Gair, L. Gammaitoni, F. Garufi, G. Gemme, E. Genin, A. Gen-

nai, D. George, V. Germain, A. Ghosh, B. Giacomazzo, A. Giazotto,

G. Giordano, J. M. G. Castro, M. Gosselin, R. Gouaty, A. Grado, M.

Granata, G. Greco, P. Groot, P. Gruning, G. M. Guidi, Y. Guo, O.

Halim, J. Harms, C. J. Haster, A. Heidmann, H. Heitmann, P. Hello,

G. Hemming, M. Hendry, T. Hinderer, D. Hoak, D. Hofman, D. E.

Holz, A. Hreibi, D. Huet, B. Idzkowski, A. Iess, G. Intini, J. M. Isac,

T. Jacqmin, P. Jaranowski, R. J. G. Jonker, S. Katsanevas, E. Kat-
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Verkindt, F. Vetrano, A. Viceré, J. Y. Vinet, H. Vocca, R. Walet, G.

Wang, Y. F. Wang, M. Was, A. R. Williamson, M. Yvert, A. Zadrożny,
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