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hp-DISCONTINUOUS GALERKIN METHODS FOR THE

HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER

XIAOBING FENG AND HAIJUN WU

Abstract. In this paper we develop and analyze some interior penalty hp-
discontinuous Galerkin (hp-DG) methods for the Helmholtz equation with first
order absorbing boundary condition in two and three dimensions. The pro-
posed hp-DG methods are defined using a sesquilinear form which is not only
mesh-dependent (or h-dependent) but also degree-dependent (or p-dependent).
In addition, the sesquilinear form contains penalty terms which not only pe-
nalize the jumps of the function values across the element edges but also the
jumps of the first order tangential derivatives as well as jumps of all normal
derivatives up to order p. Furthermore, to ensure the stability, the penalty
parameters are taken as complex numbers with positive imaginary parts, so
essentially and practically no constraint is imposed on the penalty parameters.
It is proved that the proposed hp-discontinuous Galerkin methods are stable
(hence, well-posed) without any mesh constraint. For each fixed wave number
k, sub-optimal order (with respect to h and p) error estimates in the broken
H1-norm and the L2-norm are derived without any mesh constraint. The er-
ror estimates as well as the stability estimates are improved to optimal order
under the mesh condition k3h2p−2 ≤ C0 by utilizing these stability and error
estimates and using a stability-error iterative procedure, where C0 is some
constant independent of k, h, p, and the penalty parameters. To overcome the
difficulty caused by strong indefiniteness (and non-Hermitian nature) of the
Helmholtz problems in the stability analysis for numerical solutions, our main
ideas for stability analysis are to make use of a local version of the Rellich

identity (for the Laplacian) and to mimic the stability analysis for the PDE
solutions given in [19, 20, 33], which enable us to derive stability estimates
and error bounds with explicit dependence on the mesh size h, the polynomial
degree p, the wave number k, as well as all the penalty parameters for the
numerical solutions.

1. Introduction

This is the second installment in a series (cf. [27]) which is devoted to developing
and analyzing novel interior penalty discontinuous Galerkin (IPDG) methods for
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1998 XIAOBING FENG AND HAIJUN WU

the following Helmholtz problem with large wave number:

−Δu− k2u = f in Ω := Ω1 \D,(1.1)

∂u

∂nΩ
+ iku = g on ΓR := ∂Ω1,(1.2)

u = 0 on ΓD := ∂D,(1.3)

where k ∈ R, called the wave number, is a (large) positive number, D ⊂ Ω1 ⊂
Rd, d = 2, 3, D is known as a scatterer and is assumed to be a bounded Lipschitz
domain, Ω1, which is assumed to be a polygonal/polyhedral domain and often
taken as a d-rectangle in applications, defines the size of the computational domain.
Note that ∂Ω = ΓR ∪ ΓD. nΩ denotes the unit outward normal to Ω. i :=

√
−1

denotes the imaginary unit. Condition (1.2) with g = 0 is known as the first order
absorbing boundary condition (cf. [23]), which is used to minimize the reflection at
the boundary ΓR and to limit the computation of the original scattering problem
just on the finite domain Ω. Boundary condition (1.3) implies that the scatterer
is sound-soft. We note that the case D = ∅ also arises in applications either as
a consequence of frequency domain treatment of waves or when time-harmonic
solutions of the scalar wave equation are sought (cf. [22]).

In [27] we proposed and analyzed some IPDG methods for problem (1.1)–(1.3)
using piecewise linear polynomial trial and test functions. It was proved that the
proposed methods are unconditionally (with respect to mesh size h) stable and well-
posed for all wave numbers k > 0. Optimal order error estimates were established
showing explicit dependence of the error bounds on h, k and all penalty parameters.
However, due to the existence of a pollution term, the (broken) H1-norm error
bound deteriorates as the wave number k increases under the practical “rule of
thumb” mesh constraint that kh is bounded. To improve the accuracy and efficiency
of those IPDG methods, it is necessary to use (piecewise) high order polynomial
trial and test functions partly because of the rigidity and low approximability of
linear functions and partly because of the very oscillatory nature of high frequency
waves. However, simply replacing the linear element by high order elements in the
IPDG methods of [27] does not reduce the pollution very much, in particular, the
theoretical error bounds do not change much because the analysis of [27] indeed
strongly depends on the properties of linear functions.

