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Abstract. We consider the a posteriori error analysis of hp—discontinuous Galerkin finite
element approximations to first—order hyperbolic problems. In particular, we discuss the
question of error estimation for linear functionals, such as the outflow flux and the local
average of the solution. Based on our a posteriori error bound we design and implement
the corresponding adaptive algorithm to ensure reliable and efficient control of the error
in the prescribed functional to within a given tolerance. This involves exploiting both
local polynomial-degree-variation and local mesh subdivision. The theoretical results are
illustrated by a series of numerical experiments.
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1 Introduction

Adaptive finite element methods that are capable of exploiting both local poly-
nomial degree variation (p-refinement) and local mesh subdivision (h-refinement)
offer greater flexibility and improved efficiency than mesh refinement methods which
only incorporate h—refinement or p—refinement in isolation. The aim of this paper
is to develop the a posteriori error analysis of the hp-version of the discontinuous
Galerkin finite element method; see [8] and the references cited therein, and [6] for
earlier work in this area. In particular, we shall be concerned with the derivation of
computable error bounds for linear functionals of the solution to scalar first—order
hyperbolic problems. Relevant examples of linear functionals of the solution include
the mean value of the field over the computational domain and the normal flux
through the outflow boundary.

The paper is structured as follows. In Section 2 we introduce the model problem
and formulate its discontinuous Galerkin finite element approximation. Then, in
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Section 3, we derive both a posteriori and a priori error bounds for linear function-
als of the solution. Our a posterior: error bounds stem from a hyperbolic duality
argument and include computable residual terms multiplied by local weights in-
volving the dual solution, cf. [12, 16]. Guided by our a posteriori error analysis,
in Section 4 we design an hp-adaptive finite element algorithm to guarantee both
reliable and efficient control of the error in the computed functional with respect
to a fixed user—defined tolerance. A key question in hp-adaptive algorithms is how
to automatically decide when to h-refine/derefine and when to p-refine/derefine.
Here, stimulated by the work of Ainsworth and Senior [2], we develop a decision
mechanism based on the estimation of local Sobolev regularities of the primal and
dual solutions by means of the a priori error bounds from Section 3 (see also [20]).
The performance of the resulting hp-refinement strategy is then studied in Section
5 through a series of numerical experiments. In particular, we demonstrate the su-
periority of using hp-adaptive mesh refinement over the traditional A-refinement
method, where the degree of the approximating polynomial is kept fixed at some
low value. Finally, in Section 6 we summarise the work presented in this paper and
draw some conclusions.

2 Model problem and discretisation

Let Q be a bounded open polyhedral domain in R?, d > 2, and let I denote the
union of open faces of Q. Suppose that b = (by,...,by) is a d—component vector
function defined on Q with b; € WL(Q), i = 1,...,d, and consider the following
subsets of I':

I ={zel:bx) -n(x) <0}, T,={zecT:bz) n(zx)>0};

here, n(z) denotes the unit outward normal vector to T at € I. The sets I'_ and
[, are referred to as the inflow and outflow boundary, respectively. We shall suppose
that I' is almost everywhere non-characteristic in the sense that the set I'\ (T_UT;)
has (d—1)-dimensional measure zero. Given ¢ € Lo (), f € Lo(Q2) and g € Ly(T'_),
we consider the following boundary-value problem: find u € H(L,(2) such that

Lyu=b-Vu+cu = f, z€Q, (2.1a)
u =9, vel_, (2.1b)

where H(L,Q) = {v € Ly(Q) : Lv € Ly(2)} denotes the graph space of the partial
differential operator £ in Ly(2). In addition, we adopt the following (standard)
hypothesis: there exists a constant vector ¢ € R? and a positive real number § such
that

1
c—iv-b+b-§252 for a.e. x € Q. (2.2)

We note that assumption (2.2) ensures the existence of a unique solution u €
H(L,Q) to (2.1), cf. [13], for example. General results concerning the existence
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and uniqueness of solutions to boundary value problems for first—order hyperbolic
equations are given in [4], and [9] pp. 215-262. For the sake of simplicity of pre-
sentation, we assume that (2.2) is satisfied with £ = 0, and we define ¢y € Ly (2)
by

2 () = olx) — %v ‘b(z), 29 (2.3)

Clearly, c¢o(x) > 6 > 0 for almost every = € Q.

2.1 Finite element spaces

Suppose that 7 is a regular or 1-irregular subdivision of ) into disjoint open element
domains  such that Q = U,c7&. Thus a (d — 1)-dimensional face of each element
k in T is allowed to contain at most one hanging (irregular) node — typically the
barycenter of the face. It will be assumed that 7 respects the decomposition of I'
into I'_ and T'y in the following sense: if a (d — 1)-dimensional open face e of an
element k lies on I' then e is a subset of either I'_ or I',. We shall suppose that the
family of subdivisions 7T is shape-regular (cf. pp. 61 and 113 and Remark 2.2 on p.
114 in [7], for example) and that each x € T is a smooth bijective image of a fixed
master element &, that is, k = F, (k) for all kK € T where & is either the open unit
simplex or the open unit hypercube in R?. On the reference element & we define
spaces of polynomials of degree p > 1 as follows:

Q,=span{1®:0<a; <p, 1<i<d}, P, =span {z®: 0 < |o| < p}.

To each k € T we assign an integer p, > 1; collecting the p, and F in the vectors
p={p. : k€ T}and F = {F, : k € T}, respectively, we introduce the finite
element space

SP(Q,T,F) = {u€ Ly(Q) : u|so F, € Qp, if F,*(x) is the open unit hypercube,

and wul|, o F, € P, if F-'(k) is the open unit simplex; x € T} .
Assuming that 7 is a subdivision of €2, we consider the broken Sobolev space
H*(Q, T) of composite index s with nonnegative components s,, £ € T, defined

by
H(Q,T)={ue Ly(Q): ul, € H*(k) Vs eT}.

If s, =s >0 forall K € T, we shall simply write H*(Q2,T).
In the next section, we formulate the hp-version of the Discontinuous Galerkin
Finite Element Method (hp-DGFEM, for short) for the numerical solution of (2.1).

2.2 The hp—discontinuous Galerkin method

Given that k is an element in the subdivision 7, we denote by Ok the union of
(d — 1)-dimensional open faces of k. This is non-standard notation in that Ok is a
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subset of the boundary of k. Let x € Ok and suppose that n,(z) denotes the unit
outward normal vector to Ok at x. With these conventions, we define the inflow and
outflow parts of dk, respectively, by

0k = {x€dk: b(x) ng(x) <0}, (2.4a)
Ok = {x €0k b(x) ng(zr)>0}. (2.4b)

For each k € T and any v € H'(xk) we denote by vl the interior trace of v
on Ok (the trace taken from within k). Now consider an element x such that the
set _k\I'_ is nonempty; then for each z € 0_xk\I'_ (with the exception of a set of
(d—1)-dimensional measure zero) there exists a unique element ', depending on the
choice of x, such that x € 9, x'. Suppose that v € H'(Q, 7). If &_«\I'_ is nonempty
for some k € T, then we define the outer trace v, of v on d_x\I'_ relative to k as
the inner trace v, relative to those elements x' for which 9, ' has intersection with
0_rk\I'_ of p051tlve (d — 1)-dimensional measure. We also introduce the jump of v
across 0_r\['_:

4

[v]e =05 — v,

Since below it will always be clear from the context which element x in the subdi-
vision 7 the quantities n,, v;5, v, and [v], correspond to, for the sake of notational
simplicity we shall suppress the letter x in the subscript and write, respectively, n,
v*, v~ and [v] instead.

