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Abstract. This paper shows how to achieve flexibility in design automat systems 

through the introduction of knowledge objects and through the adoption of an ori-

ented view of the product structure. To demonstrate the ideas a novel tool called 
Howtomation© Suite (for automated know-how) is presented. The new tool han-

dles the addressed issues and has been successfully implemented at one company. 

That successful implementation is described at end of the paper. 
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Introduction 

The ability to design and manufacture individualized products increases the competi-

tiveness of manufacturing companies and is sometimes the business case to them [1]. 

Three opportunities have been pointed out for Swedish industry to stay competitive on 

the global market: individualized products, resource-smart design and production, and 

a focus on customer value [2]. These opportunities can be achieved by efficient design 

and manufacture of customized products. However, that requires developing and inte-

grating knowledge based systems for products and production [3]. The research pre-

sented in this paper is part of a research project aiming at these targets. 

The realization of individually engineered products can be supported by the adop-

tion of an automated engineer-to-order (ETO) [4] approach in the quotation, the devel-

opment, and the production preparation processes. Automating the ETO processes 

allows a company to efficiently adapt their products to vast variations of customers’ 

specifications bringing more value to the customer and profit to the company by effi-

cient use of engineering staff, material, and manufacturing resources. The core of such 

a company is the exercising of a rich and diverse knowledge base about the products, 

their production and the required resources for design and manufacture enabling the 

company to quickly go from quotation to engineering the product and to production, all 

while maintaining the most competitive pricing. To successfully develop, implement, 

and maintain that core activity requires the development and implementation of com-
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puter systems for efficient design of product variants with associated specifications for 

automated manufacturing.  

Since the development of a design automation system is a significant investment in 

time and money and since experience has shown that problems often arise when such 

systems are to be implemented in current operations (i.e. after proof of concept phase) 

it is vital to discuss some critical issues. One of few things we can infer about future is 

that things are going to change. That is why flexibility is the main focus in this paper. 

Further, since manufacturing companies deal with physical products, issues with ge-

ometry is another important aspect addressed here. 

1. System architecture for flexibility 

Knowledge based systems (KBS) which is a result of decades of research within the 

field of artificial intelligence has proven to be applicable to a wide range of engineering 

design issues [5] also forms the foundation of the architecture described in this paper. 

A KBS has two vital components, the knowledge base, and the inference engine. KBS 

is based on the strategy to formalize the knowledge to be automated and store it within 

the knowledge base and to let the inference engine search for consistent states of the 

knowledge, states where no conflicting statements exist. In practice this means that the 

formalized knowledge is separated from the computer routines that are applying the 

knowledge. The knowledge to be stored in the knowledge base can be of different 

kinds, and there are many ways in which the inference engine can act [6-8]. 

The complexity of an artifact can be measured in two dimensions including its 

physical realization, and the knowledge required to comprehend it. There are artifacts 

that cannot be made by a single person, and there are artifacts that cannot be compre-

hended by a single person [8]. Just as the former calls for decomposing the product into 

modules, the latter calls for dividing the knowledge into chunks. Consequently, two 

ways of achieving flexibility are identified. One is by applying an object orientated 

approach to the knowledge-base. The other is to apply an object orientated approach to 

the product structure.  

1.1. Object Oriented Knowledge Base: Knowledge objects 

Object-oriented programming offers the possibility to develop highly flexible software. 

To apply object oriented programming to the knowledge base a class of objects called 

knowledge objects has been proposed in [9, 10]. Figure 1 illustrates one way of imple-

menting the knowledge object class. As seen, a knowledge object contains a list of 

input parameters (realized as a manager object that is basically a collection), a list of 

output parameters, and a method (execution method) for processing input parameters to 

make unknown output parameters known. Other fields may be added to a knowledge 

object to make the system well-functioning. Proposed additional fields are listed and 

explained in the Table 1 (which is not a complete list of the fields used in the system 

described at end of the paper).  
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Figure 1. Knowledge object class definition. 

Table 1. Attributes useful to implement for the knowledge object class. 

Field Name Purpose 

Active Controls whether the knowledge object is active or not. 

Categories Categorize the knowledge automated by the knowledge object. 

Constraints Specifies when the knowledge object is applicable. 

ExecutionArguments Serves as sockets to the computer routine specified as execution method. 

ExecutionDuration Keeps track of how long it takes to execute the knowledge object. 

Execution Message Stores the resulting messages of executing the method. 

ExecutionMethod The method to run when executing the knowledge object. 

HistoricalValues Stores result values. 

InputParameters List of the input parameters for the knowledge object. 

Name The name of the knowledge object. 

Optimizable Specifies whether the knowledge object can be put into an optimization 

loop. 

OutputParameters List of the input parameters for the knowledge object. 

Owner Specifies the user responsible for the accuracy of the knowledge automat-

ed by the knowledge object. 

