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We want high-quality survey data

* The fabrication of interviews by interviewers is a

classic problem in survey research
Crespi 1945; Gomila et al. 2017

* The field has developed best practices for
minimizing, identifying fabrication

AAPOR 2003; Cohen & Warner 2021; Kuriakose & Robbins 2016;
Montalvo et al., 2018; Robbins, 2018; Slomczynski et al., 2017

e Questions remain about how common fabrication
is and its effects on inference



How does fabricated data affect

our inferences?

 Wholesale fabrication is rare
Bredl et al., 2013; Cohen & Larrea, 2018; Menold et al., 2013

 But even low rates of fabrication can bias estimates
(e.g., due to lower variance, middle responding)
DeMatteis et al., 2020; Gomila et al., 2017

e Evidence is limited: it is hard to observe the
counterfactual



Enter Venezuela, 2016-7

e 460 fabricated
interviews (“fakes”)
were identified and
replaced during
AmericasBarometer
fieldwork

 We matched 420
fabricated interviews
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Does fake data bias inferences?

We examine differences in datasets including
fabricated interviews or matched valid interviews

1. Differences in averages, distributions,
nonresponse

2. Differences in multivariate regression models



Some differences in means and
distributions across data sets

Item-Level Effects of Fabricated Data

Comparison Fake vs. Compromised
Matched vs. Clean

Difference in means 11.5-48.7% 0.0-13.3%

Average magnitude (in SD) 0.20-0.31 0.08-0.11

Difference in variances 8.9 —46.0% 0.9-4.4%
[tem nonresponse 0.0 —20.4% 0.0 -0.9%

Note: Values result from tests of 115 1ICmsS, COompadliuig uic i1auviivailcu

interviews and the matched real data (N = 420) as well as the compromised
data and the clean data (N = 1,489).




But few di
models
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Why don’t we see more
differences?

* Interviewers fabricate plausible responses in
response to fieldwork constraints

* Use a “mixed strategy” — fabricating some, not all

* Different implications from fastest path and middle
response expectations



Why don’t we see more
differences?

To assess, we compare the “true-fake” data to three
simulated datasets:

1. The fastest path (identified by undergraduate
RAS)

Data with imputed middle responses

Data with imputed random responses



‘erences in simulated

Larger di

Item-Level Effects of Fabricated Data

Comparison Faked Random Speeding Middling

Average magnitude (in SD) 0.13-0.30 0.65-0.75 0.73 - 0.82 0.63 -0.72
Difference in variances 8.9-46.0% 266-664% 77.9-929% 72.6-98.2%
Item nonresponse 0.0 —20.4% - 50.4 — 78.8% —

Note. Values result from tests of 113 items. In each case, we generate results using either no adjustment to the
standard errors as well as the Bonferroni correction, Hochberg’s step-up procedure, and Holm’s step-down
procedure — and we report the range of values. We use a baseline cutoff of p < .1 for statistical significance.



In closing

e Data fabrication is egregious — not recommended!

* However, even very high rates of fake interviews
may not bias inferences

* Fabricators may use their knowledge of the
population to create plausible responses



Thanks!

mj.cohen@uga.edu
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