For v,w € H'(Q,T), we define the bilinear form

Bpea(w,v) Z/ﬁwvdx—Z/ (b n)[w]v"ds
a_

KET KET rA\L'—
— E / (b-n)wt vt ds
KGT 8 kNI

and, for v € H' (2, T), we consider the linear functional

Iha (v /fvdx—Z/ (b-n)gv* ds
O_kNI'—

KET KET

The hp-DGFEM for (2.1) is defined as follows: find upg € SP(Q2, 7, F) such that
BD(;(UD(},U) = ED(}(U) Yv € SP(Q,T,F) . (25)

We note that

Bpg(v,v) Z/co vl de + = Z/ |b-n||vT|*ds

o_kNI'_

+§Z/ Ib-n||[v]]ds + = Z/ Ib-n| vt ds
o JO—r\I'-

8+;ml‘+



for all v € HY(Q,T) (see, for example, (2.31) in [14]), and therefore Bpg(v,v) > 0
for all v € H'(Q, T)\ {0}; thus, recalling that (2.5) is a linear problem on the finite-

dimensional linear space SP($2, T, F), we deduce the existence of a unique solution
upg in SP(Q, T,F) to (2.5). Further, for each v € H'(Q, T),

1/2
I ( 2)|f|? dz +2 b n| |g|2d8>
bl > [ >/

KGT O_kNI'—

1/2
(Z/CU o> dz + = Z/ b -n| |v+|2ds) .
KGT _KﬁF_

Hence, letting |||v|||[pa = [Bpa(v,v)]'/?, we deduce the stability of the method in
the sense that

1/2
|||uDG|||Dcs(Z [@@l@Pa+2Y [ b -n) |g(s>|2ds) .
KET KET mr,
For the a priori error analysis of (2.5) in the DG-norm ||| - |||pg we refer to the paper

[13], ¢f. Lemma 9 below. The analysis of the scheme (2.5) with the addition of
streamline—diffusion stabilisation has been considered in the paper [14]; see also Bey
& Oden [6]. Here we shall concentrate on the situation when there is no streamline—
diffusion stabilisation in the method.

3 A posteriori and a priori error analysis

In many problems of physical importance the quantity of interest is a linear func-
tional J(-) of the solution. Relevant examples include the lift and drag coefficients
for a body immersed into an inviscid fluid, the local mean value of the field, or its
flux through the outflow boundary of the computational domain.

Suppose that we wish to control the discretisation error in some linear functional
J(+) defined on a linear space which contains H (L, ) + SP(Q, T, F). Following the
argument presented in [12] for stabilised continuous finite element approximations,
we do so by deriving an a posteriori bound on the error between J(u) and J(upg).

We begin our analysis by considering the following dual or adjoint problem: find z
in H(L*, Q) such that

Bpa(w, z) = J(w) Yw e H(L,Q), (3.1)

where H(L*, ) denotes the graph space of the adjoint operator £* in Ly(Q2). Let us
assume that (3.1) possesses a unique solution. Clearly, the validity of this assump-
tion depends on the choice of the linear functional under consideration. Below, we
present some important examples which are covered by our hypotheses.



Ezample 1: Mean flow. Consider approximating the (weighted) mean value J(-) =
My () defined by

J(w) = My(w) = / wip (3.2)
Q
where ¢ € Ly(Q) is a given weight function. In this case the dual problem takes the
following form: find z in H(L*, ) such that

L2=-V-(b2)+cz = ¢, z€Q, 3.3a)

Ezxample 2: Point value. Under the assumption that the analytical solution u is a
continuous function in the neighbourhood of a given point x. in €2, the point value
u(z.) may also be approximated. However, now J(w) = w(z.), and when this is
inserted as right-hand side into the dual problem (3.1), the resulting weak solution
z is a measure rather than a regular distribution; in particular, z does not belong
to Ly(©2). Thus, to avoid technical complications, we mollify the functional J by
considering a nonnegative function ¢ in L jo.(R?) whose support is contained in the
unit ball B(0,1) centred at x = 0 and such that the integral of ¢ over B(0,1) is
equal to 1. Writing ¢(z) = ¢p.(z) = e 4 p((x — z.)/2), My(u) converges to u(z.) as
e — 0. Further, setting J(w) = My (w) into (3.1) as right-hand side, for 0 < ¢ < 1
fixed, now results in a unique solution z in H(L*, Q).

Ezample 3: Outflow normal fluz. As a final example, consider the (weighted) normal
flux J(-) = Ny(-) through the outflow boundary I'y, defined, for w € H(L, ), by

J(w) = Ny (w) = /F (b-n)wy ds. (3.4)

where 1) is a given ‘weight’ function in Lo(T';). A simple calculation based on the
divergence theorem shows that z is the (unique) solution to the following boundary
value problem: find z in H(L*, Q) such that

L'2=-V-(bz)+cz = 0, z€Q,

z = ¢, wzel,.

For a given linear functional J(-) the proceeding a posteriori error bound will be
expressed in terms of the finite element residual r},, defined on k € T by

Th,p|n = (f - EuDG)|m

which measures the extent to which upg fails to satisfy the differential equation on
the union of the elements x in the mesh 7T thus we refer to r,, as the internal
residual. Also, since upg only satisfies the boundary conditions approximately, the



difference g—upg is not necessarily zero on I'_; thus for each element x with 0_xNI"_
of positive (d — 1)-dimensional measure, we define the boundary residual ry,,_ by

rh,p7|8_nﬁF_ = (g - UBG)|8_KHF_ .

With these definitions we observe from (2.5) the following relationship between the
internal and boundary residual:

Bo(u—upc,v) = > (Thpv)e+ ¥ ((b-n)[unc],vH)a wmr_

KET KET
- Z((b ’ H)Th,p,, U+)8_KHF_ =0 (35)
KET

for all v in SP(Q, 7, F). The identity (3.5) is referred to as the Galerkin orthogonality
property of the hp—-DGFEM. We remark that the second term on the right—hand
side of (3.5) reflects the fact that while the normal flux (bu)-n = (b - n)u of the
analytical solution u is continuous across element interfaces (even if the analytical
solution u is only piecewise continuous on €2), the normal flux of the numerical
solution upg is not, due to the choice of the finite element space SP(Q2, T, F); for
finite element approximations to (2.1) based on continuous piecewise polynomials,
this term is, of course, equal to zero.

3.1 Typel a posteriori error bound

The starting point of the a posteriori error analysis is the following general result.

Theorem 1 Let u and upg denote the solutions of (2.1) and (2.5), respectively,
and suppose that the dual solution z is defined by (3.1). Then, the following error
representation formula holds:

J(u) = J(upc) = D (rnp 2= 2np)e + ) ((b-m)[unc], (z = 2np) o wr-

KET KET
- Z((b ' n)rh,p—a (Z - zh,p)—l—)a,nﬂf‘,
KET
= SQ(UDGJ hapa Z— Zh,jﬂ) (36)

for all zp,,, in SP(Q,T,F).