Precision Specifies the precision of the knowledge represented by the knowledge 

object. 

RemeberHistoricalValues Specifies whether to store input and output values.  

Status Indicates the current status of the knowledge object. 

 

When developing the knowledge objects, they should be defined in a way that makes 

them autonomous. Methods used to process the parameters should preferably be auto-

mated external software applications so that the knowledge representation is put out-

side of the knowledge handling system. The external applications should be selected so 

that the resulting design automation system contains user readable and understandable 

knowledge, and is easy to use.  The benefits of developing knowledge objects that are 
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autonomous using common and wide-spread applications as methods are two-folded: 

the knowledge can be used manually without the design automation system, and it is 

easy to find people skilled enough to use the very same knowledge the design automa-

tion system does - it makes the knowledge more human-readable. 

1.2. Object Oriented Product Structure 

The second way of achieving a high degree of flexibility in a design automation system 

is by adopting object orientation to the product structure. When taking such a perspec-

tive on the product structure all components are viewed as objects with dimensions or 

other features as attributes. These objectified components can subsequently be wrapped 

as knowledge object where the attributes serve as input or output parameters. This can 

be achieved using any parametric CAD-system.  

When taking an object-oriented view on the components it has proven to be good 

praxis to communicate dimension values and suppress states of features through user 

defined parameters. The parameters should then be put at an appropriate level in the 

product structure, which is in the tree leafs if possible. In a case where a parameter is 

affecting several components it is put at the lowest possible level in the product struc-

ture above the components it is controlling, see Figure 2. Any rule or calculation are 

put at the same level as its dependent parameters. Parameters in assemblies are inherit-

ed by descendant subassemblies and components and are repeated in them. In practice 

this means that the introduction of a parameter in a subassembly controls any such 

parameter in its descending components. This behavior can be achieved by functionali-

ty in the most common CAD-systems (the functions have different names for example 

publications, external link, reference), but can also be achieved by macro program-

ming. Consequently, when replacing a descendant component it will automatically be 

updated to parameters in the ascendant assembly. 

 
Figure 2. Parameters and rules should be put in leaf nodes as far as possible. Parts and components inherit 

parameters from ascending assembly. The brackets surrounding the rule-nodes indicates that, if any, only 

rules intuitively connected to the geometry should be put in the CAD-models. 

1.3. Inference engine  

The inference engine is used to automate the formalized knowledge stored in the 

knowledge-base. The inference engine arranges the knowledge in the knowledge-base 

in an executable order. Two main types of search-based inference engines exist: for-

ward and backward-chaining [11]. A forward-chaining (also called data-driven) mech-

anism uses the information initially presented to fire all applicable rules. The method 

has two steps. In the first step, triggered rules are listed. In the second step, an appro-

priate rule from the triggered ones is selected and fired. After firing the selected rule, 
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all triggered rules are listed again and so on, until no triggered rules are found. If 

knowledge objects are used to build the knowledge-base, the inference engine searches 

for knowledge objects with all input parameters known. It then selects one of the found 

knowledge objects to execute the method defined in that knowledge object to calculate 

output parameters using the input parameters. When the method has run, the stock of 

known parameters is updated, and a new search for executable knowledge objects is 

initiated (depth first) or executes the next knowledge object in the found executable 

knowledge objects (width first). 

A backward-chaining mechanism (also called goal-driven) is fed with goal states. 

The mechanism then searches backward to see how to end up at that state. When 

knowledge objects are used, the knowledge-base is searched for knowledge objects to 

fire to find the queried parameters. The user is later asked to put in required infor-

mation. The backward-chaining mechanism is more effective at runtime than the for-

ward-chaining one. This is because executions of unnecessary methods are avoided.  

Event handling is available in modern operating systems. Here, it is proposed that 

the inference engine should make use of these functions in the operating systems. That 

gives an event-based, forward-chaining search mechanism that works as follows. When 

a parameter is changed, an event is raised in the system notifying that a change has 

occurred. This triggers an update of the conflict set. If there still are knowledge objects 

left in the conflict set, one of them is selected to be executed, in accordance with im-

plemented rules for selection. When the object is executed, its output parameters are 

changed, and the conflict set is updated, and so on. When implementing the inference 

engine using event handling, a significant amount of loop algorithms are avoided and 

when running the system, the inference engine is triggered automatically on change. 

2. Dealing with geometry 

What makes computer systems for automated engineering design outstandingly hard to 

develop is that geometry is a big share of the problem domain. It has proven that geo-

metrical problems are hard to automate, some examples are found in [12]. Two main 

strategies exist to deal with this situation, one is to create template CAD-models that 

are parametrically and/or topologically modified, and the other is to generate the geom-

etry programmatically. The former strategy is here referred to as the template based 

systems and the later one is referred to as generative systems, it is of course possible to 

combine the two strategies into hybrid systems.  

