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Abstract
We propose and analyze a discontinuous Galerkin approximation for the Stokes problem.

The finite element triangulation employed is not required to be conforming and we use

discontinuous pressures and velocities. No additional unknown fields need to be introduced,

but only suitable bilinear forms defined on the interfaces between the elements, involving the

jumps of the velocity and the average of the pressure. We consider hp approximations using

Qk′ -Qk velocity-pressure pairs with k′ = k + 2, k + 1, k. Our methods show better stability

properties than the corresponding conforming ones. We prove that our first two choices of

velocity spaces ensure uniform divergence stability with the respect to the mesh size h.

Numerical results show that they are uniformly stable with respect to the local polynomial

degree k, a property that has no analog in the conforming case. An explicit bound in k which

is not sharp is also proven. Numerical results show that if equal order approximation is chosen

for the velocity and pressure, no spurious pressure modes are present but the method is not

uniformly stable either with respect to h or k. We derive a priori error estimates generalizing

the abstract theory of mixed methods. Optimal error estimates in h are proven. As for

discontinuous Galerkin methods for scalar diffusive problems, half power of k is lost for p

and hp approximations independently of the divergence stability.

Keywords: Mixed problems, hp approximations, spectral elements, discontinuous
Galerkin approximations, non-conforming approximations
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1. Introduction. Discontinuous Galerkin (DG) methods have a long history
and have recently become more and more popular. They have been heavily tested
and studied, and they present considerable advantages for certain types of problems,
especially those modeling phenomena where convection is strong; see the monograph
[15].

Their main idea relies in the choice of approximation spaces consisting of piece-
wise polynomial functions with no kind of continuity constraints across the interface
between the elements of a triangulation. Consistency and well-posedness are achieved
by introducing suitable bilinear forms defined on the interface. In this respect they are
closely related to finite volume methods as they relies on the definition of numerical
fluxes. As for conforming finite element approximations, the corresponding discrete
problem is given in terms of finite dimensional subspaces and bilinear forms.

One of the main advantages of DG methods is that they allow a much greater
flexibility in the design of the mesh and in the choice of the approximation spaces.
Indeed, if one abandons the idea of a conforming approximation, one may as well
abandon the idea of a conforming triangulation. This was soon realized and exploited
in some DG methods; see, e.g., [19]. A mixed domain decomposition approach is also
natural where conforming approximations are considered on single subdomains or
patches, and DG interface terms are introduced on the boundaries between the sub-
domains; see [27, 8, 30]. In order to illustrate this point, we mention the problem of
singularity and boundary layer resolution as an example. Suitable meshes (radical for
h, or geometric for p version finite elements) are required for the approximation of
edge and vertex singularities. Due to the different types of these singularities, finding
conforming global triangulations without excessive overrefinement is not always an
easy task in practice; see, e.g., [3, 4] for h and [5, 22, 23, 31] for hp approximations.
A DG approach allows local independent refinement strategies and independent poly-
nomial degrees can be employed on different elements, thus allowing more flexible hp
adaptivity strategies.

DG methods however require a considerable increase in the number of degrees of
freedom. If for instance trilinear elements on a uniform mesh on a cube are employed,
for one nodal value in a conforming approximation we have eight degrees of freedom in
a DG approach. Such increase can be prohibitively expensive for h approximations of
large, three dimensional, vector problems, unless there are other requirements, such
as suitable refinement strategies or the treating of convective terms. The situation
is somewhat different for p and hp approximations, where the additional degrees of
freedom in a DG approximation do not have the same order of magnitude as the
number of degrees of freedom of a conforming discretization. We also note that non-
conforming meshes with hanging nodes can be employed for p and hp finite element
discretizations. Even if multiply constrained nodes are possible in theory, they bring
in considerable complications in the implementation of practical codes, and often
only simply constrained nodes are treated. Such complications are removed in a DG
approach.

We finally note that even if convection may be the dominant effect of a problem,
diffusive terms still need to be accounted for and correctly discretized. In particular,
the finite element approximation of the Oseen or the incompressible Navier-Stokes
equations require the introduction of suitable velocity-pressure spaces that ensure
stability and approximability. If convective terms are properly treated, such prop-
erties only depend on the diffusive part of the operator and can then be studied for the

1



simpler Stokes problem; see, e.g., [29, 17, 13, 21, 9]. This is indeed the purpose of this
paper.

We propose a DG approximation together with suitable finite element spaces
consisting of discontinuous velocities and pressures for the Stokes problem. We aim to
a method where no additional unknown fields are introduced, which involves the same
local bilinear forms on each element as those employed for conforming approximations
and only adds interface contributions on the interelement boundaries. We believe that
this approach can also be more easily exploited in a domain decomposition framework.

One remarkable property of our method is that the corresponding modified di-
vergence bilinear form and the velocity-pressure pairs exhibit greater stability than
the corresponding conforming approximations. We believe that this is related to the
stabilizing effect obtained when Dirichlet conditions are imposed weakly, as it can
easily be seen in the case of one element Ω = (−1, 1)n. If we consider pressures in
Qk(Ω), i.e., polynomials of degree k in each variable, with mean value zero, referring
to [9, Th. 24.1], we see that the spurious pressure modes p, which satisfy

b(v, p) = −
∫

Ω

∇ · v p dx = 0, v ∈ Qk(Ω)n ∩ H1
0 (Ω)n,

are all related to the fact that the velocities vanish on ∂Ω. If Dirichlet conditions are
imposed weakly (see (4.4), with Γint = ∅), spurious pressure modes satisfy

b(v, p) = −
∫

Ω

∇ · v p dx +
∫

∂Ω

v · n p dx =
∫

Ω

v · ∇p dx = 0, v ∈ Qk(Ω)n,

and thus vanish, as it can be seen by taking v = ∇p. This remark only gives an
idea of the reason why greater stability is achieved with DG approximations and is no
proof that the case of more then one element is also stable. In addition, quantifying the
stability in terms of an explicit dependence on the mesh size and the polynomial degree
is not a trivial matter and a complete theory is beyond the scope of this work. Here we
show that the pairs Qk′ -Qk, k′ = k +2, k +1, are uniformly stable with respect to the
mesh size h. Our tests show that the choice Qk-Qk is also free from spurious pressure
modes, but is not uniformly stable with respect to h. Our numerical results show that
the pairs Qk′ -Qk, k′ = k + 2, k + 1, are also uniformly stable with respect to k in two
dimensions, while Qk-Qk is not. In this paper we only prove an algebraic bound for
the inf-sup constant that decreases like k−4 for the case of Qk+1-Qk elements. For the
pair Qk+2-Qk a better bound, which is not sharp either, is obtained using a stability
result for conforming approximations. As is the case of DG approximations for scalar
second order problems, a loss of optimality for p approximations is also found in our
error analysis. Such loss is independent of the divergence stability of the method and
is related to the interface contributions involving the gradient of the velocity.

Ours is not the first work on DG approximations of the Stokes problem. We
mention [7, 20], where an interior penalty approximation with discontinuous, piece-
wise divergence-free velocities and continuous pressures are employed for the Stokes
and incompressible Navier-Stokes equations, respectively. In [14] a local DG approx-
imation of the Stokes problem is proposed. There the introduction of the fluxes as
additional unknowns appears to have a stabilizing effect, and equal order flux, veloc-
ity, and pressure spaces can be chosen. Optimal error estimates for h approximations
are proved.

The work in [18] deserves particular mention. There an h approximation for in-
compressible and nearly incompressible elasticity based on a DG method is introduced
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and studied. Triangular and tetrahedral meshes are employed together with polyno-
mial spaces of total degree k + 1 and k for the velocity and pressure, respectively.
Optimal error estimates in h are proven for velocity and pressure, which remain valid
in the incompressible limit. We note that the interface and modified divergence bilin-
ear forms that we employ are basically the same. Here we consider a positive-definite,
non-symmetric velocity bilinear form instead of an indefinite, symmetric one, which
requires restrictions on the penalization coefficient. Our focus here is on hp approx-
imations on quadrilateral and hexahedral meshes with hanging nodes and on the
stability properties of some DG approximations also in terms of the order of the ap-
proximation. We also note that the proof for the divergence stability in [18], which
employs the so called BDM spaces, does not seem to extend to our types of meshes.
Here we also present a proof for the a priori estimates since the standard theory of
mixed methods cannot be directly applied.

