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Abstract. Most megawatt-scale wind turbines align themselves into the wind as defined by the wind speed at or

near the center of the rotor (hub height). However, both wind speed and wind direction can change with height

across the area swept by the turbine blades. A turbine aligned to hub-height winds might experience suboptimal

or superoptimal power production, depending on the changes in the vertical profile of wind, also known as shear.

Using observed winds and power production over 6 months at a site in the high plains of North America, we

quantify the sensitivity of a wind turbine’s power production to wind speed shear and directional veer as well

as atmospheric stability. We measure shear using metrics such as α (the log-law wind shear exponent), βbulk (a

measure of bulk rotor-disk-layer veer), βtotal (a measure of total rotor-disk-layer veer), and rotor-equivalent wind

speed (REWS; a measure of actual momentum encountered by the turbine by accounting for shear). We also

consider the REWS with the inclusion of directional veer, REWSθ , although statistically significant differences

in power production do not occur between REWS and REWSθ at our site. When REWS differs from the hub-

height wind speed (as measured by either the lidar or a transfer function-corrected nacelle anemometer), the

turbine power generation also differs from the mean power curve in a statistically significant way. This change

in power can be more than 70 kW or up to 5 % of the rated power for a single 1.5 MW utility-scale turbine. Over

a theoretical 100-turbine wind farm, these changes could lead to instantaneous power prediction gains or losses

equivalent to the addition or loss of multiple utility-scale turbines. At this site, REWS is the most useful metric

for segregating the turbine’s power curve into high and low cases of power production when compared to the

other shear or stability metrics. Therefore, REWS enables improved forecasts of power production.

1 Introduction

Wind energy is already the second-largest source of renew-

able energy in the United States and is the fastest-growing

source of renewable energy, providing 6.3 % of the total en-

ergy in the United States (EIA, 2017). As wind energy con-

tinues to grow, so will the challenge of predicting power out-

put and integrating that power with the rest of the electric

grid (Marquis et al., 2011; Woodford, 2011; Xie et al., 2011;

Vittal and Ayyanar, 2013; Heier, 2014; Heydarian-Forushani

et al., 2014; Sarrias-Mena et al., 2014).

Currently, wind farm operators and control engineers rely

on wind turbine power curves to predict the power produc-

tion of a given model of turbine for various inflow wind

speeds (Brower, 2012). The inflow wind speeds are typi-

cally measured by instrumentation on top of the nacelle at

or near hub height, where the blades of a turbine connect

to its hub. Wind turbines are designed to optimize these in-

flow wind speeds by orienting themselves into the inflow.
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Typical turbines use a wind vane located on top of the hub

to determine the wind direction at that altitude. The turbine

then rotates (yaws) into that inflow so that the hub is aligned

with and parallel to the wind vane (Fleming et al., 2014; Wan

et al., 2015). This yaw correction happens periodically, and

the exact frequency depends on the specific turbine and many

other factors. However, hub-height wind speeds and direc-

tions do not necessarily represent the inflow across the tur-

bine rotor disk. Wind speed and direction can change with

height across the rotor disk, a phenomenon known as shear.

“Wind shear” simply considers the change in wind speed

with height, whereas a change in wind direction is consid-

ered “wind veer” (Holton, 1992). In atmospheric science, the

direction of the change in wind direction can also be useful;

in the Northern Hemisphere, clockwise rotation with height

is considered “veering”, while counterclockwise rotation is

considered “backing.”

Several common atmospheric phenomena cause vertical

wind shear or veering or backing over the depth of a tur-

bine’s rotor disk. Wind speeds tend to increase with height

in the atmosphere as the effects of surface friction decrease.

In the planetary boundary layer this increase is, on average,

logarithmic (Tennekes, 1973). Flows over land exhibit more

shear because friction is larger over the land than the ocean.

At night, the lack of mixing from convective eddies allows

winds in the boundary layer to decouple from the surface

such that both wind speed and direction can change with

height (Blackadar, 1957; Walter et al., 2009). Nocturnal low-

level jets, characterized by a maximum in wind speed in the

stable boundary layer, often form over the Great Plains be-

cause of the decoupling phenomenon and inertial oscilla-

tions as well as the nocturnal change in the thermal wind

(Blackadar, 1957; Whiteman et al., 1997; Banta et al., 2002;

Vanderwende et al., 2015). Shear or veer associated with

inertial oscillations also occurs because of frontal passages

(Lundquist, 2003). Low-level jets can form offshore, leading

to wind speed shear (Kraus et al., 1985; Hsu, 1988; Smed-

man et al., 1993; Ranjha et al., 2013; Pichugina et al., 2017)

or wind directional veer (Bodini et al., 2019b) across the

altitudes of a turbine rotor disk. Turbines located near the

mouth of a canyon might experience shear effects of noctur-

nal valley exit jets (Banta et al., 1996; Jiménez et al., 2019).

Warm and cold air advection can lead to directional veer

(Holton, 1992). Outflow from thunderstorms can introduce

density currents that affect both speed shear and directional

veer (Goff, 1976; Lynch and Cassano, 2006). Finally, land-

based topographic effects allow for the formation of local-

ized circulations and microclimatic effects that could inter-

act with the mean airflow across a rotor disk and create shear

(Mahrt et al., 2014; Fernando et al., 2019).

Over the past 3 decades, shear and turbine power pro-

duction have been related by various observational studies.

In 1990, shear affected power curves, as seen in observa-

tions of three 2.5 MW turbines (Elliott and Cadogan, 1990).

Shear decreases the power coefficient, compared to nonshear

cases, for multimegawatt turbines (Albers et al., 2007). Diur-

nal variations in power production have been found resulting

from diurnal variations in shear in a region of complex terrain

at a site in the interior of the continental United States (An-

toniou et al., 2009). Increases in power of a theoretical wind

farm using observational shear values (rather than no-shear

values) could be of up to 0.5 %, while decreases in power

could approach 3 % as found by Walter et al. (2009). Model

power curves (or power surfaces where the power production

of a turbine is a function of both wind speed and air den-

sity) made from equivalent wind speeds from actual 2.5 MW

turbine power data are more accurate than a standard power

curve (Vahidzadeh and Markfort, 2019).

In addition, other simulation-based studies quantify the

magnitude of the effects found observationally (Pedersen,

2004; Wagner et al., 2010). The power productions found in

both Pedersen (2004) and Wagner et al. (2010) are depen-

dent on the magnitude of the shear and whether the shear

is based on direction or velocity. Wagner et al. (2010) ad-

ditionally find that directional veer was less influential on

the power production than speed shear. Sanchez Gomez and

Lundquist (2020) suggest a combination of directional veer

and shear should be considered.

Actual observations of wind shear and veer exhibit a sig-

nificant variety of shapes (Pé et al., 2018), as shown in

Fig. 1, with four wind speed profiles from vertically pro-

filing Doppler lidar and relevant idealized linear and loga-

rithmic profiles. All profiles show differences between the

idealized profiles and the actual profiles and differences be-

tween the 80 m wind speed (effectively the height of the na-

celle anemometer and vane) and the speeds at other heights.

Though the first three of the four real profiles (Fig. 1a–c)

appear similar to the idealized profiles, differences occur be-

tween the winds at all non-80 m heights and the idealized

profiles (Fig. 1e–g). The winds at 80 m (effectively the height

of the nacelle anemometer and vane) clearly differ from the

winds at other heights as well. The fourth profile (Fig. 1d)

shows the most nonlinear and nonlogarithmic wind speed

profile and also shows the greatest difference between the

80 m wind speeds and wind speeds at other heights (Fig. 1h).

Because the differences exist between the height levels for

all profiles, the 80 m wind speed and thus the nacelle wind

speed are not truly representative of the average wind speed

across the rotor for any of the wind speed profiles.

This poor representation has consequences for turbine

power production. The power produced by a turbine varies

with the cube of the inflow wind speed in region II of a power

curve (where turbines spend most of their time operating and

where each of the profiles were taken from) as seen by

P (t) =
1

2
ρACpU (t)3, (1)

where P (t) is the power at a given time t , ρ represents the

air density, A represents the area swept out by the rotor disk,

Cp represents the coefficient of power which has a maximum

Wind Energ. Sci., 5, 1169–1190, 2020 https://doi.org/10.5194/wes-5-1169-2020



P. Murphy et al.: Wind shear and veer affects turbine power production 1171

Figure 1. (a–d) Four wind speed profiles as measured by the lidar

(black line with circle markers), with measurement heights above

ground level (a.g.l.) denoted by circles. Dashed teal lines denote

the linear profile fit to the real profile; dashed red lines denote the

power law profile fit to the real profile. The α values in the top

row calculated between 40 and 120 ma.g.l. are (a) 0.14, (b) 0.74,

(c) 1.42, and (d) 1.83. (e–h) The difference (ms−1) between the

lidar wind speed and the idealized linear (teal) and logarithmic (red)

profiles.

of 0.59, and U (t) represents the inflow wind speed across

the rotor disk at time t (Brower, 2012). Directional veer can

mitigate or worsen the effects of speed shear.