The advantage of the template based approach is that it is easy to predict the out-

come of the system, what you see is what you get. In the CAD-system the engineers 

can define parameters and add rules for updating dimensions and suppress-

ing/activating features to make the components turn into shapes corresponding to given 

parameters. The drawback is that the template based approach is not scalable so that 

over time when adding more and more features the CAD-models are hard to maintain 

and hard to instantiate. This is because the template models in fact contains the com-

plete set of the design space of the component so when instantiating the models, the 

entire design space is instantiated again. The system gets fragile when starting to in-

stantiate such CAD-models into assemblies.  

The advantage of generating the CAD-models programmatically is that the result-

ing models are lightweight compared to the template approach. It is also possible to 

make the generated models much more general so that the resulting models might look 
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completely different. The drawback is that it is hard to predict the outcome, and that it 

is hard for the engineers to modify the models, as they are represented by computer 

programming code. Real systems are of course hybrids. 

2.1. Where to put the knowledge repository 

It is possible to implement the knowledge-base in stand-alone automated engineering 

design systems or into CAD-integrated KBE-systems (KBE is the acronym for 

Knowledge Based Engineering).  

When using a CAD-integrated KBE-system to implement the knowledge-base, the 

rules will be listed in the model-tree among the different features. This can be valuable 

since it is easy to see what geometries the rules are connected to. It also makes the user 

feel familiar with the user interface. But the knowledge-base in such a system can be 

cumbersome to understand when the knowledge-base contains a vast number of rules 

compared to the number of geometry features.  This is especially true if many of the 

rules do not deal with the geometry. In such cases a stand-alone automated engineering 

system should be used. 

Another issue to consider is that when using a CAD-integrated KBE-system, the 

knowledge is bound to the CAD-system. This means the knowledge-base will be diffi-

cult to translate to other CAD-systems. In stand-alone systems, knowledge is automat-

ed outside the CAD-models and design proposals can be generated in native or neutral 

CAD-formats. Another benefit of putting the knowledge in a system outside the CAD-

system is the distinct interface between CAD and the knowledge, which is usually 

realized by a set of parameters helping clarifying which parameters are the governing 

ones of the design. These parameters are the attributes of the objects when taking ob-

ject oriented perspective of the product structure. One drawback with the stand-alone 

approach is that it can be hard to implement a knowledge-base containing mostly geo-

metric relation-ships into a stand-alone KBE-system. 

3. Constraints, constraints, and constraints 

Product and production development involves the identification and propagation of 

active constraints. In product development these constraints often are referred to as the 

dimensioning parameters, and in production development they are often referred to as 

the production window. These constraints originates from laws of physics, legacy, 

economics, or customer and affects the physical realization of the product. These con-

straints can be explicitly defined using parameters implemented in the knowledge base 

becoming input parameters, or implicitly defined introducing new parameters that be-

comes output parameters. 

More abstract, we also have constraints on the knowledge used to derive the prod-

uct indicating the valid range of it. Take for instance the commonly used slender rod 

assumption. It is said to be valid if the length of the rod is much greater than the cross 

section of it (factor 10 is widely used), which is a constraint on the knowledge itself.  

Finally if introducing optimization algorithms to search for optimum solutions 

mathematically modeled constraints have to be induced from the above mentioned 

constraints. Hence, it is important for design automation systems to be able to process 

constraints. Theoretical foundation for that is for example found in [13, 14]. 
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4. Howtomation Suite 

To verify the concepts presented in the previous sections a novel tool was developed 

and applied to a real life example. The Howtomation suite is based on the Mi-

crosoft .net platform and consist of five parts: core definitions for parameters, inference 

engine, knowledge objects, graphical user interface components, and a constraint solv-

er.  

The company where the Howtomation Suite was applied develops and manufac-

tures heated runner systems for injection molding of plastic materials.  

4.1. Hot runners for injection molding 

One reason for making the automation at the company was that the product is an ETO-

product. Every produced hot runner system is unique. The runner systems differ in 

layout, see for instance Figure 3 where an examples of the X-shaped layout is shown, 

there are also H-shaped layouts, circular layouts, and custom layouts. The runners are 

connected to the tooling cavity through in-gates. The number of in-gates is up to 48 for 

a single system, see Figure 3. There are 5 series of in gates that all can have two differ-

ent types of bushings, be of length ranging up to 600 mm, and have 9 different types of 

end caps.  

 
Figure 3. Example of hot runner system with 48 gates in X-layout. 

4.2. Knowledge Objects 

The design of a runner system starts with planning the layout, which is done manually 

and results in a CAD-model containing a sketch including lines schematically illustrat-

ing the runner system. The subsequent steps are automated and is visualized by the 

Howtomation Suite as shown in Figure 4 and Figure 5, where executed knowledge 

objects are green, triggered knowledge objects are yellow and unreachable knowledge 

objects are red. Also, known parameters are green while unknown parameters are red. 