The rest of the paper is organized as follows:
In section 2 we introduce our continuous problem. Finite element spaces are defined
in section 3, while our DG methods are derived in section 4. In section 5 we present
some numerical tests and estimate the stability constants for certain h and p approx-
imations, while we prove explicit theoretical bounds in section 6. Section 7 is devoted
to the well-posedness and consistency of the discrete problem, and a priori error esti-
mates for the velocity and pressure are proven in section 8. We conclude with some
remarks on other choices of velocity-pressure pairs in section 9.

2. Problem setting. Let Ω ⊂ lRn, n = 2, 3, be a bounded polyhedral domain.
Given two vectors f ∈ L2(Ω)n and g ∈ H1/2(∂Ω)n, with∫

∂Ω

g · n ds = 0,

we consider the following system for a velocity u and a pressure p:

u|∂Ω = g,

−ν∆u + ∇p = f , in Ω,

∇ · u = 0, in Ω.

(2.1)

For a vector u, the tensor ∇u is defined by

(∇u)ij = ui/j =
∂ui

∂xj
,

with ui the i-th component of u. If I is the identity matrix in lRn, we can rewrite the
second of (2.1) in terms of the divergence of a stress tensor τ :

−∇ · τ = −∇ · (ν∇u − pI) = f , (2.2)

where

(∇ · τ)i =
n∑

j=1

τij/j .

For tensors τ and ε, and a vector v, we define the products

τ · ε =
n∑

i,j=1

τijεij ,

(τ : v)i =
n∑

j=1

τijvj .

3



Using the following Green formula,∫
D

((∇ · τ) · v + τ · ∇v) dx =
∫

∂D

v · (τ : n) ds, D ⊂ Ω, (2.3)

we find the following variational formulation of Problem (2.1): find u ∈ H1(Ω)n and
p ∈ L2

0(Ω), such that

u|∂Ω = g,

ν(∇u,∇v)Ω − (p,∇ · v)Ω = (f ,v)Ω, v ∈ V := H1
0 (Ω)n,

(∇ · u, q)Ω = 0, q ∈ M := L2
0(Ω).

(2.4)

Here L2
0(Ω) denotes the subspace of L2(Ω) of functions with vanishing mean value in

Ω and, for D ⊆ lRn, (u, v)D, (u,v)D , and (τ, ε)D denote the scalar products in L2(D),
L2(D)n, and L2(D)n×n, respectively, with ‖u‖D, ‖u‖D, and ‖τ‖D the corresponding
norms. We denote the norm of Hs(D) or Hs(D)n, s ∈ lR, by ‖ · ‖s,D. Analogous
notations are employed for the corresponding seminorms for s > 0. In case D = Ω,
we drop the subscript Ω and, in case s = 0, we also drop the subscript 0. We recall
that the seminorm |u|1,Ω = ‖∇u‖0,Ω is a norm in H1

0 (Ω)n, the subspace of H1(Ω)n

of vectors that vanish on ∂Ω.
We note that the second of (2.4) can also be written in terms of the stress tensor

τ , since

ν∇u · ∇v − p∇ · v = (ν∇u − pI) · ∇v = τ · ∇v.

The well-posedness of problem (2.4) is ensured by the two stability conditions

ν(u,v) ≤ ν|u|1 |v|1, (2.5)
(∇ · u, p) ≤ |u|1 ‖p‖, (2.6)

the coercivity condition

ν(∇u,∇u) ≥ ν|u|21, u ∈ H1
0 (Ω)n, (2.7)

and the divergence stability condition

sup
0�=v∈H1

0(Ω)n

(∇ · v, p)
|v|1

≥ γ‖p‖, p ∈ L2
0(Ω), γ > 0. (2.8)

We refer to, e.g., [13, Ch. II] for a comprehensive analysis.

3. Finite element spaces. Given a shape-regular affine quadrilateral or hexa-
hedral mesh T = Th, of maximum diameter h, and polynomial degrees k′ and k, we
consider the following finite element spaces:

Vk′ =
{
u ∈ L2(Ω)n | u|κ ∈ Qk′(κ)n κ ∈ T

}
,

Mk =
{
p ∈ L2

0(Ω) | p|κ ∈ Qk(κ) κ ∈ T
}

.
(3.1)

Here Qk(κ) is the space of polynomials of maximum degree k in each variable on κ.
We note that we have considered discontinuous finite element spaces for the velocity
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that do not vanish on ∂Ω, since we impose Dirichlet conditions weakly. We still require
that pressures have mean value zero in Ω.

The mesh T is said to be conforming or regular if the intersection between two
different elements is either empty, or a vertex, an edge, or face that is common to
both elements. Meshes that are not conforming are sometimes called irregular and
they contain hanging nodes; see, e.g., [23, 24]. We allow irregular meshes in general,
but suppose that the intersection between neighboring elements is either a common
vertex, or an entire edge, or an entire face of one of the two elements. We also allow
non quasi-uniform meshes, but assume that the diameters of neighboring elements are
not too different:

Assumption 3.1. There exist constants independent of T , such that

chκ′ ≤ hκ ≤ Chκ′ , κ, κ′ ∈ T ,

if κ and κ′ are distinct and they share an entire edge, if n = 2, or an entire face, if
n = 3, of κ or κ′.

We will make particular choices for the velocity and pressure spaces in the next
section.

We recall the following inverse estimates; see [26, Eqq. 4.6.4 and 4.6.5]. Let q ∈
Mk, then

|q|21,κ ≤ C
k4

h2
κ

‖q‖2
0,κ, (3.2)

‖q‖2
0,γ ≤ C

k2

hκ
‖q‖2

0,κ, (3.3)

where γ is either ∂κ or one of its faces, and hκ denotes the diameter of κ ∈ T . Similar
estimates hold for vector functions in Vk.

We will also need a multiplicative trace inequality:

‖q‖2
0,∂κ ≤ C

(
‖q‖0,κ ‖∇q‖0,κ + h−1

κ ‖q‖2
0,κ

)
, q ∈ H1(κ), (3.4)

with κ ∈ T and C independent of hκ; see [19]. An analogous estimate holds for vector
functions.

The following approximation property can be found in [6, 24].
Lemma 3.1. Let q ∈ Hnκ(κ), κ ∈ T . Then, there exists Πκq = Πκ,kq ∈ Qk(κ)

and C, only depending on the shape–regularity of κ , s, and nκ, such that

‖q − Πκq‖s,κ ≤ C
hm−s

κ

knκ−s
‖q‖nκ,κ , 0 ≤ s ≤ m, (3.5)

where m := min{k + 1, nκ}.
It is possible to define a global operator Πh,kq on Mk by

Πh,kq|κ := Πκ,kq, κ ∈ T .

Similar operators and estimates hold for vector functions in Vk′ .

4. Discrete problem. We now derive our DG formulation. The idea is to con-
sider Problem (2.1) on each element κ ∈ T and impose Dirichlet conditions weakly
on the boundary ∂κ using the value of the velocity on the boundary of the neigh-
boring elements. In addition, a suitable numerical flux needs to be chosen in order to
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approximate the flux τ : n on ∂κ. Finally an interface term, penalizing the jumps of
the velocity, will be added as for similar DG approximations of second order prob-
lems. This is a standard procedure in the derivation of DG formulations; see, e.g.,
[19, 14, 18].

Here, the choice of flux τ : n instead of ν∇u : n seems most reasonable and
physically meaningful. As in [18], this will bring a modification of both the bilinear
form a(·, ·) and b(·, ·); see (4.6).

We consider Problem (2.1) on κ ∈ T , multiply the second equation (or, equiva-
lently, (2.2)) by a test velocity v, the third equation by a test pressure q, and sum.
We obtain ∫

κ

(−∇ · τ) · v +
∫

κ

∇ · u q dx =
∫

κ

f · v dx.

By using the Green’s formula (2.3), we find∫
κ

(τ · ∇v + ∇ · uq) dx −
∫

∂κ

v · (τ : nκ) ds =
∫

κ

f · v dx,

where nκ is the outward normal to ∂κ.
Let uout be the value of a velocity u on ∂κ from the neighboring elements. On

∂κ ∩ ∂Ω 
= ∅, we set uout = g, the Dirichlet data. In addition we define ε as the flux
relative to the pair {v, q}:

ε = ν∇v − qI.