A rotor-equivalent wind speed (REWS) metric can de-

scribe the actual momentum encountered by a turbine ro-

tor disk by accounting for the vertical shear. The simplest

REWS, proposed by Wagner et al. (2009), accounts for only

the wind speed shear and does so by dividing a turbine’s rotor

disk into discrete vertical layers or bins:

REWSWagner = 3

√

1

A

(

∑

i
u3

i Ai

)

, (2)

where REWSWagner is the equivalent wind speed, A repre-

sents the area swept out by the rotor disk, Ai represents the

area of a discretized section of the rotor disk, and ui rep-

resents the wind speed measured for the given section. Us-

ing a blade element momentum model to simulate a 3.6 MW

turbine, Wagner et al. (2008) show that power production

correlates better with the REWS than with the hub-height

wind speed. Later work specified a REWSθ , which considers

both speed shear and directional veer (Wagner et al., 2010;

Choukulkar et al., 2015; Clack et al., 2016). Though simi-

lar to REWSWagner, this method considers only the orthogo-

nal component of the inflow wind speed to the plane of the

turbine’s rotor disk at each height bin. Although the com-

bined effects of wind speed shear and wind directional veer

on a turbine’s power production are often stronger than either

speed shear or directional veer alone, speed shear exerts more

influence than directional veer in most circumstances. Turbu-

lence can also affect the momentum accessible to a wind tur-

bine rotor and is accounted for in the method of Choukulkar

et al. (2015).

Although former studies used REWS and similar met-

rics to explore the impact of shear and atmospheric stabil-

ity on the prediction of power production from megawatt-

scale turbines (Elliott and Cadogan, 1990; Rohatgi and Bar-

bezier, 1999; Pedersen, 2004; Sumner and Masson, 2006;

Albers et al., 2007; Van den Berg, 2008; Antoniou et al.,

2009; Walter et al., 2009; Belu and Koracin, 2012; Whar-

ton and Lundquist, 2012b; Vanderwende and Lundquist,

2012; Sanchez Gomez and Lundquist, 2020; Vahidzadeh and

Markfort, 2019), a more recent study (Sark et al., 2019) con-

cludes that turbines in regions with flat terrain do not benefit

from using REWS rather than a hub-height wind speed. Here,

we explore how different regimes of speed and directional

veer across the turbine rotor disk affect power production of

a megawatt-scale onshore turbine in a wind farm in the high

plains of North America. Defining several wind speed and

direction-based shear metrics, we compare power production

in different regimes. We distinguish the importance of wind

shear and veer and suggest the influence of topography. Fi-

nally, we address how the regimes differ from a mean power

curve.

In Sect. 2, we describe the observational data set and data

processing steps. In Sect. 3, we define REWS metrics and

other shear metrics to characterize speed shear and direc-

tional veer. In Sect. 4, we describe distributions of the metrics

for this site, demonstrate the superiority of REWS over hub-

height wind speed for power prediction, and explore how

other shear metrics relate to power production. We summa-

rize results in Sect. 5 and pose suggestions for future work.

2 Observational data set

The data discussed in this paper were collected as part of

a wake-steering campaign conducted by the National Re-

newable Energy Laboratory on five turbines at a commercial

wind farm in the high plains of North America (Fig. 2; more

details in Fleming et al., 2019). Data for this study were col-

lected from 04:00 UTC on 2 May 2018 through 23:59 UTC

on 31 October 2018. This paper focuses on the turbine shown

in red in Fig. 2. Although this turbine is not waked under typ-

ical wind directions at the site, waked data are removed as de-

scribed in Sect. 2.3. Wind profile observations are collected

by the lidar 350 m east-northeast of the chosen turbine.
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Figure 2. Layout of relevant equipment. The negative elevation

measurements represent meters below the maximum elevation in

the figure. Exact locations and elevations are not given at the re-

quest of the wind farm owner and operator. The westernmost red

circle represents the turbine studied in the paper. The triangle repre-

sents the vertically profiling Doppler lidar and meteorological tower

(co-located). The four black circles to the east-southeast represent

other turbines that could potentially wake the lidar and studied tur-

bine.

2.1 Turbine data set

The turbine and lidar are located at the same elevation on

a flat plateau. To the east and southeast, four other turbines

are located within 1 km (Fig. 2). Methods for filtering waked

data are described in Sect. 2.3. The plateau’s escarpment,

which descends around 100 mkm−1, lies south of the fo-

cus area. Southerly winds are not filtered out of the data

set because such terrain can lead to the formation of speed

shear and directional veer. The northerly fetch is relatively

complex as well, though to a much lesser extent than the

southerly fetch. To the northeast, the terrain descends to a

depth of about half that of the escarpment to the south and

does so over a much gentler slope. To the northwest, the ter-

rain descends to a depth of about one-ninth that of the south.

To the north the terrain descends to a depth of around one-

fourth that of the south.

The turbine of interest is a 1.5 MW General Electric super-

long extended cold-weather extreme model with a cut-in

wind speed of 3.5 ms−1, a rated wind speed of 14 ms−1, and

a cut-out speed of 25 ms−1. Both the turbine rotor diame-

ter D and the hub height are nominally 80 m. Power produc-

tion, nacelle wind speed and direction, fault codes (such as

“turbine ok”, “weather conditions”, “grid loss”), and blade

pitch angle from the turbine were recorded at 1 Hz by the

turbine’s supervisory control and data acquisition (SCADA)

systems. Data processing methods applied to the data set re-

garding the turbine data and potential curtailments and peri-

ods of inactivity are addressed in Sect. 2.3.

For comparison to the power production, we consider the

power curve of a generic 1.5 MW turbine (Schmitz, 2015).

2.2 Lidar data set

Wind speed and direction profiles are collected by a Leo-

sphere WINDCUBE v2 located ∼ 4 D east-northeast of the

turbine, identical to the model used in Bodini et al. (2019a)

and Bodini et al. (2019b). The lidar takes three-dimensional

wind speed and direction measurements at approximately

1 Hz every 20 ma.g.l. from 40 to 180 m. The lidar samples

sequential line-of-sight velocity measurements along the four

cardinal directions at 28◦ (θ ) from the vertical followed by

an additional beam oriented vertically. It completes a cy-

cle of measurements nearly every 5 s. The lidar synthesizes

the beams’ line-of-sight measurements into a 1 Hz sample

of horizontal and vertical wind speed component measure-

ments. The manufacturer reports horizontal wind speed ac-

curacies of 0.1 ms−1 and wind direction accuracies of 2◦.

Time lags between the lidar and the turbine were not consid-

ered because of challenges in considering the advection of

the wind. The horizontal wind speed components, u (west–

east) and v (south–north), are found by

u =
Vlos,E − Vlos,W

2sinθ
, (3)

v =
Vlos,N − Vlos,S

2sinθ
, (4)

where Vlos denotes the line-of-sight velocities at the cardinal

directions north (N), east (E), south (S), and west (W).

A meteorological tower with a Campbell CSAT3 sonic

anemometer at 10 m, a Vaisala PTB110 pressure sensor at

1.5 m, a relative humidity measurement at 2 m, and an RTD

temperature measurement at 2 m is co-located with the lidar.

To quantify atmospheric stability, the Obukhov length L is

calculated using 20 Hz 10 m sonic anemometer data, 1 Hz

1.5 m pressure data, 1 Hz 2 m temperature measurements,

and 1 Hz 2 m relative humidity measurements:

L =
−u3

∗θv

kgw′θ ′
v

, (5)

where k = 0.4 is the von Kármán constant, g is the acceler-

ation of gravity 9.81 ms−2, u∗ is the friction velocity calcu-

lated by u∗ = [u′w′2 + v′w′2]1/4, θv in the numerator is the

virtual potential temperature in Kelvin calculated from the

1 Hz 2 m temperature Td in Celsius with modifications from

the 1 Hz 2 m relative humidity RH and 1.5 m pressure p to
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convert the temperature to virtual temperature by

es = 6.11 × x10
7.5Td

237.3+Td , (6)

w =
RH

100
621.97

es

p − es
, (7)

Tv = Td
(1 + w/0.622)

(1 + w)
. (8)

Further modifications from the 1.5 m pressure p by θv =
(Tv + 273.15) ·

(

p0

p

)R/cp

with p0 = 1000 mbar and R/cp ≈
0.286 convert the virtual temperature to a virtual potential

temperature; θv in the denominator is the virtual potential

temperature in Kelvin calculated from the 20 Hz virtual tem-

perature from the speed of sound and the same potential pres-

sure calculation as the numerator, and w′θ ′
v is the kinematic

sensible heat flux. The covariances for the heat flux and fric-

tion velocity are calculated from a Reynolds decomposition

over a 30 min averaging time.

To quantify atmospheric stability we use two regimes, con-

vective and stable, based on the nondimensional stability pa-

rameter (otherwise known as the surface-layer scaling pa-

rameter). ζ = z/L is used, where z is the height above ground

level (10 m) of the flux measurements for L. Note that these

categories are similar but not identical to the stable and non-

stable categories of Fleming et al. (2019). Convective con-

ditions occur during 0 < ζ < ∞, while stable conditions oc-

cur when −∞ < ζ < 0. Values further from 0 are stronger

stabilities. Values that could be considered neutral (−0.01 ≤
ζ ≤ 0.01 as in Wharton and Lundquist, 2012a) only occur in

3.9 % of the postfiltered data and so are classified as stable or

convective based on their sign.

Figure 3 shows the dominant winds as measured by the

lidar at 80 ma.g.l. (hub height) during the campaign through

three wind roses using (a) all data, (b) convective stability

data, and (c) stable stability data. This figure is made with

prefiltered data.