The visualization facility is used during the automation phase (design mode) but is not 

visible to the engineers making use of the system.  

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation 333



 
Figure 4. Prior to run there exist three triggered knowledge objects in the knowledge base (the picture should 

be viewed in color). 

 

 
Figure 5. Knowledge objects are executed by the inference engine to turn unknown parameters into know. 

The figure show two executed objects (1 and 3). Numbers added correspond to table 2 (the picture should be 

viewed in color).  

The process automated at the company includes 8 knowledge objects of 5 different 

kinds. The first three objects performs combined selections (many times referred to as 

configuration) applying the constraint solver included in the Howtomation Suite and 

that was developed based on the theories in [13, 14]. The first combined selection is 

based on 11 parameters and realize the company’s product catalog. In that selection the 

constraint solver has to deal with 17 574 796 800 possible and impossible combinations 

of in gate parameters. The validity check of combinations are done through 7 con-

straints. The other two selections include selecting appropriate template CAD-models 

for instantiation and to select number of heating elements. Other five knowledge ob-

jects connects to the CAD-system to retrieve information about active CAD-models, 

instantiating template CAD-models, updating family tables, and inserting components 

into assemblies. See Table 2 for details about the hot runner knowledge base. 

 

Table 2. Attributes useful to implement for the knowledge object class. Numbers refer to Figure 5. 

Name Purpose 

1. Combined Selection Displays a dialog where the engineer can configure the gates based on 

customer enquiries, see Figure 6. 

2. File Selection Combined selection to pick appropriate template CAD-model. 

3. Heaters Combined selection to identify how many heating elements should be 

used. 

4. Get Folder Get the directory folder of the active SolidWorks model. 

5. Active Model Gets the file path of the active SolidWorks model. 

6. Instantiate Model Creates copies of the template CAD-models in to the folder of the active 
CAD-model. 

7. Insert Hot Runners Assembles in-gate instances into the CAD-model based on selected 

points or sketches (sometimes up to 48 times). 

8. Update Family Table Updates the family table to match current parameter values. 

1 
2 

3

1

4 5 

6 
7 

8 
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When ready, the knowledge base is executed in release mode which means that the 

graphical user interface as shown in Figure 4 and Figure 5 is not visible. To make the 

knowledge easily accessible to the engineers a button was added to the SolidWorks 

user interface to execute the knowledge base. During run-time knowledge objects 

might enquiry the engineer for inputs, for instance when executing the first knowledge 

object a selection dialog box shows up where user requirements are filled in and at end 

s he/she is asked to indicate where in the CAD-model the gates are to be 

  

Figure 6. At run-time the knowledge objects are not visible to the engineer but may be interactive, here two 

dialog boxes show up during execution of the knowledge base. The execution is started from the CAD-

system. 

4.3. Object orientation applied to the hot runner product structure 

When formalizing the knowledge and the product structure a previously developed 

(huge) design table containing the complete design space (17.5·10
9
 combinations) was 

sliced down to a set of design tables with no rules connected to template CAD-models. 

The rules were put in the Howtomation Suite instead. Previously the complete design 

space of the gates were instantiated together with each instance of the gates (48 times 

in the Figure 3) which made the CAD-system break down after up to an hour of 

crunching. Now the gate instance are light weight bakeries resulting from the automat-

ed process. 

4.4. Geometrical problems to handle 

There was one geometrical problem to overcome during the automation process and 

that was encapsulated into the knowledge object that inserts the gates into the main 

assembly (nr 7 in Figure 5 and Table 2). When defining the layout of the hot running 

system the gate locations are defined by a 2d sketch. The lines in the sketch defines the 

channels of the runner system and all the end points of the sketch defines the locations 

of the gates. A routine had to be developed that looped through all the curves of the 

sketch to identify the endpoints. 

of the processe

inserted.  
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5. Conclusion 

Products and their underlying knowledge change over time and an automated engineer-

ing design system needs to be flexible so that product components and pieces of 

knowledge can easily be added, updated, or deleted without disrupting the operation of 

the system. Adopting an object oriented perspective on the product structure and the 

introduction of knowledge objects to define autonomous chunks of knowledge have 

proven successful to achieve such flexibility when developing design automation sys-

tems. In this paper a platform for automating engineering activities by implementing 

these ideas was presented together with an in production application, hot runner sys-

tems for injection molding of plastics. The knowledge objects introduced in that system 

are supporting selection of gates for the hot runners using constraint processing algo-

rithms. Subsequently template CAD-models are selected, instantiated, updated and 

assembled. The execution of the knowledge objects is controlled by an inference en-

gine and to make the system easy to maintain a graphical user interface was developed. 
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