Assuming that u is continuous and equal to g on ∂Ω, we can write∫
κ

(τ · ∇v + ∇ · uq) dx −
∫

∂κ

v · (τ : nκ) ds + ρ

∫
∂κ

u · (ε : nκ) ds

=
∫

κ

f · v dx + ρ

∫
∂κ

uout · (ε : nκ) ds,

(4.1)

where ρ is equal to one on ∂κ ∩ ∂Ω and to one half elsewhere.
We now replace τ : nκ and ε : nκ with suitable numerical fluxes. In order to do so,

we first need to define some geometrical objects related to the partition T . We denote
by Eint the set of all open (n − 1)–dimensional intersections of neighboring elements

Eint = {e| e = ∂κ ∩ ∂κ′, κ, κ′ ∈ T , measn−1(e) > 0}

and Γint their union, such that

Γ̄int =
⋃

e∈Eint

ē.

Thanks to our assumptions on T , these intersections are entire faces of elements in
T for, e.g., n = 3. For the sake of brevity we will refer to such intersections as ’faces’
in the following, even for n = 2. The boundary ∂Ω can also be partitioned into
contributions from single elements. We define

Eout = {e| e = ∂κ ∩ ∂Ω, κ ∈ T , measn−1(e) > 0}

and

E = Eint ∪ Eint.
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In the following, we generically refer to elements in Eout as faces, even though they
may actually consist of union of element faces.

Given an interior face e ∈ Eint, there are two elements κi, κj, with, e.g., i > j,
that share this face. We define the jump [v] and the average < v > by

[v]e = vκi |e − vκj |e , < v >e=
1
2
(vκi |e + vκj |e) ,

and n as the unit normal which points from κi to κj , i.e., n = nκi . We note that if
[v]e = 0, then < v >e= vκi |e = vκj |e . For e ∈ Eout, we define

[v]e = v|e , < v >e= v|e ,

and n as the unit outward normal to ∂Ω. Jumps and averages for vector functions are
defined component by component.

Our choice for the numerical fluxes is

< τ : nκ >, < ε : nκ >, on Γint ∪ ∂Ω.

Replacing the fluxes in (4.1) with the numerical fluxes, we obtain∫
κ

(τ · ∇v + ∇ · uq) dx −
∫

∂κ

v· < τ : nκ > ds + ρ

∫
∂κ

u· < ε : nκ > ds

=
∫

κ

f · v dx + ρ

∫
∂κ

uout· < ε : nκ > ds,

or, equivalently,


∫
κ

τ · ∇v dx −
∫

∂κ

v· < τ : nκ > ds + ρ

∫
∂κ

u· < ν∇v : nκ > ds,

=
∫

κ

f · v dx + ρ

∫
∂κ

uout· < ν∇v : nκ > ds

−
∫

κ

∇ · uq dx + ρ

∫
∂κ

< q > (u · nκ) ds = ρ

∫
∂κ

< q > (uout · nκ) ds.

(4.2)

Our derivation is concluded by summing over the elements. We start with the second
equation in (4.2) and find

−
∑
κ∈T

∫
κ

∇ · uq dx +
∫

Γint

< q > [u · n] ds +
∫

∂Ω

u · nq ds =
∫

∂Ω

g · n q ds. (4.3)

We note that, by summing over the elements, the integral on an interface e = ∂κ∩∂κ′

consists of two contributions, from κ and κ′, and that ρ is equal to 1/2 on e.
Equation (4.3) motivates our choice for a modified divergence bilinear form:

b(v, p) = −
∑
κ∈T

(∇ · v, p)κ +
∫

Γint∪∂Ω

< p > [v · n] ds

= −
∑
κ∈T

(∇ · v, p)κ +
∫
∂Ω

pv · n ds +
∫

Γint

< p > [v · n] ds.
(4.4)
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Before considering the first equation in (4.2), we introduce a penalization coef-
ficient for the velocity space. Let σ0 be a positive constant and σ be the function
defined on Γint ∪ ∂Ω by

σ|e = σ0ν
k′2

he
, e ∈ E ,

with he the diameter of e and k′ the polynomial order chosen for the approximation
of the velocity; see below. Summing then over the elements and adding penalization
terms, we obtain

∑
κ∈T

∫
κ

ν∇u · ∇v dx +
∫
∂Ω

σu · v ds +
∫

Γint

σ[u] · [v] ds

+
∫

∂Ω

(u · (ν ∇v : n) − (ν ∇u : n) · v) ds

+
∫

Γint

([u]· < ν ∇v : n > − < ν ∇u : n > ·[v]) ds

+ b(v, p)

=
∑
κ∈T

∫
κ

f · v dx +
∫

∂Ω

(σ g · v + g · (ν ∇v : n)) ds,

(4.5)

We note that the penalization terms vanish if u is continuous across the elements and
is equal to g on ∂Ω.

We then define the following velocity bilinear form:

a(u,v) =
∑
κ∈T

ν(∇u,∇v)κ +
∫

Γint∪∂Ω

σ[u] · [v] ds

+
∫

Γint∪∂Ω

([u]· < ν ∇v : n > − < ν ∇u : n > ·[v]) ds

=
∑
κ∈T

ν(∇u,∇v)κ +
∫

∂Ω

σu · v ds +
∫

Γint

σ[u] · [v] ds

+
∫

∂Ω

(u · (ν ∇v : n) − (ν ∇u : n) · v) ds

+
∫

Γint

([u]· < ν ∇v : n > − < ν ∇u : n > ·[v]) ds.

Given the pressure space Mk, k ≥ 0, and a velocity space Vk′ , k′ ≥ k, (4.5) and
(4.3) define our discrete problem:
Find u ∈ Vk′ and p ∈ Mk, such that

a(u,v) + b(v, p) = (f ,v)Ω +
∫

∂Ω

(σ g · v + g · (ν ∇v : n)) ds, v ∈ Vk′ ,

b(u, q) =
∫

∂Ω

g · n q ds, q ∈ Mk.

(4.6)

We note that, by integrating by parts on each element, the bilinear form b(·, ·)
8



can also be written as

b(v, p) =
∑
κ∈T

(v,∇p)κ −
∫

Γint

[p] < v · n > ds. (4.7)

In particular we see that the b(u, 1) is identically zero for every u. Consequently the
second equation in (4.6) is satisfied for every u ∈ Vk′ and q a constant function on
Ω. As for conforming approximations, the pressure is determined up to an additive
constant and uniqueness is achieved by requiring a vanishing mean value on Ω.

We consider three choices of approximation spaces.
1. Method 1. We choose Vk+2 and Mk, k ≥ 0. This is a generalization of the

conforming Qk+2 − Qk spaces with discontinuous pressure; see, e.g., [28].
2. Method 2. We take Vk+1 and Mk, k ≥ 0. This is a generalization of the

conforming Qk+1−Qk spaces with continuous pressures, also known as Taylor-
Hood elements; see, e.g., [12, 13].

3. Method 3. We consider equal polynomial degrees for the velocity and pres-
sure: Vk and Mk, k ≥ 1.

Methods 1, 2, and 3 correspond to the choices k′ = k + 2, k + 1, k, respectively,
for the velocity space Vk′ in problem (4.6). Our numerical results show however that
an inf-sup condition holds for Method 3 with a constant that decreases as Chk−1/2.
Method 3 is stable but not uniformly in h and k, and thus unsuitable both for h and
p-version approximations.

Given a velocity space Vk′ , a pressure space Mk, k′, k ≥ 0, and g ∈ H1/2(∂Ω), we
define the space

Z(g) = Zk′,k(g) =
{
u ∈ Vk′ | b(u, q) =

∫
∂Ω

g · n q ds, q ∈ Mk

}
⊂ Vk′ ,

and Z = Z(0). For elements in Vk′ we employ a discrete norm defined by

|u|2h =
∑
κ∈T

|u|21,κ +
∫

Γint∪∂Ω

σ|[u]|2 ds =
∑
κ∈T

|u|21,κ +
∫

∂Ω

σ|u|2 ds +
∫

Γint

σ|[u]|2 ds.

