
http://www.diva-portal.org

This is the published version of a paper presented at International Conference on Concurrent
Engineering.

Citation for the original published paper:

Johansson, J. (2015)

Howtomation© Suite: A Novel Tool for Flexible Design Automation.

In: Richard Curran, Nel Wognum, Milton Borsato, Josip Stjepandić, Wim J.C. Verhagen (ed.),

Transdisciplinary Lifecycle Analysis of Systems: Proceedings of the 22nd ISPE Inc. International

Conference on Concurrent Engineering, July 20–23, 2015 (pp. 327-336).

Advances in Transdisciplinary Engineering

http://dx.doi.org/10.3233/978-1-61499-544-9-327

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-27628

Howtomation© Suite: A Novel Tool for

Flexible Design Automation

Joel JOHANSSON
1

Mechanical Engineering, School of Engineering,

Jönköping University, Sweden

Abstract. This paper shows how to achieve flexibility in design automat systems

through the introduction of knowledge objects and through the adoption of an ori-

ented view of the product structure. To demonstrate the ideas a novel tool called
Howtomation© Suite (for automated know-how) is presented. The new tool han-

dles the addressed issues and has been successfully implemented at one company.

That successful implementation is described at end of the paper.

Keywords. Design Automation, Knowledge Based Systems, Engineer to Order,

Knowledge Base, Knowledge Object, Manufacturability Analysis, Injection Mold-

ing.

Introduction

The ability to design and manufacture individualized products increases the competi-

tiveness of manufacturing companies and is sometimes the business case to them [1].

Three opportunities have been pointed out for Swedish industry to stay competitive on

the global market: individualized products, resource-smart design and production, and

a focus on customer value [2]. These opportunities can be achieved by efficient design

and manufacture of customized products. However, that requires developing and inte-

grating knowledge based systems for products and production [3]. The research pre-

sented in this paper is part of a research project aiming at these targets.

The realization of individually engineered products can be supported by the adop-

tion of an automated engineer-to-order (ETO) [4] approach in the quotation, the devel-

opment, and the production preparation processes. Automating the ETO processes

allows a company to efficiently adapt their products to vast variations of customers’

specifications bringing more value to the customer and profit to the company by effi-

cient use of engineering staff, material, and manufacturing resources. The core of such

a company is the exercising of a rich and diverse knowledge base about the products,

their production and the required resources for design and manufacture enabling the

company to quickly go from quotation to engineering the product and to production, all

while maintaining the most competitive pricing. To successfully develop, implement,

and maintain that core activity requires the development and implementation of com-

1
 Corresponding author, E-Mail: joel.johansson@jth.hj.se

Transdisciplinary Lifecycle Analysis of Systems

R. Curran et al. (Eds.)

© 2015 The authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-544-9-327

327

puter systems for efficient design of product variants with associated specifications for

automated manufacturing.

Since the development of a design automation system is a significant investment in

time and money and since experience has shown that problems often arise when such

systems are to be implemented in current operations (i.e. after proof of concept phase)

it is vital to discuss some critical issues. One of few things we can infer about future is

that things are going to change. That is why flexibility is the main focus in this paper.

Further, since manufacturing companies deal with physical products, issues with ge-

ometry is another important aspect addressed here.

1. System architecture for flexibility

Knowledge based systems (KBS) which is a result of decades of research within the

field of artificial intelligence has proven to be applicable to a wide range of engineering

design issues [5] also forms the foundation of the architecture described in this paper.

A KBS has two vital components, the knowledge base, and the inference engine. KBS

is based on the strategy to formalize the knowledge to be automated and store it within

the knowledge base and to let the inference engine search for consistent states of the

knowledge, states where no conflicting statements exist. In practice this means that the

formalized knowledge is separated from the computer routines that are applying the

knowledge. The knowledge to be stored in the knowledge base can be of different

kinds, and there are many ways in which the inference engine can act [6-8].

The complexity of an artifact can be measured in two dimensions including its

physical realization, and the knowledge required to comprehend it. There are artifacts

that cannot be made by a single person, and there are artifacts that cannot be compre-

hended by a single person [8]. Just as the former calls for decomposing the product into

modules, the latter calls for dividing the knowledge into chunks. Consequently, two

ways of achieving flexibility are identified. One is by applying an object orientated

approach to the knowledge-base. The other is to apply an object orientated approach to

the product structure.

1.1. Object Oriented Knowledge Base: Knowledge objects

Object-oriented programming offers the possibility to develop highly flexible software.