2.3 Data filtering

Data collection extended from 04:00 UTC on 2 May 2018

until 23:59 UTC on 31 October 2018, nearly 15.8 × 106 s

(nearly 6 months of data). Several data filters are applied.

Because of our focus on power production, we first

removed time periods with turbine fault codes given in

the SCADA data. Data are considered acceptable for four

SCADA codes, “turbine ok”, “turbine with grid connection”,

“run up/idling”, and “weather conditions”. The codes that are

filtered out are related to maintenance, repair, grid loss, stops,

wind direction curtailments, and further codes that are deter-

mined by the utility company to be bad but are not specified

further. This filter removed 14.2 % of the data.

A further 11.5 % of the data were removed because of the

turbine not producing power (power greater than 0 kW). An-

other 8.4 % of the data were removed because of the lidar not

functioning on at least one of its five measurement heights

within the turbine rotor disk.

Blade pitch angles greater than 6◦ were filtered out as well

to remove data that could be affected by curtailments. Blade

pitch angles were used to filter data in other studies (St. Mar-

tin et al., 2016; Sanchez Gomez and Lundquist, 2020). We

discarded data with blade pitch angles exceeding 6◦ for this

1 Hz data set. This threshold was chosen experimentally to

retain as many data as possible while still removing outliers.

This approach removed a further 8.1 % of the data.

Times when ζ could not be calculated because of issues

with any of the instrumentation used in creating ζ were re-

moved. This filter removed around 0.67 % of the data.

Because of our focus on power production in region II of

the turbine, we only considered data with REWS less than

or equal to the turbine’s rated wind speed. Once the REWS

is at rated speed, the turbine can be assumed to be operating

at rated power, regardless of whether the REWS is greater or

less than the nacelle wind speed. This filter removed 0.48 %

of the data.

Once the data had been filtered, we considered turbine

yaw error. The lidar 80 m wind direction may differ from

the turbine nacelle wind vane (Fig. 4a). Differences in di-

rection greater than 25◦ in either direction were filtered out

because of the large effects of yaw misalignment, as shown

in Fig. 4b, which shows the theoretical effect of the cosine,

cosine2, and cosine3 relationships between the yaw misalign-

ment and power production by a yaw-misaligned turbine

(Pedersen, 2004; Choukulkar et al., 2015; Mittelmeier and

Kühn, 2018). The curve that a yaw-misaligned turbine fol-

lows depends on the aeroelastic properties of a given turbine

itself (Fleming et al., 2014). Note that although these the-

oretical power impacts are symmetric, some work (Wagner

et al., 2010; Sanchez Gomez and Lundquist, 2020) suggests

that veering and backing have nonsymmetric effects. This fil-

ter removed 4.1 % of the data.

Finally, wind directions were removed during which either

the lidar or the turbine could be waked (gray areas in Fig. 3

resulting from the turbine locations shown in Fig. 1). To spec-

ify these directions, the difference in wind speed between the

lidar at 80 m (hub height) and the nacelle is calculated for 1◦

direction bins (direction measured by the lidar). A 99 % two-

tailed confidence interval is calculated for each bin:

x − t0.005
σ

√
N − 1

≤ µmetric ≤ x + t0.005
σ

√
N − 1

, (9)

where µmetric is the true population mean of the wind speed

difference in a bin, x is the sample mean of the wind speed

difference in a bin, t0.005 is the critical value of t at 99 % con-

fidence, σ is the sample SD of the wind speed difference in a

bin, and N is the number of values in the bin (Fig. 5; Wilks,

1962). Based on Fig. 5, we removed directions where the

99 % confidence interval on the mean difference between the

two wind speeds over a 15◦ group of direction bins changed

smoothly to be 1 ms−1 different from the mean without in-

https://doi.org/10.5194/wes-5-1169-2020 Wind Energ. Sci., 5, 1169–1190, 2020
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Figure 3. Lidar winds at 80 ma.g.l. from 04:00 UTC on 2 May 2018 until 23:59 UTC on 31 October 2018: (a) all stabilities, (b) convective

stabilities, and (c) stable stabilities. Data within the gray areas are later rejected because of possible wake effects, as detailed in Sect. 2.3.

Figure 4. (a) Histogram of the occurrences of yaw misalignments

(differences in wind direction between the 80 m lidar measured

wind and the nacelle hub-height measured wind). Vertical dashed

black lines denote −25◦ and 25◦, which are limits imposed by the

authors such that larger misalignments are filtered out. (b) Different

theoretical effects of the yaw misalignment on power production for

a misaligned turbine following different proposed cosine curves.

clusion of those directions (70–160 and 235–275◦). This re-

moval was done iteratively by hand by changing the removed

directions (and thus changing the mean without those direc-

tions). The southeasterly flow does not completely conform

to the quantitative process because of the physically based

inflection point, where the turbine is waked more strongly

closer to the east and the lidar is waked more strongly closer

to the south because of the layout of the equipment (Fig. 2).

However, those directions were removed as well. Discard-

ing these wind directions removed an additional 22.2 % of

the data. We repeated the same process based on the nacelle

wind direction, which resulted in smaller ranges of wind di-

rections (not shown). The wider direction bins (from the lidar

direction) were filtered.

All of these filtering processes left a total of nearly

4.8 × 106 s for analysis, or the equivalent of almost 2 months

of 1 Hz data (30.4 % of the total). Subsequent analyses were

applied to this subset of the data. All subsequent data per-

centage plots are based on the filtered data set.

Figure 5. Difference in wind speed between lidar 80 m wind speed

and hub-height nacelle wind speed binned by 1◦ direction bins with

99 % confidence intervals. Data within the gray areas were rejected

because of possible wake effects (Sect. 2.3).

3 Methods

Calculations of shear metrics are described in Sect. 3.1.

Methods for creating power curves are described in Sect. 3.2.

3.1 Shear calculation methods

REWS represents the effect of wind speed shear across the

rotor disk using discretized wind speed profiles. REWS is

calculated by

REWS =
3

√

∑i=3
i=0Az(i) to z(i+1)(

Uz(i+1)+Uz(i)

2
)3

A
, (10)

where z represents a height from the list of discrete heights

that the lidar measures across the rotor diameter (40, 60, 80,

100, and 120 m) and {i|(0,1,2,3,4)} indexes through those

heights, Az(i) to z(i+1) represents the area of the rotor disk

between two discrete heights z(i) and z(i + 1), Uz(i) repre-

sents the wind speed at the height z(i) and Uz(i+1) represents

the wind speed at the height z(i + 1), and Aturbine represents

Wind Energ. Sci., 5, 1169–1190, 2020 https://doi.org/10.5194/wes-5-1169-2020
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Figure 6. Schematic for calculation of the REWS. The turbine rotor

disk (circle) is divided into four discrete areas. Ai denotes the area

of the colored section from z(i) to z(i + 1). The
Uz(i+1)+Uz(i)

2
terms

denote the averaged horizontal wind speed used for a given colored

area. Lidar measurement heights are shown at right.

the overall area of the turbine rotor disk (approximated to

be a perfect circle of radius 40 m for our purposes). This

calculation follows the method of Wagner et al. (2008) but

with slight modifications because of the lidar data collection

at discrete heights, including the rotor disk bottom and top,

rather than heights found in the middle of each discrete in-

terval (Fig. 6). This averaging assumes that the winds vary

linearly across each 20 m span of the turbine and that their

average represents the true inflow across that area.

We use the REWS to calculate a difference from the na-

celle wind speed as 1REWSN-NTF:

1REWSN-NTF = REWS − Unacelle − NTF, (11)

where REWS is as calculated in Eq. (11), Unacelle is the wind

speed measured by the nacelle-mounted anemometer, and

NTF = (Ulidar − Unacelle) is a simple nacelle transfer function

(NTF). This simple NTF is a bias calculation between the li-

dar wind speed and nacelle wind speed of 0.686 ms−1 based

on all wind directions over the entire filtered data set. Al-

though the NTF varies slightly with direction (Fig. 5), those

variations are less than 10 % of the NTF itself. A true NTF is

not applied in part because the lidar does what a true transfer-

function-corrected nacelle measurement is supposed to do:

measure the wind speed most accurately, disregarding rotor

wake effects. The application of the NTF shifts the peak of

the histogram of 1REWSN-NTF to 0 as well (Fig. 8a).

A similar metric comparing the lidar hub-height wind

speed with the REWS, 1REWSL, is calculated by

1REWSL = REWS − Ulidar, (12)

where Ulidar is the hub-height lidar wind speed measurement.

1REWSN-NTF and 1REWSL quantify whether using

the nacelle wind speed underestimates (1REWSN-NTF or

1REWSL is negative) or overestimates (1REWSN-NTF or

1REWSL is positive) the rotor-disk-integrated winds en-

countered by the turbine.