Proof On choosing w = u — upg in (3.1) and recalling the linearity of J(-) and the
Galerkin orthogonality property (3.5), we deduce that

J(u) —J(upa) = J(u—upg)= Bpa(u—upa,?) = Bpa(u —una, 2 — Zhp)
= Y (rhpz—2np)e+ 3 ((b-0)[uncl, (z = 2np) o_mr_
KET KET
- Z((b ' n)rh,p—a (Z - Zh,p)+)8,nﬂf‘, y
KET



and hence (3.6). m

Given a linear functional .J(-) and a positive tolerance TOL, the aim of the compu-
tation is to calculate upg such that

1 (u) — J(ung)| < TOL. (3.7)

According to (3.6), a necessary and sufficient condition for this to hold is that the
stopping criterion

|Ea(upa, b, p, 2z — z1,)| < TOL (3.8)

is satisfied. If (3.8) holds, then J(upg) is accepted as an accurate representation of
J(u); otherwise upg is discarded and a new, improved, approximation is computed
on a refined subdivision. In order to ensure that the subdivision is refined only
where necessary, a decision has to be made on each element k as to whether the local
mesh-size h, and the local polynomial degree p, are acceptable in relation to TOL.
A convenient approach to obtaining a local refinement criterion which relates the
local discretisation parameters h, and p, to TOL is to localise Eq(upa, b, D, 2 — Zhp)-
More precisely, |Eq(upa,h,p, 2 — 2n,)| is further bounded above by noting that
Ea(upa, h,p, 2 — 2np) can be decomposed as Y x,, with

Xe = (Thyps 2—2np) s+ ((b-0)[unc], (2—2np) o mr_ +((b-0)rhy, (2—20p) " )o_sar_

and applying the inequality |>_xx| < Y. |xx|- Thus we arrive at the following
result.

Corollary 2 Under the assumptions of Theorem 1, the following a posteriori error
bound holds:

1 (u) = J ()| < E(unc, by, = 7p) (3.9)
where
E(upg, hyp,z — znyp) = Z M » (3.10)
KET
and
Nk = |(7“h,p, Z = Zh,p)/i + ((b-n)[upc], (z — Zh,p)+)8_n\F_
~((b- 1) (2 = ) o s | (3.11)

Now, a possible local refinement criterion might, for example, consist of checking
whether, on each element x in the subdivision 7, the inequality

TOL

< 3.12
e < (3.12)



holds, where N is the number of elements in 7. If (3.12) is valid on each element
k in T then, according to (3.9), the stopping criterion (3.8) has been reached and
the required error control (3.7) has been achieved. The a posteriori error bound
(3.9) — (3.11) where the difference between the dual solution z and its discrete
representation (e.g. interpolant, quasi-interpolant or projection) 2, defined on the
primal subdivision 7 enters into the error estimate as local weight function, will be
referred to as an a posteriori error bound of Type I.
It may seem natural to further bound 7, in (3.11) by writing

e < 1(hps 2 = Znp)el + [((b - 0)[upc], (2 = 2np) o mr_|
+[((b-n)rny (2 = 20p) Do_rrr_| = e

We may then consider the a posterior: error bound

| T(u) = T (upe)| <Y G (3.13)

KET

Indeed, we could proceed even further, to eliminate z;, from the a posteriori error
estimate, by bounding each term in (,, via the Cauchy-Schwarz inequality and stan-
dard results from approximation theory to bound the expressions ||z — 2 ||, (x) and
|(2 = 2hp) " || Lo(o_r) in terms of the discretisation parameters h, and p, and Sobolev
seminorms of z. For then, finally, the dual solution z may also be eliminated from
the a posteriori error estimate by bounding norms of z by suitable norms of the
data for the dual problem via hyperbolic well-posedness results. The resulting a
posteriori error bound will then, in the spirit of Johnson et al. [15], only involve
the residual terms r4,, (b - n){upc| and 7,,_, the discretisation parameters, the
interpolation constants and the stability factor of the dual problem; such an esti-
mate will be referred to here as a Type II a posteriori error bound. We note that
the residual-based weighted a posteriori error bounds of Becker and Rannacher [5]
are intermediate between Type I and Type II bounds, although, due to the locality
of the weight, closer in spirit to those of Type I. For earlier work on Type I and
Type II error bounds for finite element and finite volume approximations to linear
hyperbolic problems, we refer to [12] and [19].

The seemingly harmless transition from the Type I error bound (3.9) to (3.13)
and the subsequent elimination of the dual solution z en route to a Type II bound
can be detrimental: due to loss of global cancellations the resulting Type II bound
may, under mesh refinement, exhibit a rate of convergence inferior to that of |.J(u) —
J(upg)|, resulting in uneconomical meshes and an inefficient adaptive algorithm (see
[12], for example). For this reason we refrain from bounding the terms 7, further;
in particular, we shall not attempt to eliminate the dual solution z from our a
posteriori error bound by exploiting standard approximation results and the strong
stability of the dual problem. Instead, in the practical implementation of (3.9)
we replace z in the bound (3.9) by an approximation Zpg, computed by an hp—
adaptive discontinuous Galerkin finite element method on a sequence of auxiliary
(dual) subdivisions 7 of the computational domain Q, see Section 4.1 below. We
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then define z,, as the Ly(Q2) projection of Zpg onto the “primal” finite element
space SP(Q, T,F) over the “primal” subdivision 7. Thus, after decomposing the
error representation formula derived in Theorem 1 into terms which are computable,
i.e. those involving the numerical approximation Zpg to the dual problem, and those
that involve the analytical dual solution z, we arrive at the following result.

Corollary 3 Under the assumptions of Theorem 1, the following a posteriori error
bound holds:

|J(u) — J(upc)| < E(upa,h,p, Zpc — 2np) + |Ealupa, b, p, 2 — Zpa)|
& +Ep, (3.14)

where £ and Eq are defined in (3.10) and (3.6), respectively.

We emphasise here that the fundamental difference between the terms & (upg, h, p, )
and |Eq(upg, h, p, -)| is that in the former the absolute value signs appear under the
summation over the elements « € 7, while in the latter the absolute value sign
is outside the sum. It will be shown through numerical experiments that the true
weighting function z — 2, appearing in the a posteriori error bound (3.9) may be
accurately approximated by Zpg — 25, ,; indeed, we shall show that £p is typically an
order of magnitude larger than &p, cf. Table 1 and Figures 4 and 8 below, and [11]
in the case of nonlinear hyperbolic conservation laws. Therefore, £p can be safely
absorbed into £p without compromising the reliability of the adaptive algorithm
when the stopping criterion (3.8) is replaced by

Ep < TOL .

By this we mean that the right—hand side of (3.14) remains an upper bound on the
true error in the linear functional J(-) even when the term &p is neglected in the
process of error control for the primal problem.

The hp-DGFEM approximation Zpg to the dual solution z appearing in Ep will
be computed by an hp-adaptive finite element algorithm, on a sequence of “dual
meshes” 7 which, in general, differ from the “primal meshes” 7. The sequence of
dual meshes will be generated by means of an a posteriori error bound on

gD - |(€Q(UJDG7 hapa Z) - SQ(UJDGa hapa 2DG)| .

Since Eq(upa, h, p, -) is a linear functional, we can derive an a posteriori bound on &p
by mimicking the process of error estimation for the primal problem described above,
with the primal problem replaced by the dual and the functional J(-) substituted by
Ealupg, h,p,+). As the use of a Type I a posteriori error bound on £p would involve
the solution of the dual to the dual problem which would then in turn have to be
solved numerically, we shall instead use a crude Type II a posterior: error bound on
Ep so as to terminate the potentially infinite succession of mutually dual problems
that would otherwise arise. The crudeness of the Type II bound on &p will be of no
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concern: as noted above, numerical experiments indicate that & < Ep, so from the
practical point of view there appears to be little advantage in performing reliable
error control for &p; our aim, when using the Type II bound on &p, is merely to
generate an adequate sequence of finite element approximations Zpg to the dual
solution z which we can then use to compute &p. The next section is, therefore,
devoted to Type II a posteriori error bounds for the Ap-DGFEM.