5. Numerical investigation of the divergence stability. The stability and
accuracy of the discrete mixed problem depend on the a discrete inf-sup condition for
the bilinear form b(·, ·) and the approximation spaces of velocities and pressures:

sup
0�=v∈Vk′

b(v, p)
|v|h

≥ γi‖p‖, p ∈ Mk, γi > 0, (5.1)

for i = 1, 2, 3, corresponding to the choices k′ = k + 2, k + 1, k.
In this section we show some estimates of the inf-sup constant of Methods 1, 2,

and 3. We only consider two dimensional problems on the unit square Ω = (0, 1)2 and
uniform triangulations consisting of n × n square elements.

5.1. Numerical results for the h-version. For the results in this section, we
fix the degree k and only consider the dependence on the mesh-size h. Figure 5.1
shows the estimated inf-sup conditions for Methods 1 and 2, as functions of the mesh
size h = 1/n, for k = 0, 1, 2, 3. The results plotted on the left for k′ = k + 2 are
well-known since in this case our pressure space coincides with that of the standard
Qk+2-Qk elements but with a larger (discontinuous) velocity space. In this case the

9



inf-sup constant can only improve. Our results are consistent with a stability constant
which is independent of h, as stated in Lemma 6.1.

The results plotted on the right however cannot be deduced from the correspond-
ing ones for the Qk+1-Qk Taylor-Hood elements with continuous pressure. Indeed
Qk+1-Qk elements with discontinuous pressure and continuous velocity may show spu-
rious pressure modes; see, e.g., [13]. On the other hand, our DG method employing
Qk+1-Qk elements with discontinuous pressure and velocity does not have any spuri-
ous pressure modes and our results are consistent with a stability constant which is
independent of h, as stated in Lemma 6.3. We also note that the Q1-Q0 elements are
stable. This case is not covered by Lemma 6.3.
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Fig. 5.1. Estimated inf-sup conditions for Method 1 (left) and 2 (right), as functions of the
mesh size h = 1/n for different values of k

Figure 5.2 shows the estimated inf-sup conditions for Method 3, as functions of
the mesh size h = 1/n for k = 1, 2, 3, 4. We note that Qk-Qk elements with dis-
continuous pressure and continuous velocity can show spurious pressure modes. Our
results show that our DG method with discontinuous pressure and velocity does not
have spurious pressure modes. However the stability constant decreases with h, thus
making Method 3 not suitable for h approximations. Our results are consistent with
a linear dependence

γ3 = ch,

with c depending on k. The error of the exact solution is then suboptimal of at least
one power of h.

5.2. Numerical results for the p-version. The numerical tests presented in
the previous section for the h version show that our DG methods exhibits better
stability properties than the corresponding conforming approximations. It is natural
to ask then if this is also the case for p-approximations and if, in particular, the
stability constants of our methods exhibit a weaker dependence on the polynomial
degree k.

Figure 5.3 shows the estimated inf-sup conditions for Methods 1 (left) and 2
(right), as functions of the polynomial degree k, for different uniform triangulations
of Ω = (0, 1)2. We have also shown results for the corresponding conforming ap-
proximations on a 3 × 3 mesh: Qk+2-Qk with discontinuous pressure on the left, and
Qk+1-Qk Taylor-Hood elements with continuous pressure on the right.
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Fig. 5.2. Estimated inf-sup conditions for Method 3, as functions of the mesh size h = 1/n for
different values of k

For the plot on the left, we first remark the typical behavior of conforming approx-
imations, where the decrease of the stability constant as ck−1/2 is only observed for
large k. Our results for the corresponding DG approximation show that such depen-
dence is removed when the velocity space is made discontinuous and the divergence
bilinear form suitably modified: the stability constants tend to a constant value when
k becomes large.

What is remarkable is that exactly the same pattern is observed if we decrease the
velocity space by one order (see Figure 5.3, right). We are unaware of any theoretical
bound for p approximations using Taylor-Hood elements. Our results for conforming
approximations show that the constants decrease like ck−1/2 in two dimensions; see
also Figure 3 in [2]. However such dependence is removed if velocities and pressures
are made discontinuous. We also note that there is no appreciable difference when
switching from a DG approximation based on Qk+2-Qk elements to one based on
Qk+1-Qk elements. Indeed the constants are only slightly smaller.

DG approximations using Qk+1-Qk appear particularly attractive since they ex-
hibit a stability constant that does not depend on k with only a gap of one order
between the velocity and the pressure. We note however that half a power of k is lost
in our error estimates; see Lemmas 8.1 and 8.2. This loss is typical of p-version DG
finite elements for second order problems; see, e.g., [19].

We now consider Method 3. Figure 5.4 shows the estimated inf-sup conditions as
functions of the polynomial degree k, for different uniform triangulations. It is clear
that choosing finite element spaces of equal order removes the uniform stability with
respect to k as well as h. Our results are consistent with a dependence

γ3 = c hk−1/2

for the inf-sup condition. This dependence on h and k is likely to be removed if suitable
stabilization procedures, as those in [16], are employed, but this generalization is
beyond the scope of this paper. We will not consider Method 3 in our analysis.

We summarize the evidence found by our numerical results for two dimensional
problems in the following remarks.

Remark 1 (Method 1). There exists a constant γ1, independent of h and k,
11
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Fig. 5.3. Estimated inf-sup conditions for Method 1 (left) and 2 (right), as functions of k for
different values of the mesh-size.
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Fig. 5.4. Estimated inf-sup conditions for Method 3, as functions of k for different values of
the mesh-size.

such that, for k ≥ 0,

sup
0�=v∈Vk+2

b(v, p)
|v|h

≥ γ1‖p‖, p ∈ Mk, γ1 > 0. (5.2)

Remark 2 (Method 2). There exists a constant γ2, independent of h and k,
such that, for k ≥ 0,

sup
0�=v∈Vk+1

b(v, p)
|v|h

≥ γ2‖p‖, p ∈ Mk, γ2 > 0. (5.3)

Remark 3 (Method 3). There exists a constant c, independent of h and k, such
that, for k ≥ 1,

sup
0�=v∈Vk

b(v, p)
|v|h

≥ γ3 ‖p‖ = chk−1/2 ‖p‖, p ∈ Mk. (5.4)

12



6. Divergence stability for the hp version. This section is devoted to the
divergence stability for the hp version of Methods 1 and 2. In view of the numerical
results presented in the previous section, the dependence on h in our bounds is sharp,
but that on k is not.

6.1. Method 1. The stability for the choice of spaces of Method 1 is a di-
rect consequence of the corresponding property for conforming approximations using
Qk+2 − Qk elements. We refer to [28]; in particular, see [23] and [31] for the case of
non-conforming meshes with hanging nodes in two and three dimensions, respectively.
Indeed, the pressure space is the same and the space of velocities that are continu-
ous across the elements and vanish on ∂Ω is contained in Vk+2. Finally, the integral
contributions on Γint ∪ ∂Ω in the definitions of b(·, ·) and | · |h vanish for continuous
velocities. We thus have the following lemma

Lemma 6.1 (Method 1). There exists a constant c > 0, independent of h and
k, such that, for k ≥ 0,

sup
0�=v∈Vk+2

b(v, p)
|v|h

≥ γ1‖p‖ ≥ ck(1−n)/2‖p‖, p ∈ Mk. (6.1)

We remark that, even though this bound is not sharp with respect to k, thanks to
[23] and [31] the inf-sup constant γ1 is independent of the aspect ratio of suitable
boundary layer meshes.

6.2. Method 2. For the choice corresponding to Method 2, the proof proposed
in [18] for simplicial meshes, employing the so called BDM spaces, does not seem
to extend to our case. However stability can be proven in the same way as for the
conforming Taylor-Hood elements Qk+1 − Qk consisting of continuous velocities and
pressures, despite the fact that we consider here discontinuous pressures; see [12]. In
addition, using some properties of the Legendre polynomials we are able to track
down the dependence on k as well; for some crucial steps of our analysis we rely on
[25]. We are unaware of a proof for the Taylor-Hood elements which gives an explicit
dependence on the polynomial degree k: numerical evidence however shows that the
inf-sup constant does depend on k; see, e.g., [2].

Even if our bound is not sharp, we have chosen to present the proof here for
various reasons:
It is indeed a proof of an algebraic bound in k. For p- and hp-approximations of
problems with piecewise analytic data, exponential convergence is ensured in case the
solution of the continuous problem can be properly characterized; see, e.g., [24, Sect.
4.5] for more details. In addition our proof is the same as for Taylor-Hood elements
and can be carried out exactly in the same way for conforming approximations with
continuous pressure, thus giving an algebraic bound for them as well. Even for con-
forming approximations this bound does not appear to be sharp, but is sufficient to
ensure exponential convergence. Our argument is dimension-independent and remains
valid in the case of meshes with hanging nodes.