To apply object oriented programming to the knowledge base a class of objects called

knowledge objects has been proposed in [9, 10]. Figure 1 illustrates one way of imple-

menting the knowledge object class. As seen, a knowledge object contains a list of

input parameters (realized as a manager object that is basically a collection), a list of

output parameters, and a method (execution method) for processing input parameters to

make unknown output parameters known. Other fields may be added to a knowledge

object to make the system well-functioning. Proposed additional fields are listed and

explained in the Table 1 (which is not a complete list of the fields used in the system

described at end of the paper).

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation328

Figure 1. Knowledge object class definition.

Table 1. Attributes useful to implement for the knowledge object class.

Field Name Purpose

Active Controls whether the knowledge object is active or not.

Categories Categorize the knowledge automated by the knowledge object.

Constraints Specifies when the knowledge object is applicable.

ExecutionArguments Serves as sockets to the computer routine specified as execution method.

ExecutionDuration Keeps track of how long it takes to execute the knowledge object.

Execution Message Stores the resulting messages of executing the method.

ExecutionMethod The method to run when executing the knowledge object.

HistoricalValues Stores result values.

InputParameters List of the input parameters for the knowledge object.

Name The name of the knowledge object.

Optimizable Specifies whether the knowledge object can be put into an optimization

loop.

OutputParameters List of the input parameters for the knowledge object.

Owner Specifies the user responsible for the accuracy of the knowledge automat-

ed by the knowledge object.

Precision Specifies the precision of the knowledge represented by the knowledge

object.

RemeberHistoricalValues Specifies whether to store input and output values.

Status Indicates the current status of the knowledge object.

When developing the knowledge objects, they should be defined in a way that makes

them autonomous. Methods used to process the parameters should preferably be auto-

mated external software applications so that the knowledge representation is put out-

side of the knowledge handling system. The external applications should be selected so

that the resulting design automation system contains user readable and understandable

knowledge, and is easy to use. The benefits of developing knowledge objects that are

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation 329

autonomous using common and wide-spread applications as methods are two-folded:

the knowledge can be used manually without the design automation system, and it is

easy to find people skilled enough to use the very same knowledge the design automa-

tion system does - it makes the knowledge more human-readable.

1.2. Object Oriented Product Structure

The second way of achieving a high degree of flexibility in a design automation system

is by adopting object orientation to the product structure. When taking such a perspec-

tive on the product structure all components are viewed as objects with dimensions or

other features as attributes. These objectified components can subsequently be wrapped

as knowledge object where the attributes serve as input or output parameters. This can

be achieved using any parametric CAD-system.

When taking an object-oriented view on the components it has proven to be good

praxis to communicate dimension values and suppress states of features through user

defined parameters. The parameters should then be put at an appropriate level in the

product structure, which is in the tree leafs if possible. In a case where a parameter is

affecting several components it is put at the lowest possible level in the product struc-

ture above the components it is controlling, see Figure 2. Any rule or calculation are

put at the same level as its dependent parameters. Parameters in assemblies are inherit-

ed by descendant subassemblies and components and are repeated in them. In practice

this means that the introduction of a parameter in a subassembly controls any such

parameter in its descending components. This behavior can be achieved by functionali-

ty in the most common CAD-systems (the functions have different names for example

publications, external link, reference), but can also be achieved by macro program-

ming. Consequently, when replacing a descendant component it will automatically be

updated to parameters in the ascendant assembly.

Figure 2. Parameters and rules should be put in leaf nodes as far as possible. Parts and components inherit

parameters from ascending assembly. The brackets surrounding the rule-nodes indicates that, if any, only

rules intuitively connected to the geometry should be put in the CAD-models.

1.3. Inference engine

The inference engine is used to automate the formalized knowledge stored in the

knowledge-base. The inference engine arranges the knowledge in the knowledge-base

in an executable order. Two main types of search-based inference engines exist: for-

ward and backward-chaining [11]. A forward-chaining (also called data-driven) mech-

anism uses the information initially presented to fire all applicable rules. The method

has two steps. In the first step, triggered rules are listed. In the second step, an appro-

priate rule from the triggered ones is selected and fired. After firing the selected rule,

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation330

all triggered rules are listed again and so on, until no triggered rules are found. If

knowledge objects are used to build the knowledge-base, the inference engine searches

for knowledge objects with all input parameters known. It then selects one of the found

knowledge objects to execute the method defined in that knowledge object to calculate

output parameters using the input parameters. When the method has run, the stock of

known parameters is updated, and a new search for executable knowledge objects is

initiated (depth first) or executes the next knowledge object in the found executable

knowledge objects (width first).