3.2 Type II a posterior: error bounds

For convenience, in the rest of this section we shall restrict ourselves to meshes
consisting of affine equivalent d-parallelepiped elements. Generalisations to non-
affine elements may be treated by constructing meshes consisting of local patches as
in [14].

Assuming that m is a positive integer, we define the negative Sobolev norm
| - [|z-m () in the usual way:

_ (w,v)]
||w||H7m(Q) = sup i
veCEe () ||U||Hm(9)

Further, we write ||v||,, 7 C 0k, k € T, to denote the (semi)norm induced by the
(semi)inner product

(v,w)T:/|b-n|vw ds ,

for v,w € Lo(7). Finally, we recall from [14] and [18] the following approximation
results for the finite element space SP(Q, T, F).

Lemma 4 Suppose that ul, € H*(k), k. > 1, for some x in T. Then, there erists
[Iypu in the finite element space SP(Q,T,F), a constant Ci,y dependent only on d
and the shape-regularity of T, but independent of u, h, = diam(k), p, and k., such
that

2
Hsk (k)

1
— 11 2 < 0-2 h2s~ d . S,
||U hpU“Lz(n) = Vingllg pn(pn T 1) l(p , S )|u

and

||V(U - th“’)”%g(n) S 02 h’is't72 (I)l(pm Sn) |u|%{m(n) )

int
for 1 <s, <min(ky,p.+1). Here,

F(p—s—i—2)+ 1 L(p—s+3)

D1 (p, s) == L(p + s) plp+1) I'(p+s—1)

, 1<s<p+1.
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Theorem 5 Let u and upg denote the solutions of (2.1) and (2.5), respectively.
Suppose further that the dual problem (3.1) has a unique solution z € H(L*,Q) such
that z|, € H™ (k) for each k € T, with 1 < t, < p. + 1. Then,

1/2
hztx 2
|J(u) — J(upc)| < COCint|Z|Ht(Q,T) <;m Dy (pr, tr) ||Th7p||L2(n)>

K

h2tﬁ71 9 /2
+ Z = q)l(pmtli) ||[UDG]||8_I€\F_
KET

h2tﬁ71 ) 1/2
+ | Y = 01(pws t) I7np M5 rr ,
KET

K

where Cy depends only on ||bl|;_ (), the dimension d and the shape-regularity of

T.
Proof Applying the Cauchy—Schwarz inequality to the right—hand side of (3.9) in Corol-
lary 2 gives

() = J(upc)l < D Irnplliaollz = znpllzae)

KET
+ 3 lunclllo_mr_ 1z = 20p) T lo_mr_
KET
+ ) lIrnp—llo_rar_1(z = 2znp) Fllo_kar-
KET
= I4II+1I. (3.15)

Exploiting the approximation result stated in Lemma 4, together with the Cauchy—Schwarz
inequality, we get

}2ts 1/2 1/2
1< G [ S @ 1) 2. . |
t(,;rpn(pn+l) 1o ) | ’W”Lz(n)) (;' [ )

for 1 <t, <p,+1and s in 7. To bound the approximation error z — 2, on a subset T
of the boundary of a given element k in 7, we use the following trace inequality:

1 _
w12 < 568 (IVellzaullolrs e + he ol ) (3.16)

here, Cy depends only on |b|;,_(q), d and the shape-regularity of 7.
Exploiting (3.16) together with Lemma 4 gives the following bounds on terms IT and
IIT:

2t —1

1/2 1/2
hi
II < CoCing (Z D1 (pr, ts) H[UDG]H??n\F) (Z |z|?‘ltﬁ(n)> )

K

KET
2t —1

1/2
h
I < CoCin <Z @1 (ps, te) !|7“h,p—||(29mr> <

K

KET

KET

1/2
> lzl7
Htx ()

KET



for 1 <t, <px+1andkin 7. Upon inserting the estimates on I, IT and I1I into (3.15)
the result follows. ®

Remark 6 As an application of Theorem 5, let us consider the problem of a poste-
riori error estimation for the hp-DGFEM approzimation of the weighted mean value
of the solution u to the model problem (2.1). Choosing J(u) = My(u) in Theorem 5
with the weight function ¢ € C§°(Q) gives

|lM,/,(U) lM,/,(U )(})| = |(U U,“(;,w”
1/2
h2t& 1 ( ) || |2
< CyCin 5 d Prsti) ||7 , oKk
0 t ( ) 1 h,p LZ( )

2t —1

1/2
hn
+ (Z D1 (prs tr) ||[UDG]||5_H\F_> (3.17)
KET

K

K

th“_l 12
+ (Z By (py, ) ||rh,p_||§m) 2l (@)-
KET

Letting m = maxyer ty, it follows by the Differentiability Theorem of Rauch [17]
applied to (3.3) that

|2/l zm (@) < Cstan || zm ) (3.18)

where Cgap, 1S a positive constant, independent of 1, called the stability factor of
the dual problem. Denoting by B(h,p,upg) the expression in the square bracket in
(5.18), we deduce the following Type II a posteriori error bound:

| My (u) — My (upg)| < CoCintCstabl|¥|| mrm ) B(h, p, una) -

In fact, upon dividing both sides of the last inequality by ||1||mm @) and taking the
supremum over all ¢ € C§°(Q)) yields the following Type II a posteriori error bound
in a negative Sobolev norm:

||l — UDGHH%(Q) < CoCintCstan B(h, p, upa) -

We note that a bound identical to (3.18) holds for the weighted normal flux Ny (u)
of u through the outflow boundary T, with ¢ a sufficiently smooth weight function
defined on T',.

3.3 A priori error bounds

As indicated in the Introduction, the hp-adaptive algorithms for the primal and
dual problems will be driven by a posteriori error bounds: a Type I bound for the
primal problem and a Type II bound for the dual problem. The decision about

13



whether a local h refinement/derefinement or a local p refinement/derefinement is
to be performed in the course of mesh adaptation will be based on assessing the
local regularity of the primal and the dual solution. The estimation of local Sobolev
indices which measure local regularity will, in turn, rely on an a priori bound on
the error in the computed functional in terms of Sobolev norms of the analytical
primal and dual solutions u and z, respectively; this will indicate the expected rate
of convergence for |J(u) — J(upg)| as the finite element space is enriched, i.e. as h
tends to 0 and p tends to infinity, assuming that the primal and dual solutions have
certain Sobolev regularities. The present section is devoted to the derivation of this
a priori error bound.

We assume for the moment that the data for the problem (2.1) satisfy the fol-
lowing assumptions:

b Vo, € SP(Q,T,F) Vo, € SP(Q,T,F), (3.19a)
ce S°(O,T,F), fesP(QT,F). (3.19b)

Here, Vv, v € H'(Q,T), denotes the broken gradient of v defined by (Vv)|, =
V(vls), k € T. To ensure that (2.1) is then meaningful (i.e. that the characteristic
curves of the differential operator £ are correctly defined), we still assume that

b e Wi ()"

Remark 7 The condition placed on b is required in the proof of the a priori error
bound stated below (Lemma 9), cf. [13]; the conditions on the reaction/absorption
term ¢ and the forcing function f are required to ensure that the internal residual
rhp belongs to the finite element space SP(QY,T,F), c¢f. Lemma 10. However, we
shall see in Section 5 that the restrictions (3.19) are not essential in practice for our
a priori error bounds to hold.