Motivated by the above challenge and observation, the primary goal of this
paper is to develop some new hp-interior penalty discontinuous Galerkin (hp-IPDG)
methods which retain the advantages of the IPDG methods of [27] but improve their
accuracy and stability by exploiting the efficiency and flexibility of piecewise high
order polynomial functions. To this end, our key idea is to construct a sesquilinear
form (as a discretization of the Laplacian) which is not only mesh-dependent (or
h-dependent) but also degree-dependent (or p-dependent) by introducing penalty
terms which not only penalize the jumps of the function values across the element
edges but also the jumps of the first order tangential derivatives as well as jumps of
all normal derivatives up to order p. In addition, as in [27], to ensure the stability,
all penalty parameters are taken as complex numbers with positive imaginary parts.
Since the Helmholtz equation with large wave number is non-Hermitian and strongly
indefinite, as expected, stability estimates (or a priori estimates) for numerical
solutions under practical mesh constraints is a difficult task to carry out regardless
which discretization method is used. To overcome the difficulty, as in [27], the crux
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of our analysis is to establish and to make use of a local version of the Rellich identity
(for the Laplacian) and to mimic the stability analysis for the PDE solutions given
in [19, 20, 33]. The key idea here is to use the special test function ∇uh · (x− xΩ)
(defined elementwise) with uh denoting the hp-IPDG solution, such a test function
is valid for any DG method. We remark that the same technique was successfully
employed by Shen and Wang in [40] to establish the stability and error analysis for
the spectral Galerkin approximation of the Helmholtz problem. We also note that
although similar techniques to those in [27, 40] are utilized in this paper to carry
out the stability analysis, the analysis of this paper is more involved because the
special sesquilinear form of this paper, which contains jumps of high order normal
derivatives, is a lot more complicated to deal with, even though they are similar
conceptually.

Since the Helmholtz equation appears, in one way or another, directly or indi-
rectly, in almost all wave-related problems arisen from many science, engineering,
and industry applications, solving the Helmholtz equation, in one form or another,
has always been and remains at the center of wave computation. We refer the
reader to ([1, 2, 5, 6, 10, 13, 14, 18, 19, 22, 24, 29, 32, 36, 39, 41, 48] and the refer-
ences therein) for some recent developments on numerical methods, in particular,
Galerkin type methods, for the Helmholtz equation. We also refer the reader to [27]
for a brief review about some theoretical issues for finite element approximations
(and other types of Galerkin approximations) of the Helmholtz equation.

The hp-finite element method (hp-FEM) is a modern version of the finite ele-
ment method, capable of achieving exceptionally fast (exponential) convergence. It
combines the flexibility of the standard finite element method and the high order
accuracy of the spectral method. Consequently, the hp-FEM can often attain more
accurate results than the standard finite element method does while using less CPU
time and resources. The hp-FEM has undergone intensive developments both on
theory and implementation in the past twenty-five years. We refer the reader to the
survey paper [7] and two recent monographs [43, 44] for a detailed exposition on the
basic theory and advanced topics of the hp-FEM. We would like to mention that,
recently, the hp-finite element approximations of the Helmholtz scattering problems
with Dirichlet-to-Neumann boundary conditions in Rd (d = 1, 2, 3) are considered
in [37], and some first order error estimates (with respect to h

p in H1- and L2-

norms) are derived under the condition that both kh
p and ln k

p are small enough or

that kh+ k(kh)p is small enough. The results are extended to the Helmholtz equa-
tion with Robin boundary conditions on smooth bounded domains or on convex
polygons in [38].