The REWS with direction, REWSθ , represents the effect

of both wind speed shear and wind directional veer across the

rotor disk using discretized wind speed and direction profiles

(Choukulkar et al., 2015). Similar to how Eq. (11) integrates

wind speed across the rotor disk, REWSθ integrates the nor-

mal component of the flow across the rotor disk and therefore

considers the directional veering and backing:

REWSθ =

3

√

√

√

√

∑3
i=0Az(i) to z(i+1)

(

Uz(i+1) cos(1θz(i+1))+Uz(i) cos(1θz(i))
2

)3

A
, (13)

where z, i, Az(i) to z(i+1), Uz(i), Uz(i+1), and Aturbine are as

described for Eq. (11) and 1θz(i) = θlidar,z(i) − θnacelle is the

difference between the lidar wind direction at height z(i)

and nacelle wind direction (and is always between −180 and

180◦). 1θz(i) < 0 specifies that the lidar-measured wind di-

rection is “to the left” of the turbine as seen facing upwind,

while 1θz(i) > 0 specifies the lidar wind direction is “to the

right” of the turbine as seen facing upwind.

To quantify difference, 1REWSθ,N−NTF is calculated by

1REWSθ,N−NTF = REWSθ − Unacelle − NTF, (14)

where REWSθ is as calculated in Eq. (13), Unacelle is the

wind speed measured by the nacelle-mounted anemometer,

and NTF is the simple nacelle transfer function discussed

previously. The application of the NTF also shifts the peak

of the histogram of 1REWSθ,N−NTF to 0.

Similarly, 1REWSθ,L is calculated by

1REWSθ,L = REWSθ − Ulidar, (15)

where Ulidar is the hub-height wind speed measurement.

1REWSθ,N−NTF and 1REWSθ,L quantitatively show

whether using the nacelle wind speed underestimates

(1REWSθ,N−NTF or 1REWSθ,L is negative) or overesti-

mates (1REWSθ,N−NTF or 1REWSθ,L is positive) the rotor-

disk-integrated winds encountered by the turbine, consider-

ing veering and backing.

Wind shear is also quantified with the wind shear expo-

nent, α (Peterson and Hennessey, 1978; Emeis, 2013), calcu-

lated in a bulk fashion by considering only wind speed at the

top and bottom of a vertical layer of atmosphere, presuming

a logarithmically increasing profile:

α =
log

(

Utop

Ubottom

)

log
(

ztop

zbottom

) , (16)

where Utop and Ubottom are the lidar-measured horizontal

wind speeds at the top (120 m) and bottom (40 m) of the

rotor disk and ztop and zbottom are the heights of 120 and

40 m, respectively. While α may be simple to calculate and

is thus widely used (Peterson and Hennessey, 1978; Wharton

and Lundquist, 2012b; Vanderwende and Lundquist, 2012;
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Emeis, 2013), wind profiles may differ from a logarithmic

profile across the rotor diameter of a turbine (Wagner et al.,

2008). Additionally, α does not consider veering or backing

or even the magnitude of the wind speed.

We consider directional veer with two further metrics. The

simplest metric, βbulk, considers only differences in wind di-

rection at the top and bottom of the rotor disk:

βbulk =
θtop − θbottom

ztop − zbottom
, (17)

where θtop and θbottom are the lidar-measured horizontal wind

directions at the top (120 m) and bottom (40 m) of the rotor

disk (values constrained to lie between −180 and 180), and

ztop and zbottom are the heights of 120 and 40 m, respectively.

βbulk resembles depictions of layer-wise directional veer in

hodographs (MacKay, 1971), where the shear is only con-

sidered as a bulk quantity. A negative βbulk implies backing

of the wind across the turbine rotor disk (the wind rotates

counterclockwise as it increases in height), while a positive

βbulk implies veer (the wind rotates clockwise as it increases

in height). In a simulation, Wagner et al. (2010) found that

a clockwise veer increases turbine power production while

counterclockwise backing decreases the power produced be-

cause of differences in angle of attack for the turbine blades.

However, Sanchez Gomez and Lundquist (2020) found dif-

ferent results during an observational study such that veer

leads to a larger decrease on turbine power production than

backing. The βbulk calculation does not consider any general

yaw misalignment from the 80 m hub-height wind speed as

measured by the lidar that might occur at the same time as di-

rectional shear. Thus, it is impossible to know whether power

changes in βbulk conditions are a result of yaw misalignments

or directional shear. Like α, βbulk does not consider the hub-

height wind speed.

A more discrete veer metric, βtotal, considers shear at each

level:

βtotal =

3
∑

i=0

|θz(i+1) − θz(i)|

ztop − zbottom
(18)

where z and i are as described for Eq. (11), θtop and θbottom

are the lidar-measured horizontal wind directions at the top

(120 m) and bottom (40 m) of the rotor disk, and θz(i+1)−θz(i)

is the difference between the lidar wind direction at height

z(i+1) and the lidar wind direction at height z(i), constrained

to be between −180 and 180◦. This measurement assumes

that both veer and backing will decrease the power output of

a turbine and will do so symmetrically. βtotal should be con-

sidered for cases where the directional veer is nonmonotonic

across the rotor. Like βbulk, βtotal does not consider yaw mis-

alignment or the hub-height wind speed.

These metrics were visualized using an example lidar-

measured wind profile (Fig. 7) during a time period with

a ζ of 0.45 (convective). The turbine was producing power

Figure 7. Vertical profile of wind (a) speed and (b) direction during

a case of strong shear. Black circle markers indicate the heights with

lidar observations. The red X’s denote the nacelle wind speed and

direction during the case.

at this time, though the exact power is not given at re-

quest of the utility company. The nacelle wind speed was

4.50 ms−1; the turbine was oriented to winds from 285◦; the

lidar wind speed at hub height was 3.7 ms−1, and the lidar

wind direction at hub height was 286.8◦. The shear metrics

vary: the REWS was 5.36 ms−1, so the 1REWSN-NTF was

0.15 ms−1 and the 1REWSL was 1.66 ms−1; the REWSθ

was 5.28 ms−1 with a 1REWSθ,N−NTF of 0.08 ms−1 and

1REWSθ,L of 1.58; α was 1.83 (very large, according to

Walter et al., 2009); βbulk was −0.76◦ m−1, suggesting back-

ing; and βtotal was 0.76◦ m−1. This case underscores chal-

lenges with any NTF. Because the nacelle speed was actually

larger than the lidar speed for this case and the NTF was

created under the mean case assumption that the lidar speed

is greater than the nacelle speed, the addition of our NTF

caused 1REWSN-NTF and 1REWSθ,N−NTF to be lower than

they should be.

Depending on which wind speed is used, the turbine power

production for this case varies significantly, as calculated

from Eq. (1) and the variable wind-speed-dependent Cp val-

ues of Schmitz (2015), interpolated to 0.01 ms−1 bins. The

air density is disregarded so as not to reveal the elevation of

the test site. Instead, power is expressed as a percentage of

rated. These powers are meant only as example values as a

simple power curve created from basic principles and do not

surmise the real, more complicated, power curve.

The lidar wind speed suggests a power 4.7 % of rated;

the nacelle wind speed suggests a power 8.4 % of rated; the

REWS suggests a power 14 % of rated, and the REWSθ sug-

gests a power 13.4 % of rated (Table 2). For this case, the

discrepancies of power are ∼ 10 % of rated power simply be-

cause of the different wind speed assessments. Although ex-

act turbine power production cannot be given for this time,
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REWSθ and REWS are the most accurate metrics to the ac-

tual power production but still vary from it somewhat.

3.2 Power curve calculation

For each shear metric, we calculated three power curves by

segregating the actual 1 Hz power production recorded by

the turbine’s SCADA system (rather than using an ideal-

ized curve) into 0.5 ms−1 wind speed bins. The three power

curves are designated as such: a mean power curve (all the

power data in the bin), a high-case power curve (all the pow-

ers such that the shear metric at the time index of the power is

greater than a certain critical value of the shear metric), and a

low-case power curve (all the powers such that the shear met-

ric at the time index of the power is less than a certain critical

value of the shear metric). The critical values are determined

in Sect. 4.1.

Around the shear metric-based power curves, 99 % con-

fidence intervals were calculated using a two-tailed t test at

each bin following the confidence interval given in Eq. (9).

The mean power curve (regardless of shear conditions) is

considered to be the overall population mean for power pro-

duction, µ, so a confidence interval is not placed around the

data.

Two different independent variables (wind speeds) can ap-

ply to our data set, the lidar wind speed at 80 m (L) and

the nacelle wind speed offset by the NTF (N-NTF). For the

1REWSL case, the lidar wind speed (L) is used as the x axis.

For the other plots, the N-NTF is used for the x axis. If the

wrong wind speeds are used for the 1REWS case power

curves, the case means tend to collapse onto the mean power

curve.

Additionally, differences between the overall mean power

curve and the shear metric-based power curves were plot-

ted. The confidence intervals on these plots come from the

subtraction of the mean power curve from the bounds of the

confidence intervals.

4 Results

Section 4.1–4.3 describe distributions of shear metrics, de-

terminations of critical values of the metrics, and correlations

between the metrics. Section 4.4–4.10 describe how the shear

metric cases affect power production.

4.1 Histogram distributions of shear metrics and

determination of critical values

Histograms and cumulative distribution functions of the

shear metrics suggest a range of stability and shear condi-

tions during the test period (Fig. 8). In Fig. 8, the histograms

and the cumulative distribution functions are normalized sep-

arately so that the maximum value of each respective plot

is 1.

The differences between 1REWSN-NTF and 1REWSL,

Fig. 8a and b, emphasize the difference between the lidar

and nacelle measurements of hub-height wind speed as well

as the role of integrating the winds across the rotor disk.