Before embarking on the a priori error analysis, we quote from Schwab [18],
Theorem 4.76, p. 208, the following inverse inequality for the finite element space
SP(Q, T,F).

Lemma 8 Given v in SP(Q,T,F), there exists a positive constant C, dependent
only on d and the shape—reqularity of T, such that

p2
Vi) < C e V|2
for all k in T.

In the following lemma (cf. [13]) we formulate an a priori bound on the error u—upg
in terms of the DG—norm ||| - |||pc defined in Section 2.2. We recall that

1 1 1 _
Molsei=3 { ol + 3l10% e+ 3l10* B+ 3lh0* = 07 B}
KET
(3.20)

where ¢y is the (positive) function defined in (2.3).
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Lemma 9 Let u and upg denote the solutions of (2.1) and (2.5), respectively. As-
suming that (3.19a) holds and ul, € H* (), k. > 1, for all x in T, we have

e — unclllpg < C > B2 o(pr, 5i) [1lFren ey -
KET

for any integers 1 < s, < min(p, + 1, k), K € T. Here,

1 (T(p+2-s) T(p+3—s)

Py(s,p) = 2p_|_1< ['(p+ s) - (p+1+5)>
C(p+2-5)\* (T +3 -5\ Tp+2-s)
(P(p+2+s)> (F(p+1+3)> Thp2)

and C'is a positive constant depending only on d, ||b||.. ), ||c||r.) and the shape-
reqularity of T .

Furthermore, we need the following bound on the internal residual ry, .

Lemma 10 Assuming that the conditions on the data (3.19) hold, there exists a
positive constant C, dependent only on d and the shape—reqularity of T, such that

h,
ZPZ 1 17l 7000 < Clll — unc e -
KET * K

Proof From the Galerkin orthogonality property (3.5) we have
> (Thpsv)e ==Y ((b-n)[upcl,vM)a e + Y (b-m)rpp_, 0o war_ (3.21)
KET KET KET

for any v in SP(Q,T,F). Under the conditions (3.19), the internal residual r , belongs
to the finite element space SP (2, T, F); thereby choosing v = 0y, in (3.21), where 6 is in
S9(Q, T,F) such that |, = 6, > 0, and applying the Cauchy-Schwarz inequality gives

S OulirnpllZy 0 < S Oulllunallo e Il e+ Ollrp—llo_sor_ Il s
KET KET KET

Exploiting the trace inequality (3.16) together with the inverse inequality stated in Lemma,
8, we deduce that

2 pet1 2 1 2
Z 9K||Th,p’|L2(n) <C Z O h H[UDG]HB,R\F, + §||7°h,p—’|a,mr, :

keT kET k

Choosing 6, = hy/(p? + 1) together with the definition of the DG-norm (3.20) gives the
desired result. =

Equipped with Lemmas 9 and 10, together with the approximation results stated in
Lemma 4, we are now in a position to prove the following hp-bound on the error in
the computed functional J(-).
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Theorem 11 Let u and upg denote the solutions of (2.1) and (2.5), respectively.
Given that ul, € H*(k), ky > 1, and 2|, € H'*(k), l, > 1, for all k in T, we have

[ T(u) = J(upc)* < C Y 02 ®o(p, i) |ulfren )
KkET

X Z hitm_l (I)l(pm tn) |z|%ltn(h;) , (3.22)
KET

for any 1 < s, < min(p, + 1,k,), 1 < t, < min(p, + 1,1;), kK € T. Here, Cis a
positive constant depending only on d, ||bl|r_ (), |lcllro() and the shape-regularity

of T.

Proof With terms I, IT and IIT defined as in the proof of Theorem 5, cf. Equation (3.15),
we deduce from Lemma 4 and (3.16), the following bounds

1/2 1/2
B p2 +1
1< (S Syl ) (Z p2et LaL 25, (1) ol ) (3.23)
2 P Lo( Ky Uk Htr (k) )
wer P pit+1 °! keT Palpn +1)
1/2 2t 1/2
<> Muvall}_or. S By (s te) ey | (3.24)
KeT keT TN
, 1/2 201 , 1/2
T < C (> lrnp I3 snr_ > D1 (pres ti) |23t (1) ; (3.25)
KET keT F

respectively. Collecting the bounds (3.23), (3.24) and (3.25), and exploiting Lemma 10 we
get

| (u) = J (upc)* < Clllu—upclfda Y ke @1 (pas ) |2l 7o ) -
KET
Finally, employing Lemma 9 gives the desired result. m
Let us now discuss some special cases of the general error bound derived in
Theorem 11. We first note that, for fixed s, Stirling’s formula implies
Bi(p,s) < Clshp 272, By(p,s) < Os)p™ >, (3.26)

as p — 0o. Thereby, for uniform orders p, = p, s, = s, t. =t, k. =k, I, =, s, t,
k and [ integers, and h, = h for all k in T, we get the bound

h s+t—1
|J(u) — J(UD(;,)| S C <5> 1/2 |u Hs () )|Z|Ht(Q) , (327)

where 1 < s <min(p+ 1,k) and 1 <t < min(p + 1,[). Hence, we deduce that

hs +t—1
| J(u) — J(ung)| < C e 0" |ull eyl 2] oy - (3.28)
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where 1 < s < min(p + 1,k) and 1 < ¢ < min(p + 1,1), ¢f. [20]; we note that
in the transition from (3.27) to (3.28) the generic constant C' is increased by the
factor (k—1)k71(1 —1)""1. Here, the bounds (3.27) and (3.28) are optimal in & and
suboptimal in p by p'/?; in the case of fixed p, (3.27), (3.28) reduce to the optimal
h—convergence error bound proved in [12] for a stabilised continuous approximation
to u. From (3.28) we may deduce the following a priori error bound

s+6—1

lu = unc|lw-m@o) < C Y2 lull ey (3.29)

Wp
where 1 < s < min(p + 1,k) and 1 < 6 < min(p + 1,m). In the presence of
streamline—diffusion stabilisation, with stabilisation parameter 6 = h/p, the bounds
(3.27), (3.28) and (3.29) can be sharpened to ones that are simultaneously optimal
in both A and p.

The explicit dependence of the error bound stated in Theorem 11 on the local
regularity of the primal and dual solutions v and z, respectively, allows us to deduce
that the error in the functional J(-) is exponentially convergent as p, — oo for each
k in 7. To this end, let us assume that that z is elementwise analytic in the sense
that, for each k € T, z|, has analytic extension to an open set, independent of h,,
containing k. Then,

Ve €T 3de>1 3C(2) >0 Vs >0: |2|gs < C(2)(dy)’s! [meas(k)]"/?.