We finally note that a bound for Method 2 gives also a bound for Method 1. For
Method 1 however a better bound, even if not sharp, is given in Lemma 6.1.

We first need some additional notations and results. Given an integer k ≥ 1, we
denote by GGL(k) the set of Gauss-Lobatto points {ai; 0 ≤ i ≤ k} on I = (−1, 1)
in increasing order and by {wi > 0} the corresponding weights; see, e.g., [21, Ch. 4].
For the square (−1, 1)2 we set GGL(k)2 = {aij = (ai, aj); 0 ≤ i, j ≤ k} and denote
by {wij = wiwj > 0} the corresponding weights. These definitions carry on in the
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three-dimensional case with the obvious modifications. We recall that the quadrature
formula based on GGL(k) has order 2k − 1 and that

‖p‖2
0,I ≤

k∑
i=0

p(ai)2 wi ≤
(

2 +
1
k

)
‖p‖2

0,I, p ∈ Qk(I); (6.2)

see [21, Eq. 4.4.16]. In the following, we use the same notation for the mapped Gauss-
Lobatto nodes and corresponding weights for an element κ ∈ T . Similar estimates as
(6.2) hold in two and three dimensions and for affinely mapped elements.

We also need the following lemma.
Lemma 6.2. Let S = I2, I = (−1, 1), and q ∈ Qk(S) such that∫

S

q(x, y) dxdy = 0.

If k ≥ 1, then

‖q‖2
0,S ≤

∫
S

(
(1 − x2)

∣∣∣∣ ∂q

∂x

∣∣∣∣
2

+ (1 − y2)
∣∣∣∣∂q

∂y

∣∣∣∣
2
)

dxdy ≤ 4k2‖q‖2
0,S.

Analogous estimates hold in three dimensions for I3.
Proof. We only give the proof for the two-dimensional case. Since q ∈ Qk(S) has

mean value zero, it can be written as

q(x, y) =
k∑

i=0

k∑
j=0

qijLi(x)Lj(y),

with q00 = 0. Here {Li} are the Legendre polynomials; see [9, Sect. 3].
We can write

(1 − x2)
∣∣∣∣ ∂q

∂x

∣∣∣∣
2

=
k∑

i,n=1

k∑
j,m=0

qijqnm

(
(1 − x2)L′

i(x)L′
n(x)

)
(Lj(y)Lm(y)) .

Using the conditions, see [9],∫ 1

−1

Li(x)Ln(x) dx = ‖Li‖2
0,I δin,∫ 1

−1

(1 − x2)L′
i(x)L′

n(x) dx = i(i + 1)
∫ 1

−1

Li(x)Ln(x) dx,

we find ∫
S

(1 − x2)
∣∣∣∣ ∂q

∂x

∣∣∣∣
2

dxdy =
k∑

i=1

k∑
j=0

q2
ij i(i + 1)‖Li‖2

0,I‖Lj‖2
0,I .

Using similar arguments for the ∂q/∂y, we find∫
S

(
(1 − x2)

∣∣∣∣ ∂q

∂x

∣∣∣∣
2

+ (1 − y2)
∣∣∣∣∂q

∂y

∣∣∣∣
2
)

dxdy

=
k∑

i=1

k∑
j=0

q2
ij i(i + 1)‖Li‖2

0,I‖Lj‖2
0,I +

k∑
i=0

k∑
j=1

q2
ij j(j + 1)‖Li‖2

0,I‖Lj‖2
0,I

≥
k∑

i=0

k∑
j=0

q2
ij‖Li‖2

0,I‖Lj‖2
0,I = ‖q‖2

0,S.
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The upper bound can be found in a similar way.
We are now ready to prove the following lemma.
Lemma 6.3 (Method 2). There exists a constant c > 0, independent of h and

k, such that, for k ≥ 1,

sup
0�=v∈Vk+1

b(v, p)
|v|h

≥ γ2‖p‖ ≥ ck−4‖p‖, p ∈ Mk. (6.3)

Proof. The proof is similar to [12, Th. 3.1 and 3.2]. We also refer to [11] where sim-
ilar ideas where first employed. Here, we only consider the two-dimensional case and
find an explicit dependence on k of the constants. The extension to three dimensions
is straightforward.

Given p ∈ Mk, we first decompose it as

p = p0 + (p − p0) = p0 + p̃, (6.4)

with p0 ∈ M0 the L2 projection of p. If we set pκ = p̃|κ , κ ∈ T , we have

∫
κ

pκ dx = 0.

Thanks to [28, Th. 5.1], there exists v0 ∈ V2 ∩ H1
0 (Ω)2, such that

b(v0, p0) =
∫

Ω

∇ · v0 p0 dx = ‖p0‖2, |v0|h = |v0|1,Ω ≤ C0‖p0‖, (6.5)

with a constant C0 that is independent of h and k. If hanging nodes are present (6.5)
is a consequence of [23, Th. 4.9] (see [31, Lem. 7.3] for the three dimensional case).

We next consider κ ∈ T , of diameter hκ, and construct a velocity vκ ∈ Q2
k+1 in κ.

We first note that it is enough to assign the values of each component at the (k + 2)2

nodes GGL(k + 1)2. We set

vκ(aij) = h2
κ ∇pκ(aij)

at all the k2 internal nodes. In addition, we define

vκ(aij) · n = 0,

vκ(aij) × n = h2
κ ∇pκ(aij) × n,

on all the nodes on ∂κ (i.e., aij with i = 0, j = 0, i = k + 1, or j = k + 1) and vκ = 0
at the four vertices of κ. These nodal values are then interpolated in order to obtain a
polynomial in Q2

k+1. We note in particular that the normal component of vκ vanishes
on ∂κ.

A global function ṽ ∈ Vk+1 can be defined by

ṽ|κ = vκ.

We remark that ṽ has a vanishing, and thus continuous, normal component on Γint,
but that its tangential component is in general discontinuous. In addition its normal
component vanishes on ∂Ω.
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Since each component of vκ belongs to Qk+1, using the inverse estimate (3.2) and
(6.2), we find, for κ ∈ T ,

|ṽ|21,κ ≤ Ck4h−2
κ ‖ṽ‖2

0,κ ≤ Ck4h−2
κ

∑
0≤i,j≤k+1

|ṽ(aij)|2wij .

Since the values of ṽ at the nodes GLL(k + 1)2 are either equal to h2
κ∇pκ or vanish

and the weights wij are positive, we can write

k4h−2
κ

∑
0≤i,j≤k+1

|ṽ(aij)|2wij ≤ k4h2
κ

∑
0≤i,j≤k+1

|∇p(aij)|2wij = k4h2
κ |p̃|21,κ,

where for the last equality we have used the fact that |∇p̃|2 belongs to Q2
k and the

quadrature formula on GLL(k +1)2 is thus exact. Using these last two estimates and
the inverse inequality (3.2) we find∑

κ∈T
|ṽ|21,κ ≤ C1‖p̃‖2

0 = C̃1k
8‖p̃‖2

0, (6.6)

with C̃1 independent of h and k.
We next consider the interface contributions. Let e ∈ Eint. Since each component

of the jump [ṽ] belongs to Qk+1 on e, using (6.2) and the definition of σ, we find∫
e

σ|[ṽ]|2 ds ≤ Ck2h−1
e

∑
0≤i≤k+1

|[ṽ(ai)]|2wi,

where the sum is taken over the nodes GLL(k + 1) on e. Proceeding as before and
noting that the normal component of ṽ vanishes on e, we can write

k2h−1
e

∑
0≤i≤k+1

|[ṽ(ai)]|2wi ≤ k2h3
e

∑
0≤i≤k+1

∣∣∣∣
[
dp̃

dt
(ai)

]∣∣∣∣
2

wi

= k2h3
e

∑
0≤i≤k+1

∣∣∣∣
(

d [p̃]
dt

)
(ai)

∣∣∣∣
2

wi = k2h3
e |[p̃]|21,e ≤ Ck6he

∫
e

[p̃]2 ds,

(6.7)

where t is the arc length along e and for the last inequality we have employed the
inverse inequality (3.2). Combining these last two estimates and noting that a similar
argument can be employed for e ∈ Eout, we obtain