A backward-chaining mechanism (also called goal-driven) is fed with goal states.

The mechanism then searches backward to see how to end up at that state. When

knowledge objects are used, the knowledge-base is searched for knowledge objects to

fire to find the queried parameters. The user is later asked to put in required infor-

mation. The backward-chaining mechanism is more effective at runtime than the for-

ward-chaining one. This is because executions of unnecessary methods are avoided.

Event handling is available in modern operating systems. Here, it is proposed that

the inference engine should make use of these functions in the operating systems. That

gives an event-based, forward-chaining search mechanism that works as follows. When

a parameter is changed, an event is raised in the system notifying that a change has

occurred. This triggers an update of the conflict set. If there still are knowledge objects

left in the conflict set, one of them is selected to be executed, in accordance with im-

plemented rules for selection. When the object is executed, its output parameters are

changed, and the conflict set is updated, and so on. When implementing the inference

engine using event handling, a significant amount of loop algorithms are avoided and

when running the system, the inference engine is triggered automatically on change.

2. Dealing with geometry

What makes computer systems for automated engineering design outstandingly hard to

develop is that geometry is a big share of the problem domain. It has proven that geo-

metrical problems are hard to automate, some examples are found in [12]. Two main

strategies exist to deal with this situation, one is to create template CAD-models that

are parametrically and/or topologically modified, and the other is to generate the geom-

etry programmatically. The former strategy is here referred to as the template based

systems and the later one is referred to as generative systems, it is of course possible to

combine the two strategies into hybrid systems.

The advantage of the template based approach is that it is easy to predict the out-

come of the system, what you see is what you get. In the CAD-system the engineers

can define parameters and add rules for updating dimensions and suppress-

ing/activating features to make the components turn into shapes corresponding to given

parameters. The drawback is that the template based approach is not scalable so that

over time when adding more and more features the CAD-models are hard to maintain

and hard to instantiate. This is because the template models in fact contains the com-

plete set of the design space of the component so when instantiating the models, the

entire design space is instantiated again. The system gets fragile when starting to in-

stantiate such CAD-models into assemblies.

The advantage of generating the CAD-models programmatically is that the result-

ing models are lightweight compared to the template approach. It is also possible to

make the generated models much more general so that the resulting models might look

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation 331

completely different. The drawback is that it is hard to predict the outcome, and that it

is hard for the engineers to modify the models, as they are represented by computer

programming code. Real systems are of course hybrids.

2.1. Where to put the knowledge repository

It is possible to implement the knowledge-base in stand-alone automated engineering

design systems or into CAD-integrated KBE-systems (KBE is the acronym for

Knowledge Based Engineering).

When using a CAD-integrated KBE-system to implement the knowledge-base, the

rules will be listed in the model-tree among the different features. This can be valuable

since it is easy to see what geometries the rules are connected to. It also makes the user

feel familiar with the user interface. But the knowledge-base in such a system can be

cumbersome to understand when the knowledge-base contains a vast number of rules

compared to the number of geometry features. This is especially true if many of the

rules do not deal with the geometry. In such cases a stand-alone automated engineering

system should be used.

Another issue to consider is that when using a CAD-integrated KBE-system, the

knowledge is bound to the CAD-system. This means the knowledge-base will be diffi-

cult to translate to other CAD-systems. In stand-alone systems, knowledge is automat-

ed outside the CAD-models and design proposals can be generated in native or neutral

CAD-formats. Another benefit of putting the knowledge in a system outside the CAD-

system is the distinct interface between CAD and the knowledge, which is usually

realized by a set of parameters helping clarifying which parameters are the governing

ones of the design. These parameters are the attributes of the objects when taking ob-

ject oriented perspective of the product structure. One drawback with the stand-alone

approach is that it can be hard to implement a knowledge-base containing mostly geo-

metric relation-ships into a stand-alone KBE-system.

3. Constraints, constraints, and constraints

Product and production development involves the identification and propagation of

active constraints. In product development these constraints often are referred to as the

dimensioning parameters, and in production development they are often referred to as

the production window. These constraints originates from laws of physics, legacy,

economics, or customer and affects the physical realization of the product. These con-

straints can be explicitly defined using parameters implemented in the knowledge base

becoming input parameters, or implicitly defined introducing new parameters that be-

comes output parameters.

More abstract, we also have constraints on the knowledge used to derive the prod-

uct indicating the valid range of it. Take for instance the commonly used slender rod

assumption. It is said to be valid if the length of the rod is much greater than the cross

section of it (factor 10 is widely used), which is a constraint on the knowledge itself.