Although 1REWSN-NTF (Fig. 8a) exhibits a wide distribu-

tion, 1REWSL (Fig. 8b) is centered more tightly around

zero, likely because the REWS is calculated from lidar values

and some variation in the wind occurs between the lidar and

the nacelle. The critical value used for 1REWSN-NTF is 0,

which segregates data with REWS greater than the offset na-

celle wind speed (0 < 1REWSN-NTF) and those with REWS

less than the offset nacelle wind speed (1REWSN-NTF < 0).

Likewise, the critical value used for 1REWSL is 0. Low-

1REWSN-NTF cases make up 51.6 % of the data, while high

cases make up 48.4 %. For 1REWSL, low cases make up

49.8 % of the data and high cases make up 50.2 %. Neither

of the 1REWSθ cases (N-NTF and L) appears because the

respective N-NTF and L histograms are nearly identical to

their 1REWS counterparts.

The distribution of α (Fig. 8c) shows that winds tend to

increase with height but that some cases of winds decreasing

from 40 to 120 m do occur, similar to Walter et al. (2009). To

segregate between high and low values of α, we use a thresh-

old for high of 0.2 (as in Vanderwende and Lundquist, 2012,

and Wharton and Lundquist, 2012b) and a low threshold of

0.1 (same as Vanderwende and Lundquist, 2012, and slightly

greater than Wharton and Lundquist, 2012b, who use 0.09).

High cases of α make up 37.4 % of the data, and low cases

comprise 40.7 % of the data.

Just as with 1REWSN-NTF and 1REWSL, a nearly 50–

50 split of the ζ segregation occurs (Fig. 8d). The critical

value is chosen to be 0, to split stable and unstable cases from

each other, as explained in Sect. 2.2. Stable cases make up

52.8 % of the data, while convective cases make up 47.2 %

of the data. Only ζ values between −100 and 100 are shown

in Fig. 8d to resolve most of the data.

The βbulk distribution (Fig. 8e), divided between veering

(βbulk > 0) and backing (βbulk), shows a surprising preva-

lence of backing conditions, in contrast to other observations

(Walter et al., 2009; Bodini et al., 2019b; Sanchez Gomez

and Lundquist, 2020). Veer occurs 34.7 % of the time, while

backing occurs 64.9 % of the time. We suspect that the com-

plex nature of the local terrain and/or the prevalence of cold

front passages during this summertime period supports more

backing than veering.

The βtotal distribution (Fig. 8f) is effectively an absolute-

valued βbulk with an increased number of low values because

of occurrences of nonmonotonic shear. For βtotal, the choice

of 0.15 as a critical value was chosen experimentally by split-

ting the histogram of βtotal by varying the parameter of the

critical value. Using 0.15 splits the data almost in half. The

low-βtotal case accounts for more than 54.1 % of the filtered

data, and the high-βtotal case accounts for more than 45.6 %

of the filtered data. Values other than 0.15◦ m−1 were ex-

plored, such as 0.1 and 0.2◦ m−1. Similar results were found
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Table 1. Summary of shear metrics.

Wind shear metric Equation Eq. no.

REWS

3

√

√

√

√

3
∑

i=0

Az(i) to z(i+1)

(

Uz(i+1)+Uz(i)
2

)3

A
(10)

1REWSN-NTF REWS − Unacelle − NTF (11)

1REWSL REWS − Ulidar (12)

REWSθ

3

√

√

√

√

3
∑

i=0

Az(i) to z(i+1)

(

Uz(i+1) cos
(

1θz(i+1)

)

+Uz(i) cos
(

1θz(i)

)

2

)3

A
(13)

1REWSθ,N−NTF REWSθ − Unacelle − NTF (14)

1REWSθ,L REWSθ − Ulidar (15)

α
log
(

Utop
Ubottom

)

log
(

ztop
zbottom

) (16)

βbulk
θtop−θbottom

ztop−zbottom
(17)

βtotal

3
∑

i=0

|θz(i+1)−θz(i)|

ztop−zbottom
(18)

Figure 8. Histograms and cumulative distribution functions (black curves) of metrics. Vertical black lines denote critical values and divide

each shear metric into a high and low case. The number of bins used is different for most plots, and the values were chosen experimentally.

(a) 1REWSN-NTF with a critical value of 0 with 400 bins. (b) 1REWSL with a critical value of 0 with 400 bins. (c) α such that the low case

is cut off at 0.1, the high-α case begins at 0.2, and the classic neutral value of α is shown at 1/7 (dashed red line) with 1000 bins. (d) ζ with

a critical value of 0 with 5000 bins. (e) βbulk with a critical value of 0 with 200 bins. (f) βtotal with a critical value of 0.15 with 300 bins.

Outlier values are not plotted to reduce visual clutter.

Wind Energ. Sci., 5, 1169–1190, 2020 https://doi.org/10.5194/wes-5-1169-2020



P. Murphy et al.: Wind shear and veer affects turbine power production 1179

Table 2. Theoretical percent of rated power from interpolated

Schmitz power curve and observed wind speeds.

Wind speed metric Wind speed Power

(ms−1) (% of rated)

Lidar 3.7 4.7

Nacelle 4.5 8.4

REWS 5.36 14.0

REWSθ 5.28 13.4

with 0.1◦ m−1 but with wider confidence intervals on the

high-βtotal case that lead to less significance. The 0.2◦ m−1

case was also similar to the 0.15◦ m−1 case, with worse sym-

metric divisions between high and low.

4.2 Polar distributions of shear metrics

To explore variations of the metrics with wind direction, we

created polar plots for each shear metric (Fig. 9) by binning

data into 5◦ bins using the lidar wind direction and plotting

the median of the data in the bins. Medians were chosen

rather than means to account for the long tails on measure-

ments, such as ζ and βbulk.

For 1REWSN-NTF and 1REWSL cases (and those includ-

ing direction, not shown), a strong variation with wind di-

rection occurs (Fig. 9a and b). Nearly all northerly wind di-

rection bins are low-1REWS cases, and nearly all southerly

wind direction bins are high-1REWS cases. This variation

with wind direction seems to arise from the terrain, with ex-

tremely complex terrain to the south because of an escarp-

ment and relatively flat terrain to the north (compared to the

escarpment).

Similarly, α varies strongly with wind direction (Fig. 9c),

though the variation is not as distinct as that of the 1REWS

cases. All the southerly wind directions are stable except

for the south to south-southeasterly neutral cases. Northerly

flow is typically neutral, with one convective point on the

data boundary to the west-northwest and a cluster of convec-

tive data ranging from northerly to north-northeasterly. The

north-northeasterly directions are the ones with the lowest

terrain elevation change in any direction, while the topogra-

phy just upwind of the equipment to the west-northwest and

east-northeast actually descends before the turbine.

Stability, as defined by surface-layer scaling parameter ζ

(Fig. 9d), resembles that defined by α (Fig. 9c). All southerly

cases are stable except one (on the boundary of south-

southeasterly flow), and some northerly directions are stable

as well. However, a majority of the data with northerly flow

are convective. North-northeasterly winds are convective (as

with convective α) though some westerly convective points

occur, which are not seen with α. However, stable points

still exist to the north, generally with westerly components.

This distribution could be a result of the plateau’s (mainly

southerly) escarpment wraps around the turbines to the west

somewhat. Because ζ involves friction velocity, this terrain

could be enough to shear the flow and cause ζ to be stable to

those directions. However, this might not be the case because

the terrain is not enough to cause westerly REWS metrics to

increase.

βbulk does not show a strong directional dependence:

nearly all directions have median low-βbulk values, which

implies a uniform dominance of backing winds (Fig. 9e).

However, the west to west-northwest values are high and

therefore generally positive, which implies a dominance of

veering winds from those directions. Given how few winds

come from the west-northwest, proposing a mechanism for

this veering is difficult.

The directional distribution of βtotal is somewhat similar

to that of α and ζ , where lower values of βtotal occur under

directions of convection (as denoted by α and ζ ) and greater

values of βtotal happen under directions of stability (Fig. 9f).

However, not all stable directions correspond to high βtotal

and not all convective directions correspond to low βtotal.

These results are somewhat expected and physically reason-

able because the lack of convection during the night allows

the atmosphere to decouple with height, increasing veering

or backing. However, these results are not as directionally

consistent as for βbulk.

4.3 Temporal distributions of shear metrics

To find variations of the metrics with time, each shear metric

is binned by local time hour and the median of the data in

each hour bin is plotted (Fig. 10). Medians were again cho-

sen rather than means to account for the long tails on certain

measurements such as ζ and βtotal.

Temporally, neither 1REWSN-NTF nor 1REWSL exhibits

a clear diurnal cycle. Both high- and low-1REWS periods

occur during both daytime and nighttime hours (Fig. 10a

and b). Additionally, the two cases do not covary with each

other by hour, as the L case changes sign between high and

low eight times, while the NTF-shifted nacelle wind speed

case only changes sign four times. The times at which the

sign changes between the two cases are not always the same.

However, when the two cases do change signs at the same

times (04:00–05:00, 15:00–16:00 LT), the sign changes at

those times are always the same.