In order to emphasise the dependence of d,, on the particular function z under
consideration, we write d,(z) in lieu of d,.. Thereby, assuming that z is elementwise
analytic and h, > 0 is fixed for all x in 7T, on setting ¢, = a,p. + 1, where 0 < «, =
(14 (de(2))?)""/2 < 1 for all k € T, it can be shown that

D BB (ps ti) [2lhen () < C(2) Y W2 pl e M Prmeas(k) (3.30)
KET KET

where ), is a positive constant on each element k in the mesh 7; namely,

(1 _ a)l—a
(14 a)tte

1
A = 5llog Flo, du(2))],  where  F(a,d) = (ad)*,

see [14] for details. Similarly, assuming that u is elementwise analytic, setting s, =
Bepr + 1, where 0 < B, = (1 + (dx(u))?)~"/2 < 1 for all K € T, we have that

D BT By (D i) [Uf3en gy < C(u) > B2 T'pl e Prmeas(k),  (3.31)
KET KET

where u,, = (1/2)]log F(Bx,dx(u))|. Thereby, combining (3.30) and (3.31), we de-
duce the exponential convergence estimate

|J () — J(upg)|* < KZ h25x~1p? e~ 2HsPrmeas (k) Zhit”_lpi e *MPrmeas(k)3.32)
KET KET

where K = C'(u)C(2).
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Remark 12 The bound (3.32) indicates that in order to ensure that the error in the
functional J(-) decays exponentially as the degree of the approzimating polynomial is
increased, it 1s only necessary to assume that either u or z is elementwise analytic;
this will be demonstrated numerically in Section 5.

4 Implementational issues

4.1 Numerical approximation of the dual solution

In this section we formulate the discontinuous Galerkin finite element approximation
of the dual problem (3.1). As stated in Section 3, the particular form of the dual
problem is dependent on the functional under consideration. For generality, let us
suppose that z is the (unique) solution to the following problem: find z € H(L*, Q)
such that

L2=-V-(bz)+cz = ¢, x€Q, (4.1a)
z = x, zel,. (4.1b)

Clearly, (4.1) covers both the case when the functional J(-) under consideration
represents the local mean value of the solution u and when J(-) is the outflow
normal flux of u; cf. Section 3.

As in Section 2.1, we define 55’(9, T, f‘) to be the finite element space consisting
of piecewise polynomials of degree p|z = pz on a mesh T consisting of shape-regular
elements & of size hz. With 0, & defined as in (2.4), we introduce the bilinear form

Bpa(w,v) = Z/E*wvdx+2/ [w] vt ds

RET +H\F+
—i—Z/ (b-n)wtvtds
ReT O+ RN 4

and linear functional

I (v Z / pvdz + / (b-n)xvtds
O+kRNC

ReT

associated with the hp-DGFEM approximation of the dual problem (4.1). Now the
hp-DGFEM for (4.1) is defined as follows: find Zpg € SP(€, 7, F) such that

Bpc(ipg,v) = lpg(v) Yo e SP(Q,T,F) . (4.2)

4.2 Adaptive Algorithm

For a user—defined tolerance TOL, we now consider the problem of designing the
hp—finite element space SP(€2, T, F) such that

|J(u) — J(ung)| < TOL, (4.3)
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subject to the constraint that the total number of degrees of freedom in SP(Q2, T, F)
is minimised. Following the discussion presented in Section 3, we exploit the a
posteriori error bound (3.14) to construct SP(Q2, T, F) such that

£p < TOL. (4.4)

The stopping criterion (4.4) is enforced by equidistributing £p|, = 7, over the
elements k in the primal mesh 7, where 7), is defined in a similar manner to 7, with
z replaced by Zpg in (3.11). Thus, we insist that

- TOL
e & (4.5)
holds for each « in T; here, N denotes the number of elements in the mesh 7T .

Thereby, each of the elements in the primal mesh is flagged for either refinement
or derefinement to ensure that the equidistribution principle (4.5) holds. Once an
element x has been flagged a decision must be made whether the local mesh size h, or
the local degree p, of the approximating polynomial should be adjusted accordingly.
Let us first deal with refinement, i.e. when the local error estimator 7, is larger
than the ‘localised—tolerance’ TOL/N. Clearly, if the primal or dual solutions u and
z, respectively, are locally ‘smooth’, then p—enrichment will be more effective than
h—refinement, since the error will be expected to decay quickly within the current
element k as p, is increased. However, if u or z have low regularity within the
element x, then h-refinement will be performed. Thus, regions in the computational
domain where the primal or dual solution are locally non-smooth are isolated from
smooth regions, thereby reducing the influence of singularities/discontinuities as well
as making p—enrichment more effective.

To ensure that the desired level of accuracy is achieved efficiently, an automatic
procedure for deciding when to A— or p-refine must be implemented. To this end,
we first compute the local error indicator 7, on each element x in the mesh 7 using
both a p, and a p, — 1 representation for upg; we denote the corresponding values
of . by 7.(ps) and 7, (p, — 1), respectively. Thereby, assuming that 7, (p, — 1) # 0,
the perceived smoothness of the primal and dual solutions may be estimated using
the ratio

P = ﬁn(pn)/ﬁn(pn - 1) ) (46)

cf. Adjerid et al. [1] and Gui & Babuska [10], for example. If p, < v, 0 < vy < 1,
the error is decreasing as the polynomial degree is increased, indicating that p—
enrichment should be performed. On the other hand, p, > v means that the element
 should be locally subdivided. The number 7 is referred to as the type—parameter
[10]. Clearly, the choice of v is critical to the success of this algorithm and will
depend on the asymptotic behaviour of the quantity of interest. Instead of assigning
an ad hoc value to the type parameter v, we use p, together with the a prior: error
bound (3.22) to directly estimate the local regularities &, and [, of the primal and
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dual solutions, respectively, on each element x in 7. More precisely, motivated by
(3.28), we assume that on a given element x in T

—kk—le+1
—8P|nNon o :

Thus, we have that

kr + 1 = log(px)/log((px — 1)/px) + 1

Ideally, we would like to know k. and [, individually. To do so, we compute an
estimate of /,. The dual regularity [, may be estimated by calculating the L*(k)
norm of the error between the projection of Zpg in SP(Q,T,F) onto the finite
element spaces SP(Q,7,F) and SP~1(Q, T, F), together with the approximation
results derived in [3]. Once both k, and [, have been determined on element x,
then « is p—enriched if either k, or [, is larger than p, + 1; otherwise the element is
subdivided. For computational simplicity, only one hanging node is allowed on each
side of a given element x; additionally, we restrict the variation in the polynomial
degree vector p to be at most one between neighbouring elements. We note that
this approach has been developed by Ainsworth & Senior [2] in the context of norm
control for second—order elliptic problems.

On the other hand, if an element has been flagged for derefinement, then the
strategy implemented here is to coarsen the mesh in low—error-regions where either
the primal or dual solutions u and z, respectively, are smooth and decrease the
degree of the approximating polynomial in low—error—regions when both u or z are
not sufficiently regular, cf. [1]. To this end, we again compute the local regularities
k. and [, of the primal and dual solutions, respectively, on each element « in T as
described above. The element k is then coarsened if either k. or [, is larger than
pr + 1, otherwise the degree p, is reduced by one.

The finite element space S p(Q ’T F) and the finite element approximation Zpg €
SP(Q, T, F) of the dual solution z will be constructed adaptively at the same time
as SP(Q2,T,F). To this end, we note that Eq(upg, h,p,-) is a linear functional on
H(L*,Q), and we define the error indicator

N

mw = — llo—L%pc|l1m)

-\ 1/2
+ <~—> (Izpello ey + IX — Zpallossnry) (4.7)

for
gD = |(€Q(UDG7 hapa Z) - SQ(UDGa hapa 2DG)|-

The error indicator (4.7) arises from a Type II a posteriori error bound on £p upon
setting all constants in the bound (such as the stability factor Cguap, of the dual-
dual problem and the interpolation constant Ciy) to unity; cf. Theorem 5 and the
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subsequent Remark 6 with m = 1, and note that ®, (pz, 1) is O(1) by (3.26). The hp—
adaptive algorithm for the dual problem will be based on the fized fraction strategy
outlined by Rannacher [16]. Consequently, the absolute size of 1z (p) is insignificant:
only the relative sizes of these quantities matter; in particular, this justifies setting
all constants to unity in the dual error indicator (4.7). Once the elements have been
flagged for refinement /derefinement, hi and p;, are altered accordingly by estimating
the local regularity Iz of the dual solution on the dual mesh 7 as above by calculating
Nz using a pi and pz — 1 representation of Zpq, together with the a priori error bound

(3.29).