Finally if introducing optimization algorithms to search for optimum solutions

mathematically modeled constraints have to be induced from the above mentioned

constraints. Hence, it is important for design automation systems to be able to process

constraints. Theoretical foundation for that is for example found in [13, 14].

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation332

4. Howtomation Suite

To verify the concepts presented in the previous sections a novel tool was developed

and applied to a real life example. The Howtomation suite is based on the Mi-

crosoft .net platform and consist of five parts: core definitions for parameters, inference

engine, knowledge objects, graphical user interface components, and a constraint solv-

er.

The company where the Howtomation Suite was applied develops and manufac-

tures heated runner systems for injection molding of plastic materials.

4.1. Hot runners for injection molding

One reason for making the automation at the company was that the product is an ETO-

product. Every produced hot runner system is unique. The runner systems differ in

layout, see for instance Figure 3 where an examples of the X-shaped layout is shown,

there are also H-shaped layouts, circular layouts, and custom layouts. The runners are

connected to the tooling cavity through in-gates. The number of in-gates is up to 48 for

a single system, see Figure 3. There are 5 series of in gates that all can have two differ-

ent types of bushings, be of length ranging up to 600 mm, and have 9 different types of

end caps.

Figure 3. Example of hot runner system with 48 gates in X-layout.

4.2. Knowledge Objects

The design of a runner system starts with planning the layout, which is done manually

and results in a CAD-model containing a sketch including lines schematically illustrat-

ing the runner system. The subsequent steps are automated and is visualized by the

Howtomation Suite as shown in Figure 4 and Figure 5, where executed knowledge

objects are green, triggered knowledge objects are yellow and unreachable knowledge

objects are red. Also, known parameters are green while unknown parameters are red.

The visualization facility is used during the automation phase (design mode) but is not

visible to the engineers making use of the system.

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation 333

Figure 4. Prior to run there exist three triggered knowledge objects in the knowledge base (the picture should

be viewed in color).

Figure 5. Knowledge objects are executed by the inference engine to turn unknown parameters into know.

The figure show two executed objects (1 and 3). Numbers added correspond to table 2 (the picture should be

viewed in color).

The process automated at the company includes 8 knowledge objects of 5 different

kinds. The first three objects performs combined selections (many times referred to as

configuration) applying the constraint solver included in the Howtomation Suite and

that was developed based on the theories in [13, 14]. The first combined selection is

based on 11 parameters and realize the company’s product catalog. In that selection the

constraint solver has to deal with 17 574 796 800 possible and impossible combinations

of in gate parameters. The validity check of combinations are done through 7 con-

straints. The other two selections include selecting appropriate template CAD-models

for instantiation and to select number of heating elements. Other five knowledge ob-

jects connects to the CAD-system to retrieve information about active CAD-models,

instantiating template CAD-models, updating family tables, and inserting components

into assemblies. See Table 2 for details about the hot runner knowledge base.

Table 2. Attributes useful to implement for the knowledge object class. Numbers refer to Figure 5.

Name Purpose

1. Combined Selection Displays a dialog where the engineer can configure the gates based on

customer enquiries, see Figure 6.

2. File Selection Combined selection to pick appropriate template CAD-model.

3. Heaters Combined selection to identify how many heating elements should be

used.

4. Get Folder Get the directory folder of the active SolidWorks model.

5. Active Model Gets the file path of the active SolidWorks model.

6. Instantiate Model Creates copies of the template CAD-models in to the folder of the active
CAD-model.

7. Insert Hot Runners Assembles in-gate instances into the CAD-model based on selected

points or sketches (sometimes up to 48 times).

8. Update Family Table Updates the family table to match current parameter values.

1
2

3

1

4 5

6
7

8

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation334

When ready, the knowledge base is executed in release mode which means that the

graphical user interface as shown in Figure 4 and Figure 5 is not visible. To make the

knowledge easily accessible to the engineers a button was added to the SolidWorks

user interface to execute the knowledge base. During run-time knowledge objects

might enquiry the engineer for inputs, for instance when executing the first knowledge

object a selection dialog box shows up where user requirements are filled in and at end

s he/she is asked to indicate where in the CAD-model the gates are to be

Figure 6. At run-time the knowledge objects are not visible to the engineer but may be interactive, here two

dialog boxes show up during execution of the knowledge base. The execution is started from the CAD-

system.

4.3. Object orientation applied to the hot runner product structure

When formalizing the knowledge and the product structure a previously developed

(huge) design table containing the complete design space (17.5·10
9
 combinations) was

sliced down to a set of design tables with no rules connected to template CAD-models.