A clear diurnal cycle manifests for α (Fig. 10c), with stable

values at night decreasing to neutral values during the morn-

ing transition and convective values during the day. Dur-

ing the evening transition, neutral values reoccur with sta-

ble cases reemerging later at night. The morning transition

takes longer than the evening transition because solar heat-

ing requires a few hours to heat the ground enough to begin

convection (Lapworth, 2005; Lapworth, 2009). Once the sun

begins to set, most of the remaining heat from the ground

is lost quickly because of convection, leaving the ground to

cool radiatively (on a clear night), meaning the evening tran-

sition should be relatively rapid (Lee and Lundquist, 2017).
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Figure 9. Polar median distributions of metrics for 5◦ direction

bins. Black circles denote nonzero critical values and divide each

shear metric into a high and low case. In the case where the met-

ric could take on negative values, the negative values were wrapped

to positive but colored following Fig. 8. (a) 1REWSN-NTF with a

critical value of 0. (b) 1REWSL with a critical value of 0. (c) α

such that convective cases have α < 0.1, stable cases have α > 0.2,

the industry-standard neutral value of α is shown at 1/7 (dashed

red line), and moderate α’s are gray. (d) ζ with a critical value of

0. (e) βbulk with a critical value of 0. (f) βtotal with a critical value

of 0.15.

Like α, ζ shows a strong temporal cycle (Fig. 10d). During

daytime hours ζ becomes negative (convective), and during

nighttime hours ζ becomes positive (stable).

Previous investigations of stability metrics for wind en-

ergy studies have relied on α as a stability metric (Wharton

and Lundquist, 2012b; Vanderwende and Lundquist, 2012).

We break up our α data based on those stability delineations

and see that α does have a strong daily cycle, which would be

expected for a stability metric in such a location, and refer to

high- and low-α cases as stable and convective, respectively,

to match with prior research. However, directionally, there

appears to be a strong influence of terrain on stability. Thus,

untangling the interaction between complex terrain and sta-

bility is challenging in this location.

ζ is treated in a similar manner to α. A strong diurnal

cycle emerges, which is to be expected; however, the direc-

tional variation is dominated by stable cases from directions

that could likely be influenced by topography. Because the

Obukhov length calculation incorporates friction velocity, it

(and thus ζ ) is clearly influenced by the terrain at this loca-

tion.

The diurnal cycle also emerges in βbulk (Fig. 10e). All

hours have median low-βbulk values which implies a domi-

nance of backing winds at all times of the day at this com-

plex terrain site. No hours exhibit a median veer. However,

the backing is weaker (less negative) during the convective

hours (as also suggested by α and ζ ). This behavior is phys-

ically reasonable because convective eddies mix momentum

through the boundary layer, coupling winds throughout the

boundary layer, such that the wind direction should vary lit-

tle with height during convection.

As explained earlier, βtotal is effectively the absolute value

of βbulk (but with a nonzero critical value of 0.15), and so

the temporal distribution of βtotal (Fig. 10f) somewhat resem-

bles that of βbulk (Fig. 10e). Stronger veer dominates from

midnight until 08:00 LT, likely because of nocturnal decou-

pling. The overall temporal distribution of veer appears in

sync with the temporal distribution of α; however, the choice

of the critical value of 0.15 (the choice of which is explained

in Sect. 4.1) affects the visualization of this distribution.

4.4 Further comparisons between selected metrics

While the median diurnal cycle suggests a relationship be-

tween ζ and α, we would like more robust evidence of this

correlation. To find such a correlation, we computed linear

correlation coefficients between ζ and α across 5◦ lidar di-

rection bins treating each 5◦ wind direction bin separately

because of the influence of terrain on the location. How-

ever, after calculating correlations of metrics within these 5◦

wind direction bins, we found little evidence of agreement

between these metrics. The strongest linear correlation val-

ues between ζ and α are only 0.4; these values occur in the

southerly bins. The maximum linear correlation between ζ

and α for northerly bins is less than 0.2, indicating very poor

correlation. We applied the same directional binning linear

correlation method to both types of 1REWS and ζ and both

types of 1REWS and α. No combinations had greater cor-

relations than 0.18 for any direction bin (figures not shown).

This lack of any directional correlation further suggests that

the metrics do not map directly to atmospheric stability met-

rics in this region with complex terrain.

Additionally, because the histograms of the direc-

tional and nondirectional REWS metrics are so similar

(Sect. 4.1), nondirectional and directional 1REWS power

curves strongly resemble each other. Power curves based on

1REWSθ,N-NTF and 1REWSθ,L are not statistically signif-
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Figure 10. Temporal median distributions of metrics for hourly bins. Black lines denote critical values and divide each shear metric into

a high and low case. (a) 1REWSN-NTF with a critical value of 0. (b) 1REWSL with a critical value of 0. (c) α such that the convective

cases are α < 0.1, stable cases are α > 0.2, and the industry-standard neutral value of α is shown at 1/7 (dashed red line) and “neutral”

0.1 < α < 0.2 are gray. (d) ζ with a critical value of 0. (e) βbulk with a critical value of 0. (f) βtotal with a critical value of 0.15.

icantly different from that of 1REWSN-NTF and 1REWSL,

respectively, so only results for 1REWSN-NTF and 1REWSL

are shown (Sects. 4.5 and 4.6, respectively). The greatest dif-

ferences between the directional and nondirectional REWS

metrics occur at high yaw misalignments, suggesting that a

general yaw misalignment is more impactful than any fur-

ther veer across the rotor disk under the specific conditions

our location faced.

4.5 ∆REWSN-NTF impacts on power production

1REWSN-NTF shows statistically significant differences

in actual turbine power production during cases of high

1REWSN-NTF (generally high shear) and low 1REWSN-NTF

(generally low shear or negative shear; Fig. 11). The dif-

ference between the metrics is greatest around 7.5 and

12.5 ms−1, as measured by the NTF-shifted nacelle wind

speed.

Further, power production during high-1REWSN-NTF

conditions significantly exceeds the mean power production

for conditions with NTF-shifted nacelle wind speeds be-

tween 3.19 and 13.70 ms−1 (Fig. 11). Generally, increases

range from around 20 to 40 kW but can exceed 60 kW (2.7 %

to 4 % of rated; Fig. 11b). The maximum average increase

in power from the mean in the significant range is between

45.73 and 60.44 kW (3 % to 4 % of rated) at 12.70 ms−1.

Power production during low-1REWSN-NTF conditions is

significantly less than the mean power production for NTF-

shifted nacelle wind speeds between 2.20 and 13.70 ms−1

(Fig. 11b). The maximum average decrease in power from

the mean in that range is between 28.20 and 29.27 kW (1.9 %

to 2 % of rated), which occurs at the NTF-shifted nacelle

wind speed of 7.70 ms−1 (Fig. 11b).

Although the impact on power is somewhat symmetric, the

high-1REWSN-NTF case leads to greater increases than the

decreases in the low-1REWSN-NTF case at high NTF-shifted

nacelle wind speeds above 8 ms−1 or so.

4.6 ∆REWSL impacts on power production

Actual turbine power production during high- and low-

1REWSL conditions varies significantly, showing statisti-

cally significant differences between high and low cases

(Fig. 12). The difference between the metrics is greatest

around 11 ms−1. Further, power production during high-

1REWSL (typically high-shear) conditions is significantly

greater than the mean power production for conditions with

hub-height lidar wind speeds between 4.07 and 12.57 ms−1

(Fig. 12b). However, just as with 1REWSL, that difference

varies depending on the hub-height lidar wind speed. In-

creases in power, compared to the mean power curve, gener-

ally range from around 5 to 40 kW (0.3 % to 2.7 % of rated)

but can exceed 70 kW (4.7 % of rated; Fig. 12b). The maxi-

mum average increase in power from the mean in the signif-

icant range is between 31.08 and 74.86 kW (2.1 % to 5 % of

rated) at 11.07 ms−1.

In contrast, power production during low-1REWSL (typi-

cally low-shear or negative-shear) conditions is significantly

less than the mean power production with hub-height lidar

wind speeds between 3.07 and 12.57 ms−1 (Fig. 12). The

maximum average decrease in power from the mean in that

range is between 22.56 and 25.10 kW (1.5 % to 1.7 % of

rated), which occurs at 9.57 ms−1 (Fig. 12b). At high li-
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Figure 11. (a) Power curves generated for both 1REWSN-NTF cases with 99 % confidence intervals. The mean power curve is shown by the

solid black line. (b) Difference between two 1REWSN-NTF cases and the mean power curve where an overlap with 0 shows insignificance.

The dashed red line corresponds to the nacelle rated wind speed of 14 ms−1 but is shifted up because of the NTF-shifted nacelle wind speed

being offset from the nacelle wind speed. The high uncertainty above rated nacelle wind speeds is an artifact of low data availability and

curtailment at rated speeds that we were unable to filter out.

dar wind speeds above 8 ms−1 or so, the high-1REWSL

case leads to greater increases than the decreases in the low-

1REWSL case.

4.7 α impacts on power production

Turbine power production does not vary clearly as a func-

tion of α (Fig. 13), suggesting that α is not a powerful metric

for assessing power production at this site. The low-α case

shows significantly greater power production than the high-α

case for nearly all NTF-shifted nacelle wind speeds between

around 8 and 12.5 ms−1. The high-α case generates signif-

icantly less power than the mean by 5 to 20 kW (0.3 % to

1.3 % of rated) for wind speeds from around 8 to 12.5 ms−1

(Fig. 13). The maximum average decrease in power from the

mean in that range is between 10.15 and 19.15 kW (0.7 %

to 1.3 % of rated), which occurs at the NTF-shifted nacelle

wind speed of 11.20 ms−1 (Fig. 13b). The low-α case gener-

ates significantly greater power than the mean by around 1 to

20 kW (0.1 % to 1.3 % of rated) from around 8 to 13 ms−1.