5 Numerical experiments

In this section we present a number of experiments to numerically verify the a prior:
error bounds derived in Section 3, as well as to demonstrate the performance of the
hp—adaptive algorithm outlined in Section 4.2.

5.1 Example 1

In this example we let @ = (=1,1)2, b= (2—9y%2—2), c =1+ (1 +2)(1 +y)? and
f is chosen so that the analytical solution to (2.1) is given by

u(z,y) =1 +sin(x(1 +2)(1 + y)?/8); (5.1)

cf. [13]. Furthermore, we choose the functional of interest J(-) to represent the
mean flow of u over Q, i.e. J(-) = My(:), where My(-) is given by (3.2); here, we
define the weight function ¢ so that the solution of the corresponding dual problem
(3.3) is given by

2 = 4sin(m(1 + ) /2) sin(m(1 4 y) /2) e~ CHo+0)*/2,

Thus, the true value of the mean flow of u over Q2 is My (u) = 3.9381.

Here, we investigate the asymptotic behaviour of the hp—~DGFEM on a sequence
of successively finer square and quadrilateral meshes for different p. In each case the
quadrilateral mesh is constructed from a uniform N x N square mesh by randomly
perturbing each of the interior nodes by up to 10% of the local mesh size, cf. [14].

In Figure 1 we present a comparison of the error in the functional |J(u) —J(upg)]
with the mesh size h for p = 1,2,3. Here, we observe that |.J(u) — J(upg)| con-
verges to zero at the rate O(h*™!) as the mesh is refined for each fixed p. Thereby,
confirming Theorem 11 in the case when the assumptions on the data (3.19) are vio-
lated, cf. Remark 7. Finally, we investigate the convergence of the hp-DGFEM with
p—enrichment for fixed h. Since the true solution (5.1) is a (real) analytic function,
we expect to observe exponential rates of convergence, cf. Section 3. Indeed, Figure
2 clearly illustrates this behaviour: on the linear—log scale, the convergence plots for
each p become straight lines as the degree of the approximating polynomial is in-
creased. Furthermore, we observe from Figures 1 & 2 that the h— and p—convergence,
respectively, of the hp—DGFEM is robust with respect to mesh distortion.
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Figure 1: Example 1. Convergence of the hp-DGFEM with h-refinement.

> 5 x 5 mesh

|/ (u) = J (upa)]
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1077~ Quads

Figure 2: Example 1. Convergence of the hp-DGFEM with p-refinement.
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Mesh DOF |N¢ (u — ’LLDg)| gp SD 0 (‘:p/(‘:[)
1 16 6.112 x 1072 | 2.964 x 1072 | 5.707 x 1072 | 0.48 | 0.52
2 36 8.763 x 1072 | 6.169 x 1072 | 2.807 x 1072 { 0.70 | 2.20
3 90 3.547 x 1072 | 3.201 x 1072 | 4.803 x 1073 { 0.90 | 6.66
4 280 6.036 x 1072 | 5.496 x 1072 | 1.603 x 1073 [ 0.91 | 3.43
5 702 1472 x 1073 | 1.811 x 1073 | 1.158 x 10~ % | 1.23 | 15.64
6 1904 | 4.107 x 107° | 2.482 x 10°% | 3.941 x 10°% | 6.04 | 62.98
7 3679 | 2.502 x 10°° | 3.506 x 1077 | 3.353 x 10 © | 1.40 | 10.46
8 6414 | 5.715x 1077 | 2.675 x 107° | 3.320 x 107 | 4.68 | 8.06
9 10493 | 9.012 x 1078 | 4.524 x 107 | 2.083 x 1078 | 5.02 | 21.72
10 14107 | 3.175x 1078 | 1.092 x 107 | 9.175 x 1079 | 3.43 | 11.90

Table 1: Example 2. hp-mesh refinement algorithm.

5.2 Example 2

Here we consider a compressible hyperbolic problem subject to discontinuous inflow
boundary condition, with b = (24> — 4z + 1,1 +y), ¢ = 0 and f = 0. The
characteristics enter the computational domain €2 from three sides of I', namely
from z =0, y =0 and x = 1, and exit 2 through y = 1. Thus, we may prescribe

forr=0,05<y<1,
forx=0,0<y<0.5,
for0 <z <07 , y=0,
for0.75 <2 <1, y=0,
sin®(ry) forz=1,0<y<1.

u(x,y) =

O = = O

In this example we choose the functional of interest .J(-) to represent the normal
flux through the outflow boundary I'y, i.e. J(-) = Ny(:), where Ny(-) is given by
(3.4); here, we define the weight function ¢ by

Y =2+arctan((z — 1/2)/e) for0<z <1 ,y=1,

where ¢ = 0.02. Thereby, the true value of the outward normal flux is Ny(u) =
2.0203. The analytical solutions to both the primal and dual problems are shown
in Figures 3(a) & 3(b), respectively. Furthermore, to understand how the terms
in the a posteriori error bound (3.14) interact with each other, in Figures 3(c) &
3(d), we have plotted the Ly(k) norm of the internal residual r,, and the exact
weight function z — 23, on a 65 x 65 mesh with p = 1. Here, we observe that
|7hpll o) is large in the vicinity of the discontinuities as we would expect, while
the weight function ||z — 23 ||1,(x) is large in region where the layer in ¢ enters the
computational domain through I' ;. The product of these two quantities is shown in
Figure 3(e); here, we observe that the discontinuity emanating from (z,y) = (0, 0.5)
will have very little effect on the error in the linear function Ny (+) (see below).
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Figure 3: Example 2. (a) Analytical solution to the primal problem; (b) Analytical
solution to the dual problem; (c) Internal residual term ||7, pz,(x) on a 65 x 65 mesh
with p = 1; (d) Weighting term ||z — 2j||1,(x) on a 65 x 65 mesh with p = 1; (e)
Product of (c) & (d), i.e. ||7hpllzo(m) 12 — 2hpllLae) On @ 65 x 65 mesh with p = 1.
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Figure 4: Example 2. Comparison between h— and hp-adaptive mesh refinement.

In Table 1 we show the performance of the adaptive algorithm presented in
Section 4.2 for TOL = 10~ 7; we note that this level of accuracy may be far beyond
what is of practical importance, but is chosen to illustrate that the true error and
the bound &p exhibit the same asymptotic behaviour as the finite element space
SP(Q, T, F) is enriched. In Table 1 we show the mesh number, the number of degrees
of freedom (DOF) in SP(Q2, T, F), the true error in the functional | Ny(u —upg)|, the
error bound &p, the remaining error £y (which in general will be non-computable),
the effectivity index 6 = Ep/|Ny(u — upc)| and the ratio of &p and Ep. Here, we see
that initially on very coarse meshes &p slightly underestimates the true error in the
functional; however, as the finite element space is enriched the error bound over—
estimates |Ny(u) — Ny(upc)| by a consistent factor in the range 1-6. Furthermore,
we see that the remaining error term £p is about an order of magnitude smaller than
the computable part of the a posteriori error bound Ep; this numerically justifies
neglecting this term in the construction of the stopping criterion (4.4) for the design
of our adaptive algorithm for the primal problem.