The rules were put in the Howtomation Suite instead. Previously the complete design

space of the gates were instantiated together with each instance of the gates (48 times

in the Figure 3) which made the CAD-system break down after up to an hour of

crunching. Now the gate instance are light weight bakeries resulting from the automat-

ed process.

4.4. Geometrical problems to handle

There was one geometrical problem to overcome during the automation process and

that was encapsulated into the knowledge object that inserts the gates into the main

assembly (nr 7 in Figure 5 and Table 2). When defining the layout of the hot running

system the gate locations are defined by a 2d sketch. The lines in the sketch defines the

channels of the runner system and all the end points of the sketch defines the locations

of the gates. A routine had to be developed that looped through all the curves of the

sketch to identify the endpoints.

of the processe

inserted.

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation 335

5. Conclusion

Products and their underlying knowledge change over time and an automated engineer-

ing design system needs to be flexible so that product components and pieces of

knowledge can easily be added, updated, or deleted without disrupting the operation of

the system. Adopting an object oriented perspective on the product structure and the

introduction of knowledge objects to define autonomous chunks of knowledge have

proven successful to achieve such flexibility when developing design automation sys-

tems. In this paper a platform for automating engineering activities by implementing

these ideas was presented together with an in production application, hot runner sys-

tems for injection molding of plastics. The knowledge objects introduced in that system

are supporting selection of gates for the hot runners using constraint processing algo-

rithms. Subsequently template CAD-models are selected, instantiated, updated and

assembled. The execution of the knowledge objects is controlled by an inference en-

gine and to make the system easy to maintain a graphical user interface was developed.

Acknowledgements

The work has been carried out within the project IMPACT, funded by the Knowledge

Foundation (KK-stiftelsen), Sweden.

The Howtomation
©
 suite was tested at the company MasterFlow and the author is

grateful for their enthusiasm and willingness to adapt the system.

References

[1] L. Hvam, N.H. Mortensen, Riis, Product customization. 2008; Available from:

http://public.eblib.com/choice/publicfullrecord.aspx?p=336869.
[2] Vinnova, Challenge-driven innovation - Vinnova’s new strategy for strengthening Swedish innovation

capacity. Vinnova information vi 2011:07. 2011, Stockholm, Sweden: Vinnova.

[3] N. N., Factories of the future : multi-annual roadmap for the contractual PPP under Horizon 2020.
2013.

[4] J. Gosling, M.M. Naim, Engineer-to-order supply chain management: A literature review and research

agenda, International Journal of Production Economics, 122(2), pp. 741-754, 2009.
[5] A.A. Hopgood, Intelligent systems for engineers and scientists, CRC Press, Boca Raton, 2001.

[6] J.-W. Choi, Architecture of a knowledge based engineering system for weight and cost estimation for a

composite airplane structures, Expert Systems with Applications, 36(8), pp. 10828-10836, 2009.
[7] J. Wang, A cost-reducing question-selection algorithm for propositional knowledge-based systems,

Annals of Mathematics and Artificial Intelligence, 44(1-2), pp. 35-60, 2005.

[8] C.Y. Baldwin, Design rules / the power of modularity, MIT Press, Cambridge, 2000.
[9] F. Elgh, J. Johansson, Knowledge Object - a Concept for Task Modelling Supporting Design

Automation, in J. Cha et al. (eds.): 21th ISPE International Conference on Concurrent Engineering,

8-11 September, Beijing, China, IOS Press: Amsterdam, pp. 192-203, 2014.
[10] J. Johansson, A flexible design automation system for toolsets for the rotary draw bending of

aluminium tubes, in 2007 ASME IDECT (DFMLC). 2007.

[11] G.F. Luger, Artificial intelligence : structures and strategies for complex problem solving, Addison-
Wesley, Harlow, New York, 2005.

[12] J. Johansson, F. Elgh, How to successfully implement automated engineering design systems:

Reviewing four case studies. in: C. Bil (eds.): Proceedings of 20th ISPE International Conference on
Concurrent Engineering (CE2013), Sep, 2 - 5 2013, Melbourne, Australia, IOS Press, Amsterdam, pp.

173- 182, 2013.

[13] R. Dechter, Constraint processing, Morgan Kaufmann, San Francisco, 2003.
[14] T. Frühwirth, S. Abdennadher, Essentials of constraint programming, Springer, Berlin New York,

2003.

J. Johansson / Howtomation c© Suite: A Novel Tool for Flexible Design Automation336