The maximum average increase in power from the mean in

that range is between 17.29 and 20.58 kW (1.2 % to 1.4 % of

rated), which occurs at the NTF-shifted nacelle wind speed

of 12.20 ms−1 (Fig. 13b). However, at lesser wind speeds

(below 8 ms−1), both the high- and low-α cases demonstrate

inconsistent oscillatory variability and even switch sign with

each other at NTF-shifted nacelle wind speeds just past the

cut-in wind speed. Some significant wind speed cases exist

below 8 ms−1; however, the differences in power from the

mean are very small.

This inconsistent and unsatisfying picture of the utility of

α in predicting power production led us to experiment with

changing the threshold critical α values. Setting a smaller

low bound (reducing the number of convective cases) only

increases significance in Fig. 13b until an α of 0.07, but that

α threshold fails to match the diurnal cycle. As such, the orig-

inal critical low bound of 0.10 is used. Setting a lower low

threshold than 0.10 or a higher high threshold than 0.20 does

not enhance differences between the metrics and the means.

Rather, the confidence intervals widen, because of fewer low

or high data points, while the mean values do not change,

leading to insignificance. Furthermore, because of the pre-

ponderance of neutral α values, only 78.2 % of the filtered

data set is used to create the high- and low-α curves. Neu-

tral values are included in the mean power curve. However,

changing our critical values (and thus placing neutral data

into the high and low cases) leads to greater insignificance.

The data for such insignificant results are not shown.

These results of α impacts on power production are some-

what counterintuitive to physically based expectations but

are similar to the results of Vanderwende and Lundquist

(2012), based on 2 months of data at this site several years

previously. High α is a measurement of high shear, and high

shear implies that the top of the turbine rotor disk is asso-

ciated with a greater wind speed than the hub height, which

should be associated with a greater wind speed than the bot-

tom of the turbine rotor disk. However, the greater wind
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Figure 12. (a) Power curves generated for both 1REWSL cases with 99 % confidence intervals. The mean power curve is shown by the solid

black line. (b) Difference between two 1REWSL cases and the mean power curve where an overlap with 0 shows insignificance. The dashed

red line corresponds to the nacelle rated wind speed of 14 ms−1 but is shifted up because of the NTF-shifted nacelle wind speed being offset

from the lidar wind speed. The high uncertainty above rated nacelle wind speeds is an artifact of low data availability and curtailment at rated

speeds that we were unable to filter out.

speeds near the top of the rotor disk may not be able to com-

pensate enough for the lesser wind speeds near the bottom of

the rotor disk because of complicated wind profiles that result

from the locally complex terrain. The greater wind speeds

near the top of the rotor disk also may not be orthogonal to

the rotor disk, because of veering or backing, and therefore

cannot be harvested efficiently by the turbine blades.

4.8 ζ impacts on power production

The impact of stability as quantified by ζ (Fig. 14) is more

easily interpretable than that of α (Fig. 13) but is not as clear

as that of the REWS metrics (Figs. 11 and 12), suggesting

that ζ has some skill in assessing power production even

though ζ is based on data collected near the surface.

The low-ζ case, associated with daytime conditions,

shows significantly greater power production than the high-

ζ case, associated with nighttime conditions, for nearly all

NTF-shifted nacelle wind speeds between 4 and 13 ms−1.

The high-ζ case generates significantly less power than the

mean by around 1 to 20 kW (0.1 % to 1.3 % of rated) for wind

speeds from around 4 to 12.5 ms−1 (Fig. 14). The maximum

average decrease in power from the mean in that range is be-

tween 2.49 and 18.18 kW (0.2 % to 1.2 % of rated), which

occurs at the NTF-shifted nacelle wind speed of 12.20 ms−1

(Fig. 14b). The low-α case generates significantly greater

power than the mean as well as significantly greater power

than the high case by 1 to 16 kW (0.1 % to 1.1 % of rated)

from 8 to 13 ms−1. The maximum average increase in power

from the mean in that range is between 13.26 and 15.82 kW

(0.9 % to 1.1 % of rated), which occurs at the NTF-shifted

nacelle wind speed of 12.20 ms−1 (Fig. 14b).

4.9 βbulk impacts on power production

The influence of βbulk on turbine power production depends

very closely on wind speed. Below 10 ms−1, βbulk has almost

wholly insignificant results (Fig. 15). However, above that

speed, small but significant oscillatory gains and losses in

power occur. High βbulk (veering) leads to power gains, while

low βbulk (backing) leads to power deficits. At wind speeds

below rated, confidence bounds on the high-βbulk case do not

exceed 20 kW (1.3 % of rated) of power increase and con-

fidence bounds on the low-βbulk case do not exceed 10 kW

(0.7 % of rated).

The difference in power production seen between veer and

backing at wind speeds above 10 ms−1 resemble the results

of Wagner et al. (2010). However, turbine yaw misalignment

is not explicitly controlled for in our paper and only mean

veer and backing are examined, when different values could

have different effects on power production. Additionally, val-

ues of βbulk tend to approach 0 for both high and low cases

(Fig. 16). As such, the significant portions of the power curve

above 10 ms−1 are not a result of higher or lower values of

βbulk occurring but rather of lower values of βbulk occurring

with faster wind speeds. That greater wind speeds see less

shear and veer is also physically reasonable because greater
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Figure 13. (a) Power curves generated for both α cases with 99 % confidence intervals. The mean power curve is shown by the solid black

line. (b) Difference between two α cases and the mean power curve where an overlap with 0 shows insignificance. The dashed red line

corresponds to the nacelle rated wind speed of 14 ms−1 but is shifted up because of the NTF-shifted nacelle wind speed being offset from

the nacelle wind speed. The high uncertainty above rated nacelle wind speeds is an artifact of low data availability and curtailment at rated

speeds that we were unable to filter out.

Figure 14. (a) Power curves generated for both ζ cases with 99 % confidence intervals. The mean power curve is shown by the solid black

line. (b) Difference between two ζ cases and the mean power curve where an overlap with 0 shows insignificance. The dashed red line

corresponds to the nacelle rated wind speed of 14 ms−1 but is shifted up because of the NTF-shifted nacelle wind speed being offset from

the nacelle wind speed.

wind speeds tend to mechanically mix momentum through

winds at all heights.

Finally, overall, nearly twice as many low-βbulk data (veer-

ing) exist than high-βbulk data (backing), remarkably differ-

ent from other field campaigns in flat terrain (Walter et al.,

2009; Sanchez Gomez and Lundquist, 2020) or offshore (Bo-

dini et al., 2019b). This disparity suggests that the confidence

intervals around the high (veer) case would be tightened with

more data.
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Figure 15. (a) Power curves generated for high and low βbulk with 99 % confidence intervals. The mean power curve is shown by the solid

black line. (b) Difference between high and low βbulk and the mean power curve where an overlap with 0 shows insignificance. The dashed

red line corresponds to the nacelle rated wind speed of 14 ms−1 but is shifted up because of the NTF-shifted nacelle wind speed being offset

from the nacelle wind speed.

Figure 16. Mean high and low βbulk as a function of wind speed

from (a) the lidar at 80 m and (b) the hub-height NTF-shifted na-

celle wind speed with 99 % confidence intervals. Means are used

rather than medians to agree with means used for power curve plots

and to put confidence intervals around the data.

4.10 βtotal impacts on power production

Power gains and losses for βtotal exhibit differences between

high directional veering or backing and low directional veer-

ing or backing from 4.5 to 12.5 ms−1 (Fig. 17). Veering or

backing undermines power production. Low values of βtotal

imply a lack of directional shear across the turbine rotor disk,

meaning that the winds across the rotor point orthogonally at

the rotor plane and thus will not decrease power. Veering or

backing reduces the magnitude of the winds orthogonal to the

rotor disk, undermining power production. Low βbulk hap-

pens more often than high βbulk by a factor of nearly 2. This

lack of symmetry leads to a decrease in power production be-

cause low βbulk leads to a decrease in power production and

high βbulk does not occur frequently enough to make up for

it.

Additionally, high values of directional shear exert a

greater impact on power production (just over 10 kW or

0.7 % of rated) than low values of directional shear (which

never exceed 10 kW or 0.7 % of rated). At greater wind

speeds, the high-βtotal case appears to lose even more power.

This disparity is physically reasonable because the more the

direction veers, the less power the turbine can extract from

the atmosphere compared to a nonveered flow.

5 Discussion and conclusions

In this article, we explore how wind shear, wind veer, and at-

mospheric stability impact actual power production of an op-

erational megawatt-scale wind turbine at a commercial wind

farm in the high plains of North America. SCADA systems

measured the turbine’s power productions at 1 Hz over a pe-

riod of nearly 6 months. Additional measurements from a

vertically profiling Doppler lidar and a meteorological mast

allow us to derive wind shear and stability metrics 1REWSL,

1REWSN-NTF, α, ζ , βbulk, and βtotal.