In Figure 4 we plot the results shown in Table 1; in particular, we plot | Ny (u) —
Ny(upc)|, € and Ep using hp-refinement against the square-root of the number
of degrees of freedom on a linear-log scale. We see that after the initial transient,
the error in the computed functional using Ap-refinement becomes a straight line,
thereby indicating exponential convergence, cf. Remark 12. Furthermore, in Figure
4 we plot the true error in the linear functional using h-refinement; here, we clearly
observe the superiority of the adaptive hp-refinement algorithm. Indeed, on the final
mesh the true error in the linear functional using hp-refinement is almost 3 orders
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of magnitude smaller than the true error in Ny (-) when h-refinement is employed.

Finally, in Figures 5 & 6 we show the primal and dual meshes after 6 and 9
adaptive mesh refinements, respectively. For clarity, in each case we show the h—
mesh alone, as well as the corresponding distribution of the polynomial degree and
the percentage of elements with that degree. From Figure 5, we see that the elements
in the primal mesh have been refined along the first discontinuity emanating from
(z,y) = (0.75,0), since the dual solution has a layer in this region as well. In
contrast, elements lying on the second discontinuity in the primal problem, which
emanates from (z,y) = (0,0.5) have been less refined since the dual solution is
smooth here and hence the corresponding weights involving Zpg — 25, are inactive,
cf. Figure 3(e). Furthermore, the mesh for the dual solution is concentrated within
the steep layer in the weight function v; the inherent smoothing in the dual problem
introduced by the compressible nature of b leads to p refinement in this layer as the
flow moves away from I', . The same behaviour is observed in Figure 6 for the primal
and dual solutions.

5.3 Example 3

In this final example, we consider the same primal problem presented in Section 5.2.
Furthermore, we again let J(-) denote the normal flux through the outflow boundary
[y, ie J(-) = Ny(-), where Ny(-) is given by (3.4); however, here we define the
weight function ¢ by

= 1 +sin(2r(4e — 1)) for 1/4 <z <3/4
10 otherwise .

In this case, the true value of the outward normal flux is Ny(u) = 0.9175. In
Figures 7(a), 7(b) and 7(c) we plot the analytical to the dual problem, the weight
function ||2— 2 || 1,(x) and the product of the weight function ||z— 2, || 1, () With the
Ly(x) norm of the internal residual 7, (see Figure 3(c) for the plot of ||r4p||1.k)),
respectively. From Figure 7(b), we see that the weighting term ||z — 24p|1,(s) is
large in the vicinity of the discontinuities emanating from [';. By multiplying these
terms by ||rhpl|z.(s), cf. Figure 7(c), we see that the discontinuity emanating from
(0.75,1) will dominate the error in the outward normal flux Ny(-); though, there
are visible peaks emanating from the top of the sin function as well as the second
discontinuity located at (0.25,1).

In Figure 8 we show the performance of the adaptive algorithm for TOL = 105,
We note that since both the primal and dual solutions are not smooth, we no longer
expect to observe exponential convergence of the error in the functional Ny (-); thus,
here we plot the same quantities as in Figure 4 against the number of degrees
of freedom in SP(Q,7,F) on a log-log scale. Here, we clearly observe that the
error bound &p over estimates the true error by a consistent factor between 1-10.
Furthermore, as in the previous example, the remaining error term &p is about an
order of magnitude smaller than £p, thereby justifying the absorption of £p into
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Ep. In addition, in Figure 8 we plot the true error in the linear functional using h—
refinement; here, we observe that the true error in Ny(+) is (almost) always smaller
than if hp-refinement is employed. Indeed, on the final mesh the true error in Ny(-)
is almost 2 orders of magnitude smaller if hp-refinement is employed as opposed to
h-refinement only.

Finally, in Figures 9 & 10 we show the primal and dual meshes after 6 and 9
adaptive mesh refinements, respectively. From Figure 9, we see that the primal
mesh has only been A-refined in a small neighbourhood of the two discontinuities in
u as they exit the computational domain 2. Furthermore, from Figure 10, we now
see that the h-mesh has been refined in the vicinity of the discontinuity emanating
from (x,y) = (0,0.5), while the h—mesh has in fact been coarsened in the region
containing the second discontinuity emanating from (x,y) = (0.5,0). In this latter
region, the local polynomial degree has been enriched as the primal solution u is
smooth here. Finally, we note that Figures 9 & 10 show that the dual mesh has been
extensively h-refined in the vicinity of both discontinuities, with the degree p of the
approximating polynomial increased as we move into the parts of the computational
domain where the dual solution z is smooth.

6 Concluding remarks

In this article we have developed the a posteriori error analysis of the hp—version of
the discontinuous Galerkin finite element method. In particular, by using a hyper-
bolic duality argument, we have derived computable error bounds for linear func-
tionals of the solution, such as the mean flow of the field over the computational
domain €2 and the normal flux through the outflow boundary I',. Furthermore,
based on our a posteriori error bound, we have designed and implemented a fully
automatic adaptive algorithm that is capable of exploiting both local mesh subdi-
vision and local polynomial-degree enrichment. Numerical experiments have been
presented which clearly highlight the superiority of such a general adaptive strategy
over the traditional h-refinement method, where the degree of the approximating
polynomial p is kept fixed at some low value.
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Figure 5: Example 2. Mesh 7: Primal (top: 235 elements, 303 nodes and 3679
degrees of freedom) and Dual (bottom: 493 elements, 616 nodes and 6781 degrees of
freedom) h— and hp—meshes. Here, Ny (u — upg) = 2.502 x 107°, &p = 3.506 x 107
and 0 = 1.40.
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Figure 6: Example 2. Mesh 10: Primal (top: 565 elements, 719 nodes and 14107
degrees of freedom) and Dual (bottom: 445 elements, 564 nodes and 13629 degrees
of freedom) h— and hp-meshes. Here, Ny(u—upg) = 3.175x 1078, &p = 1.092x 107

and 6 = 3.43.
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Figure 7: Example 3. (a) Analytical solution to the dual problem; (b) Weighting
term ||z — 2pp|2,(s) ON @ 65 x 65 mesh with p = 1; (c) Product of (b) & Figure 3(c),
Le. ||Thpllzawm) 112 = 2npllLae) On @ 65 x 65 mesh with p = 1.
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Figure 8: Example 3. Comparison between h— and hp—adaptive mesh refinement.
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Figure 9: Example 3. Mesh 7: Primal (top: 82 elements, 116 nodes and 1603 degrees
of freedom) and Dual (bottom: 2629 elements, 3167 nodes and 12316 degrees of
freedom) h— and hp—meshes. Here, Ny (u — upg) = 3.568 x 1075, &p = 6.164 x 106
and 0 = 1.73.
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Figure 10: Example 3. Mesh 10: Primal (top: 145 elements, 194 nodes and 3609
degrees of freedom) and Dual (bottom: 7630 elements, 9280 nodes and 34451 degrees
of freedom) h— and hp-meshes. Here, Ny(u—upg) = 1.072x 1077, &p = 5.505x 107
and 0 = 5.14.
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