∑
e∈E

∫
e

σ|[ṽ]|2 ds ≤ C
∑
e∈E

k6he

∫
e

[p̃]2 ds. (6.8)

Combining (6.6) and (6.8), and using the inverse inequality (3.3), we find

|ṽ|h ≤ C2 ‖p̃‖0 = C̃2k
4‖p̃‖0. (6.9)

We next consider b(ṽ, p̃). We first note that thanks to (4.7) and the fact that the
normal component of ṽ vanishes on Γint, we have

b(ṽ, p̃) =
∑
κ∈T

∫
κ

ṽ · ∇p̃ dx.
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Since ṽ · ∇p̃ belongs to Q2k+1 in each element κ ∈ T , we have∫
κ

ṽ · ∇p̃ dx =
∑

0≤i,j≤k+1

ṽ(aij) · ∇p̃(aij)wij

= h2
κ

∑
1≤i≤k

0≤j≤k+1

∣∣∣∣∂p̃

∂x
(aij)

∣∣∣∣
2

wij + h2
κ

∑
0≤i≤k+1
1≤j≤k

∣∣∣∣∂p̃

∂y
(aij)

∣∣∣∣
2

wij .
(6.10)

We now assume for simplicity that

κ =
(
−hκ

2
,
hκ

2

)2

;

the more general case of an affinely mapped element can be dealt with in a similar
way. Since

−hκ/2 = a0 < a1 < · · · < ak < ak+1 = hκ/2,

for the first term on the right hand side of (6.10) we find

h2
κ

∑
1≤i≤k

0≤j≤k+1

∣∣∣∣∂p̃

∂x
(aij)

∣∣∣∣
2

wij

= h2
κ

∑
i=0,k+1
0≤j≤k+1

(
1 −

(
2ai

hκ

)2
)∣∣∣∣ ∂p̃

∂x
(aij)

∣∣∣∣
2

wij + h2
κ

∑
1≤i≤k

0≤j≤k+1

∣∣∣∣ ∂p̃

∂x
(aij)

∣∣∣∣
2

wij

≥ h2
κ

∑
0≤i≤k+1
0≤j≤k+1

(
1 −

(
2ai

hκ

)2
)∣∣∣∣ ∂p̃

∂x
(aij)

∣∣∣∣
2

wij

= h2
κ

∫
κ

(
1 −

(
2x

hκ

)2
) ∣∣∣∣ ∂p̃

∂x
(x, y)

∣∣∣∣
2

dxdy

= h2
κ

∫ 1

−1

∫ 1

−1

(1 − x̂2)
∣∣∣∣∂p̂

∂x̂

∣∣∣∣
2

dx̂dŷ,

where p̂(x̂, ŷ) = p̃(x(x̂), y(ŷ)) and [x(x̂), y(ŷ)] maps the reference square into κ. We
note that, since p̃ ∈ Qk, the function(

1 −
(

2x

hκ

)2
) ∣∣∣∣∂p̃

∂x
(x, y)

∣∣∣∣
2

belongs to Q2k and the quadrature formula based on GGL(k + 1)2 is exact. Using
similar arguments for the second term on the right hand side of (6.10) and Lemma
6.2, we find a constant C3, independent of h and k, such that∫

κ

ṽ · ∇p̃ dx ≥ C3 ‖p̃‖2
0. (6.11)

We next define

v = v0 + δṽ,

with δ > 0 to be specified later.
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We first note that

b(ṽ, p0) = −
∑
κ∈T

∫
κ

∇ · ṽ p0 dx +
∫

Γint∪∂Ω

[ṽ · n] < p0 > ds = 0, (6.12)

since p0 is constant on each element and ṽ · n vanishes on Γint ∪ ∂Ω. We also have,
thanks to (6.5),∣∣∣∣∣

∑
κ∈T

∫
κ

∇ · v0 p̃ dx

∣∣∣∣∣ ≤ C |v0|1 ‖p − p0‖0 ≤ C ‖p0‖0 ‖p− p0‖0, (6.13)

and, since v0 is continuous and vanishes on ∂Ω,∫
Γint∪∂Ω

[v0 · n] < p̃ > ds = 0. (6.14)

Combining (6.13) and (6.14) yields

|b(v0, p̃)| ≤ C4‖p0‖0 ‖p − p0‖0, (6.15)

with C4 independent of h and k. Using (6.5), (6.11), (6.12), and (6.15), we can write

b(v, p) ≥ ‖p0‖2
0+C3 δ ‖p−p0‖2

0−C4‖p0‖0 ‖p−p0‖0 ≥ 1
2
‖p0‖2

0+
(

δC3 −
C2

4

2

)
‖p−p0‖2

0,

and thus

b(v, p) ≥ 1
2
‖p‖2

0,

with the choice δ = (1 + C2
4 )/(2C3). Finally (6.5) and (6.9) give

|v|h ≤ (C0 + δC2)‖p‖0.

The last two estimates thus give

γ2 =
1

2(C0 + δC2)
≥ ck−4.

We remark that the proof of the previous lemma is valid for general meshes with
hanging nodes. It also carries out in exactly the same way for the case of conforming
Taylor-Hood elements with hanging nodes.

7. Stability and consistency of the discrete problem. Throughout this and
the following section, we assume that discrete inf-sup conditions hold for Methods 1
and 2; see Lemmas 6.1 and 6.3, or, for p and hp approximations, Remarks 1 and 2.
The following two corollaries are consequences of these discrete inf-sup conditions; see
[13, Pr. 1.2, Pg. 39].

Corollary 7.1. Let k′ be equal to k + 2 or k + 1. If p ∈ Mk satisfies

b(v, p) = 0, v ∈ Vk′ ,

then p = 0.
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Corollary 7.2. For i = 1, 2, corresponding to the choices k′ = k + 2, k + 1, we
have

sup
q∈Mk

b(v, q)
||q|| ≥ γi inf

z∈Z
|v + z|h, v ∈ Vk′ .

Before proceeding, we note that our discrete bilinear forms a(·, ·) and b(·, ·) are
not continuous on the original spaces H1(Ω)n and L2

0(Ω), due to the interface contri-
butions. This makes the analysis more complicated. However two weaker continuity
properties hold.

We need to define two suitable stronger norms. For a velocity V we set

|||V|||2v = |V|2h +
∑
e∈E

∫
e

νk′2

he
|[V]|2 ds +

∑
κ∈T

∫
∂κ

ν2

σ
|∇V|2ds.

We note however that, in case v ∈ Vk′ , the inverse estimate (3.3) and the definition
of σ ensure that

|v|h ≤ |||v|||v ≤ C|v|h, (7.1)

with a constant C that only depends on σ0.
We have the following continuity property.
Lemma 7.3. Let V ∈ L2(Ω)n, such that V ∈ H2(κ)n, for κ ∈ T , and w ∈ Vk′ .

Then there exist constants independent of V, w, h, and k′ such that

|a(V,w)| ≤ α|||V|||v |w|h,

and, in case V ∈ Vk′ ,

|a(V,w)| ≤ α′|V|h |w|h.

Proof. The proof is the same as that of [19, Lem. 4.3] which can be adapted to
the vector case in a straightforward way. The second bound is a consequence of (7.1).

Analogously, we define a stronger norm for the pressure:

|||Q|||2p = ‖Q‖2
0,Ω +

∑
κ∈T

∫
∂κ

1
σ

Q2 ds.

In case q ∈ Mk, the inverse estimate (3.3) yields

‖q‖0,Ω ≤ |||q|||p ≤ C‖q‖0,Ω, (7.2)

with a constant that depends on σ0 and ν.
Lemma 7.4. Let Q ∈ L2

0(Ω) and v ∈ L2(Ω)n, such that Q ∈ H1(κ) and v ∈
H1(κ)n, for κ ∈ T . Then there exist constants independent of Q, v, h, k, and k′,
such that

|b(v, Q)| ≤ β|v|h |||Q|||p,
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and, in case Q ∈ Mk,

|b(v, Q)| ≤ β|v|h ‖Q‖0.

Proof. We have

|b(v, Q)| ≤
∣∣∣∣∣
∑
κ∈T

(∇ · v, Q)κ

∣∣∣∣∣+
∣∣∣∣∣∣
∫

Γint

< Q > [v · n] ds

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

∂Ω

Qv · n ds

∣∣∣∣∣∣ = I1 + I2 + I3.