After intercomparing these stability metrics, we use them

to evaluate the power production in different regimes of shear

by creating power curves for the different shear regimes. We

evaluate power curves in terms of absolute changes in the

power production of the turbine for the given regimes of

shear. Percent changes (in rated power) are recorded as well.
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Figure 17. (a) Power curves generated for high- and low-βtotal cases with 99 % confidence intervals. The mean power curve is shown by

the solid black line. (b) Difference between two βtotal cases and the mean power curve where an overlap with 0 shows insignificance. The

dashed red line corresponds to the nacelle rated wind speed of 14 ms−1 but is shifted up because of the NTF-shifted nacelle wind speed

being offset from the nacelle wind speed.

REWS and its difference from hub-height wind speed

from either the upstream lidar (1REWSL) or the nacelle

anemometer (1REWSN-NTF; Figs. 11 and 12) demonstrate

the clearest impact of the wind profile on power production.

These REWS-based metrics also rely on the most clear-cut

bounds that could straightforwardly be applied to other tur-

bines and wind farms. Significant differences between power

curves created with REWS with and without direction (be-

tween REWSθ,L and REWSL and between REWSθ,N-NTF

and REWSN-NTF, respectively) do not occur at this site. How-

ever, small differences between REWS with and without di-

rection do exist.

Both high-1REWS cases (0 < 1REWSL and 0 <

1REWSN-NTF) lead to significantly greater power produc-

tion than the mean power production (by up to 74.86 and

60.44 kW or 5 % and 4 % of rated, respectively) from li-

dar speeds of 4.07 to 12.57 ms−1 and NTF-shifted nacelle

wind speeds of 3.19 to 13.70 ms−1, respectively. Both low-

1REWS cases (1REWSL < 0 and 1REWSN-NTF < 0) lead

to significantly less power production than the mean power

production (by up to 25.10 and 29.27 kW or 1.7 and 2 % of

rated, respectively) from lidar speeds of 4.07 to 12.57 ms−1

and NTF-shifted nacelle wind speeds of 3.19 to 13.70 ms−1,

respectively. The wind speed ranges where REWS is effec-

tive are the widest wind speed ranges of any of the metrics.

Although REWS is the most illuminating metric at

this site, neither high-lidar nor low-lidar nor nacelle-based

1REWS cases occur with a consistent temporal pattern

through the data set (Fig. 10a and b). Terrain influences may

dominate REWS at this site. High 1REWS, quantified from

both lidar-based and nacelle-based REWS, occurs more of-

ten during southerly flow (Fig. 9a and b), with inflow com-

ing from low elevations up and over an escarpment, than for

northerly flow, generally descending from higher terrain. Al-

though this terrain influence is site specific, the REWS ap-

proach is likely more general and can be applied to other

sites.

These results confirm the Sark et al. (2019) conclusion

that measurement of REWS for power production purposes

is necessary for complex terrain sites. Cost–benefit analyses

are advised on the cost of implementation of installation and

upkeep of inflow-sensing equipment (like a Doppler lidar) to

provide REWS measurements and the benefit of REWS for

power production prediction. Of course, such equipment may

be necessary for other purposes, such as adaptive alignment

of turbines for wake control (Fleming et al., 2019).

Although previous results for the power law coefficient α’s

effect on power production (Wharton and Lundquist, 2012b;

Vanderwende and Lundquist, 2012), suggest useful relation-

ships, we find that, at this site, α results are too sensitive to

chosen critical values and are not as clearly interpretable as

the REWS results. For low-α cases, significantly more power

is produced than the mean around the middle of region II

(from 8 to 12.5 ms−1 or so; Fig. 13). High-α cases at nacelle

speeds in that same portion of region II lead to significantly

less power production than the mean (Fig. 13). However, at

slower wind speeds (below 8 ms−1), these same results only

apply to a lesser change in power production, and the two

cases are often not significantly different from each other or

the mean case. Part of the explanation of the muddled results
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is that α is only a measure of the shear and not of the actual

wind speeds that comprise the inflow profile. Although the

power curves are plotted as a function of the nacelle wind

speed, this value may differ from the true wind speed at na-

celle height and that speed may vary more over the rest of the

rotor disk as well.

The power law coefficient α exhibits other weaknesses.

Interestingly, wind speed shear α and wind direction veer in

the form of βbulk and βtotal fail to show a clear relationship

with each other at this location. Likewise, α does not corre-

late with REWS metrics or ζ . Finally, α has the issue of data

loss. Neutral conditioned data are not considered, meaning

that around 22 % of the filtered data were not used. In con-

trast, because of the clear demarcations for the REWS met-

rics, 100 % of the REWS data could be used.

Additionally, these α results contrast somewhat with pre-

vious findings by Wharton and Lundquist (2012b). In a dif-

ferent site with channeled flow that could not exhibit veer,

they found that high α increased power during wind speeds

from 8 to 10 ms−1. Although α does exhibit a strong daily

cycle (convective in local daytime hours and stable at night),

it also varies strongly with direction (stable when coming

over very complex terrain, neutral otherwise, and convective

when the fetch covers the flattest terrain). As such, the α in

our case functions greatly as a descriptive indicator of inflow

characteristics. This disparity in topography could account

for the difference in findings.

However, our results agree well with those found by Van-

derwende and Lundquist (2012), whose study used many

more turbines over a shorter time period several years ago at

this site. They assessed power curves with α bounds as well.

They found that low α increases power at wind speeds in the

higher-wind-speed portion of region II of the power curve,

which generally follow our results between 8 and 12.5 ms−1

or so. Our findings for α require that winds with low α must

take on a REWS profile that lowers the turbine’s equivalent

wind speed below the hub-height wind speed (and vice versa

for the high-α case).

The surface-layer scaling parameter ζ efficiently segre-

gates this turbine’s power production into high and low cases.

However, the ζ impacts on power are small, constrained to

less than 20 kW (1.3 % of rated) difference from the mean

in either the high or the low case (Fig. 14). Like α, ζ varies

strongly with both time of day (convective in local daytime

hours and stable at night) and direction (stable when coming

over complex terrain but convective otherwise), but α and ζ

do not correlate linearly with each other by direction, further

obfuscating attempts to draw stability conclusions from these

metrics at this location.

The direct assessment of wind veering and backing, βbulk,

only shows small significant changes in power at wind speeds

above 10 ms−1 (Fig. 15). At those speeds, low βbulk (back-

ing) leads to less power production than the mean case (un-

der 10 kW or 0.7 % of rated) while high-βbulk cases (veer-

ing) lead to greater power production than the mean case

(up to 20 kW or 1.3 % of rated). These results agree with

simulations (Wagner et al., 2010). However, at another (flat)

site, Sanchez Gomez and Lundquist (2020) found that both

veer and backing decrease power compared to cases with

no veering or backing; that study distinguished high veer

from low veer, whereas we only contrast veering and back-

ing. Like α, βbulk lacks information about the inflow wind

speeds. However, simply using REWS would mitigate this

problem. βbulk shows a consistent daily cycle – all hours are

dominated by backing at our site, but backing weakens dur-

ing the day (when α and ζ are convective; Fig. 10e). βbulk

does not show a strong directional cycle, except to say that

westerly flow tends to be the only flow that introduces veer

rather than backing and westerly flow is uncommon at this lo-

cation (Fig. 9e). As with α, care should be taken to consider

the root cause of the directional sheer veer if it should be used

by itself in future work. βbulk also suggests that βtotal is only

a useful measurement at wind speeds of less than 10 ms−1,

where the changes in power for veer and backing do not sig-

nificantly differ from the mean (Fig. 17).

Overall, we find that REWS has the most predictive power

for power production from an operational megawatt-scale

wind turbine. REWS has the most significant results that oc-

cur over the largest portion of the power curve. In addition,

because REWS simply functions as a description of the wind

at a given instant, rather than a prescription (such as stabil-

ity that might be affected by factors such as topography),

REWS is the simplest metric to understand and apply. Thus,

findings for both high and low 1REWSL and 1REWSN-NTF

likely hold at other locations and for other seasons and condi-

tions, although the relationship between the frequency of oc-

currence of high and low cases would likely change at other

locations.

Such results show that improvements in power production

prediction in region II of a power curve are certainly greater

on average than 15 kW (1 % of rated power) for both high and

low cases of 1REWSN-NTF or 1REWSL compared to the

mean. The maximum increases in power production predic-

tion can also exceed 4 % of rated power or even more when

compared to the average power at a given wind speed. REWS

is straightforward to implement and does not rely on assump-

tions or presumptions about the wind or stability.

The next step of this work would be to implement REWS

into controls schemes for individual turbines or for entire

wind farms. However, to do so, accurate measurements must

be made of inflow across the rotor diameter from towers or

remote sensing instruments. Likewise, for implementation

into a wind farm’s controls, these measurements would have

to be spatially co-located somewhat with the turbine(s) they

would affect, as inflow directions can change across the di-

mensions of a wind farm. Hub-mounted lidars are a promis-

ing method of such inflow characterization (Harris et al.,

2007; Mikkelsen et al., 2013). Applying these methods to

that inflow could help align the turbines further to maximize

the potential of the inflow (Wagner et al., 2010; Fleming
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et al., 2014). Although this study found no meaningful differ-

ence between 1REWS and 1REWSθ , other locations with

greater directional veer, influenced by meteorological phe-

nomena such as cold pools (Wilczak et al., 2019; Redfern

et al., 2019) or offshore decoupling (Bodini et al., 2019b),

could find a more significant impact of the wind direction on

the REWS.
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