We consider each one of the three terms. We clearly have

I2
1 ≤

(∑
κ∈T

‖∇ · v‖2
0,κ

)
‖Q‖2

0 ≤ C|v|2h ‖Q‖2
0. (7.3)

We next consider e ∈ Eint, with e = ∂κ ∩ ∂κ′. Using the definition of σ, we find∣∣∣∣∣∣
∫
e

< Q > [v · n] ds

∣∣∣∣∣∣
2

≤
∫
e

σ−1 < Q >2 ds

∫
e

σ[v · n]2 ds.

In a similar way, for e ∈ Eout, we find∣∣∣∣∣∣
∫
e

Qv · n ds

∣∣∣∣∣∣
2

≤
∫
e

σ−1Q2 ds

∫
e

σ|v · n|2 ds.

The proof of the first bound is concluded by summing over e ⊂ Γint∪∂Ω and combining
the result with (7.3). The second bound is a consequence of (7.2).

We finally recall that the bilinear form a(·, ·) is coercive, i.e.,

a(u,u) = |u|2h, u ∈ Vk′ . (7.4)

Existence and uniqueness of the discrete problem (4.6) are ensured by (7.4), the
continuity properties in Lemmas 7.3 and 7.4, and the discrete inf-sup conditions; see
[13, Th. 1.1, Sect. II.1.1].

Lemma 7.5. Let k ≥ 0. Then problem (4.6) has a unique solution {u, p} ∈
Vk′ × Mk, for the two choices k′ = k + 2, k + 1, corresponding to Methods 1 and 2.

As is the case for DG approximations, consistency is ensured under some more
stringent regularity assumptions on the exact solution. In order to prove this property,
we need some preliminary results.

For D ⊂ Ω, we define H(div ,D) as the space of tensors τ ∈ L2(Ω)n×n, such that
∇ · τ ∈ L2(Ω)n, equipped with the graph norm

(
‖τ‖2

D + ‖∇ · τ‖2
D
)1/2

.

If e ⊂ ∂D has non-vanishing (n − 1)-dimensional measure, we define the space
H

−1/2
00 (e)n as the dual of H

1/2
00 (e)n, the space of vectors of H1/2(∂D)n that vanish on

∂D \ e. In case e = ∂D, we have H
−1/2
00 (e)n = H−1/2(e)n.

The following result can be proved using analogous techniques as those for spaces
of vectors; see Sections III.1.1 and III.1.2 in [13].

Lemma 7.6. Let D ⊂ Ω and e ⊂ ∂D with positive measure.
20



1. There exists a continuous trace operator from H(div ,D) onto H
−1/2
00 (e)n that

coincides with

τ : n|e

for τ ∈ C∞(Ω)n×n.
2. The Green’s formula (2.3) holds for τ ∈ H(div ,D) and v ∈ H1(D)n, where

the integral on the right hand side is to be understood as the duality pairing
between H1/2(∂D)n and H−1/2(∂D)n.

3. Let Ωi ⊂ Ω, i = 1, 2, two open disjoint subsets with outward normals ni, such
that the union of their closures coincides with Ω. Given τi ∈ H(div , Ωi), the
tensor in Ω defined by

τ|Ωi
= τi

belongs to H(div , Ω) if and only if

τ1 : n1 = −τ2 : n2 = τ2 : n1, in H
−1/2
00 (∂Ω1 ∩ ∂Ω2)n.

We are now ready to prove the consistency of our methods.
Lemma 7.7. Let {U, P} ∈ H1(Ω)n × L2

0(Ω) be the solution of the continuous
problem (2.4). If U ∈ H2(κ)n and P ∈ H1(κ), for κ ∈ T , then {U, P} satisfies the
discrete problem

a(U,v) + b(v, P ) = (f ,v)Ω +
∫

∂Ω

(σ g · v + g · (ν ∇v : n)) ds, v ∈ Vk′ ,

b(U, q) =
∫

∂Ω

g · n q ds, q ∈ Mk,

(7.5)
with k′ = k + 2, k + 1, k and k ≥ 0.

Proof. We first note that, if T is the stress tensor of the exact solution, we have

−ν∆U + ∇P = −∇ · (ν∇U − PI) = −∇ · T = f ∈ L2(Ω)n,
∇ · U = 0.

Then T ∈ H(div , Ω) and Lemma 7.6 holds. In particular, the normal component T : n
is well defined and continuous across every e ∈ Eint.

We will show that the residual

R(v, q) = (f ,v)Ω +
∫

∂Ω

(σ g · v + g · (ν ∇v : n)) ds −
∫

∂Ω

g · n q ds

− a(u,v) − b(v, P ) + b(U, q)

vanishes for every v ∈ Vk′ and q ∈ Mk.
Using the fact that [U] = 0 on every e ∈ Eint and that U = g on ∂Ω, we can

write

R(v, q) =
∑
κ∈T

∫
κ

(f · v − ν∇U · ∇v + ∇ · vP −∇ ·Uq) dx

+
∫

Γint

< ν ∇U : n > ·[v] ds −
∫

Γint

< P > ·[v · n] ds

+
∫

∂Ω

(ν ∇U : n) · vds −
∫

∂Ω

Pv · nds.
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Taking into account the identities

∇ · vP = (PI) : ∇v, < P > ·[v · n] =< (PI) : n > ·v,

and the definition of T , we obtain

R(v, q) =
∑
κ∈T

∫
κ

(f · v − T · ∇v −∇ · Uq) dx

+
∫

Γint

< T : n > ·[v] ds +
∫
∂Ω

(T : n) · v ds

=
∑
κ∈T

(∫
κ

(f · v − T · ∇v −∇ · Uq) dx +
∫

∂κ

< T : n > ·[v] ds

)
.

Since T : n is continuous across the interelement boundaries, and thus equal to
< T : n >, and the Green’s formula (2.3) can be applied, we find

R(v, q) =
∑
κ∈T

∫
κ

((f + ∇ · T ) · v −∇ ·Uq) dx.

The proof is concluded by using the differential equation (2.1).

8. A priori error estimates. This section is devoted to the proof of a priori
error estimates. We proceed similarly as in [13]; see Section II.2.2, Propositions 2.4,
2.6, 2.7. However our proofs are more involved due to the lack of continuity of the
bilinear forms in the continuous spaces; see Lemmas 7.3 and 7.4.

The next lemma gives a bound for the velocity.
Lemma 8.1. Let the exact solution {U, P} ∈ H1(Ω)n × L2

0(Ω) be in Hmκ(κ)n ×
Hnκ(κ), κ ∈ T , with mκ ≥ 2 and nκ ≥ 1. Then for i = 1, 2, corresponding to the
choices k′ = k + 2, k + 1, there exists a constant C, independent of h and k, but
depending on ν and σ0, such that

|U− u|h ≤ C
∑
κ∈T

(
1
γi

hsκ−1
κ

kmκ−3/2
|U|mκ,κ +

hrκ
κ

knκ
|P |nκ,κ

)
, (8.1)

with 1 ≤ sκ ≤ min{k′ + 1, mκ}, 1 ≤ rκ ≤ min{k + 1, nκ}, and γi the inf-sup constant
of Method i.

Proof. We consider a vector w ∈ Z(g). We have

|w − u|2h = a(w − u,w − u) = a(w − U,w − u) + a(U − u,w − u).

Using Lemma 7.7 and (4.6), we can write

|w − u|2h = a(w − U,w − u) − b(w − u, P − p).

We then note that, since (w−u) ∈ Z, the discrete pressure p can be replaced by any
function q ∈ Mk. We have

|w − u|2h = a(w − U,w − u) − b(w − u, P − q),

and using Lemmas 7.4 and 7.3

|w − u|h ≤ α|||w − U|||v + β|||P − q|||p, w ∈ Z(g), q ∈ Mk. (8.2)
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A bound for the error is obtained using the triangle inequality

|U − u|h ≤ |U − w|h + α|||w − U|||v + β|||P − q|||p, w ∈ Z(g), q ∈ Mk. (8.3)

Our second step is to find bounds that involve an arbitrary function of Vk′ instead
of Z(g). In order to do so, given v ∈ Vk′ , we consider the problem of finding a
z(v) ∈ Vk′ , such that

b(z(v), q) = b(U − v, q), q ∈ Mk.

Thanks to Corollary 7.2 and [13, Pr. 1.2, Pg. 39], we can find a solution z ∈ Vk′ , such
that

γi |z(v)|h ≤ sup
q∈Mk

b(z, q)
||q|| = sup

q∈Mk

b(U − v, q)
||q|| ≤ β|U − v|h. (8.4)

Since

b(z(v) + v, q) = b(U, q) =
∫

∂Ω

g · nq ds, q ∈ Mk,

we have

w(v) = z(v) + v ∈ Z(g).

We next go back to (8.3), and take w = w(v), with v ∈ Vk′

|U − u|h ≤ |U− v|h + |z(v)|h + α|||v − U|||v + α|||z(v)|||v + β|||P − q|||p, (8.5)

where we have used a triangle inequality for ||| · |||v.
Using (8.4), (8.5), and (7.2), we find

|U − u|h ≤ C

γi
|U− v|h + β|||P − q|||p + α|||U − v|||v , (8.6)

where we have assumed that γi ≤ 1. Here C is independent of h, k, and ν, but depends
on σ0.

We finally make a particular choice for v and p. We choose

v = Πh,k′V, q = Πh,kP.

We bound the single terms in the | · |h and ||| · ||| norms. They consists of integrals
over elements or part of the element boundaries. We start with the pressure terms:
Thanks to the definition of ||| · |||p and σ, and the trace inequality (3.4), we can write

|||P − q|||2p ≤ C‖P − q‖2
0,Ω + C

∑
κ∈T

(
hκ

k2
‖P − q‖0,κ |P − q|1,κ +

1
k2

‖P − q‖2
0,κ

)
,

and, using Lemma 3.1 with s = 0, 1,

|||P − q|||2p ≤ C
∑
κ∈T

h2rκ
κ

k2nκ
|P |2nκ,κ. (8.7)
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We next consider the velocity contributions. Using the trace estimate (3.4) and the
shape-regularity of T , we find

∑
e∈E

σ0 ν
k′2

he

∫
e

|[U − v]|2 ds ≤ C
∑
κ∈T

(
k′2

hκ
‖U − v‖0,κ |U − v|1,κ +

k′2

h2
κ

‖U − v‖2
0,κ

)
,

and, using Lemma 3.1 with s = 0, 1,

∑
e∈E

σ

∫
e

|[U − v]|2 ds ≤ C
∑
κ∈T

h2sκ−2
κ

k2mκ−3
|U|2mκ,κ. (8.8)

Similarly, for the gradient contributions Lemma 3.1 yields

∑
κ∈T

ν2

σ

∫
∂κ

|∇(U − v)|2 ds ≤ C
∑
κ∈T

h2sκ−2
κ

k2mκ−1
|U|2mκ,κ. (8.9)

Combining (8.8) and (8.9) with the definitions of ||| · |||v, | · |h, and σ, we obtain

|U − v|2h ≤ |||U − v|||2v ≤ C
∑
κ∈T

h2sκ−2
κ

k2mκ−3
|U|2mκ,κ. (8.10)

The proof is concluded by combining (8.6), (8.7), and (8.10).
A bound for the pressure is given in the following lemma.
Lemma 8.2. Let the exact solution {U, P} ∈ H1(Ω)n × L2

0(Ω) be in Hmκ(κ)n ×
Hnκ(κ), κ ∈ T , with mκ ≥ 2 and nκ ≥ 1. Then for i = 1, 2, corresponding to the
choices k′ = k + 2, k + 1, there exists a constant C, independent of h and k, but
depending on ν and σ0, such that

‖P − p‖0 ≤ C
∑
κ∈T

(
1
γ2

i

hsκ−1
κ

kmκ−3/2
|U|mκ,κ +

1
γi

hrκ
κ

knκ
|P |nκ,κ

)
,

with 1 ≤ sκ ≤ min{k′ + 1, mκ}, 1 ≤ rκ ≤ min{k + 1, nκ}, and γi the inf-sup constant
of Method i.

Proof. Let q = Πh,kP ∈ Mk. Using the discrete inf-sup conditions for b(·, ·),
Lemmas 7.7, 7.3, and 7.4, we find find

‖q − p‖ ≤ 1
γi

sup
0�=v∈Vk′

b(v, q − p)
|v|h

=
1
γi

sup
0�=v∈Vk′

b(v, q − P ) + b(v, P − p)
|v|h

=
1
γi

sup
0�=v∈Vk′

b(v, q − P ) − a(U − u,v)
|v|h

≤ β

γi
|||P − q|||p +

α

γi
|||U − u|||v.

(8.11)

A bound for the velocity contribution can be found using the triangle inequality and
(7.1). Let v = Πh,k′V. We have

|||U − u|||v ≤ |||U − v|||v + |||u − v|||v ≤ |||U − v|||v + C|u− v|h
≤ |||U − v|||v + C|U − u|h + C|U − v|h
≤ C(|||U − v|||v + |U − u|h).

(8.12)

24



Since

‖P − p‖ ≤ ‖P − q‖ + ‖q − p‖,

the proof is concluded by combining (8.11) and (8.12), with the error estimates (8.7),
(8.10), and (8.1).

We note the loss of optimality of half a power of k in the estimates of Lemmas
8.1 and 8.2, typical of DG approximations of second order problems; see [19].

Remark 4. We note that, if we assume that an inf-sup condition also holds for
Method 3, as stated in Remark 3, then Lemma 7.5 and the error estimates in Lemmas
8.1 and 8.2 are also valid for Method 3 (i = 3). Lemma 7.7 is valid for an arbitrary
k′ ≥ 0.

We conclude with some comments on the optimality of the methods proposed.
We assume that the exact solution satisfies

P ∈ Hnk(κ), U ∈ Hnk+1(κ)n, κ ∈ T .

We then consider Lemmas 8.1 and 8.2 with

nκ ≥ k, mκ = nκ + 1 ≥ k + 1, rκ = k sκ = k + 1.

For the h-version, Lemmas 6.1 and 6.3 ensure that the given error estimates for
Methods 1 and 2 are optimal:

|U − u|h ≤ C
∑

κ∈T
hk

κ (|U|k+1,κ + |P |k,κ) ,

‖P − p‖ ≤ C
∑

κ∈T
hk

κ (|U|k+1,κ + |P |k,κ) .

We note that the two methods have the same rate of convergence. Since the pressure
spaces are the same, the increase in the velocity space of Method 1 does not present
any advantage. Error estimates for Method 3 are suboptimal: half a power of h is lost
for the velocity, and one full power for the pressure; see Remark 3.

We now consider p-approximations in two dimensions. Remarks 1 and 2 ensure

|U − u|h ≤ Ck−(nκ−1/2)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

‖P − p‖ ≤ Ck−(nκ−1/2)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

where half a power of k is lost both for the velocity and the pressure. We note that
for the case of conforming Qk+2-Qk approximations we have

|U − u|h ≤ Ck−(nκ−1/2)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

‖P − p‖ ≤ Ck−(nκ−1)
∑

κ∈T
(|U|nk+1,κ + |P |nk,κ) ,

since the inf-sup constant decreases as k−1/2. Conforming Taylor-Hood Qk+1-Qk el-
ements in two dimensions appear to satisfy the same error estimate, since numerical
results show the same behavior for the inf-sup constant; see Figure 5.3 and Figure 3
in [2].
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9. Extensions to other velocity-pressure pairs. As already noted for
Lemma 6.1, stability results for approximations using continuous velocities and dis-
continuous pressures give lower bounds for the inf-sup condition of the corresponding
DG approximations employing discontinuous velocities. In particular, we can choose
for velocities and pressures

Vk+1, {q ∈ L2
0(Ω)| q|κ ∈ Pk(κ), κ ∈ T },

with Pk(κ) the space of polynomials of total degree k in κ. Alternatively, we can
employ

Vk, M[λk],

with [λk] the integer part of λk, with 0 < λ < 1, and k − λk ≥ 2. Uniform di-
vergence stability is ensured by the results in [10] for the corresponding conforming
approximations. We also refer to [1] for additional choices of velocity-pressure pairs.
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[22] Dominik Schötzau and Christoph Schwab. Mixed hp-FEM on anisotropic meshes. Math. Models
Meth. Appl. Sci., 8:787–820, 1998.
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