Discontinuous Galerkin (DG) methods were first proposed in the 1970s, they
were not popular then because they produce larger algebraic systems than stan-
dard finite element methods do. However, due to the emergence of high perfor-
mance computers and fast solvers since the early 1990s, especially, massively par-
allel computers and parallel solvers such as multilevel and domain decomposition
methods, which together with advantages of DG methods has quickly attracted
renewed interests in DG methods. They have been heavily developed and tested
in the past fifteen years, we refer the reader to [4] and the references therein for a
review of recent developments. As is well known now, DG methods have several
advantages over other types of numerical methods. For example, the trial and test
spaces are easy to construct, they can naturally handle inhomogeneous boundary
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conditions and curved boundaries; they also allow the use of highly nonuniform
and unstructured meshes, and have built-in parallelism which permits coarse-grain
parallelism. In addition, the fact that the mass matrices are block diagonal is an
attractive feature in the context of time-dependent problems, especially if explicit
time discretizations are used. Moreover, as proved in [27], DG methods are also
effective and have advantages over finite element methods for the strongly indefinite
Helmholtz equation, which has not been well understood before. We refer the reader
to [3, 4, 9, 16, 17, 21, 26, 42, 47] and the references therein for a detailed account on
DG methods for coercive elliptic and parabolic problems, and to [45, 25, 28, 35, 34]
and the references therein for recent developments on hp-discontinuous Galerkin
(hp-DG) methods.

The remainder of this paper is organized as follows. In Section 2, we first in-
troduce notation and gather some preliminaries, and then formulate our hp-IPDG
methods. Both symmetric and nonsymmetric methods are constructed and various
possible variants are also discussed. Section 3 is devoted to the stability analysis
for the hp-IPDG methods proposed in Section 2. It is proved that the proposed
hp-IPDG methods are stable (hence well-posed) without any mesh constraint. In
Section 4, using the stability results of Section 3 we prove that for each fixed wave
number k, sub-optimal order (with respect to h and p) error estimates in the bro-
ken H1-norm and the L2-norm are derived without any mesh constraint. Finally,
using the stability estimate of Section 3, the error estimates of Section 4 and a
stability-error iterative procedure we obtain some much improved (optimal order)
stability and error estimates for the hp-IPDG solutions under the mesh condition
k3h2p−2 ≤ C0 in Section 5, where C0 is some constant independent of k, h, p, and
the penalty parameters.

2. Formulation of hp-interior penalty discontinuous

Galerkin methods

2.1. Notation and preliminaries. The space, norm and inner product notation
used in this paper all are standard, we refer to [11, 15, 9] for their precise definitions.
On the other hand, we note that all functions in this paper are complex-valued,
so the familiar terminologies such “symmetric/nonsymmetric” and “bilinear” are
replaced respectively by terms “Hermitian/non-Hermitian” and “sesquilinear”. For
a complex number a = ar + iai (ar and ai are real numbers), a := ar − iai denotes
the complex conjugate of a. (·, ·)Q and 〈·, ·〉Σ for Σ ⊂ ∂Q denote the complex
L2-inner product on L2(Q) and L2(Σ) spaces, respectively. (·, ·) := (·, ·)Ω and
〈·, ·〉 := 〈·, ·〉∂Ω. We also define

H1
ΓD

(Ω) :=
{
u ∈ H1(Ω); u = 0 on ΓD

}
.

Throughout the paper, C is used to denote a generic positive constant which is
independent of k, h, p, and the penalty parameters. We also use the shorthand
notation A � B and B � A for the inequality A ≤ CB and B ≥ CA. A � B is for
the statement A � B and B � A.

We now give the definition of star-shaped domains.

Definition 2.1. Q ⊂ Rd is said to be a star-shaped domain with respect to xQ ∈ Q
if there exists a nonnegative constant cQ such that

(2.1) (x− xQ) · nQ ≥ cQ ∀x ∈ ∂Q.
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Q ⊂ Rd is said to be strictly star-shaped if cQ is positive. Here nQ is the unit
outward normal to the boundary of Q.

In this paper, we assume that Ω1 is a strictly star-shaped domain. Recall that
Ω1 is often taken as a d-rectangle in practice. We also assume that the scatterer
D is a star-shaped domain, without loss of the generality, with respect to the same
point xΩ1

as Ω1. This implies that xΩ1
∈ D ⊂ Ω1. Under these assumptions, the

following stability estimates hold for problem (1.1)–(1.3).

Theorem 2.1. Suppose Ω1 ⊂ Rd is a strictly star-shaped domain and D ⊂ Ω1 is
a star-shaped domain. Then the solution u to problem (1.1)–(1.3) satisfies

‖u‖Hj(Ω) �
(1
k
+ kj−1

)(
‖f‖L2(Ω) + ‖g‖L2(ΓR)

)
(2.2)

for j = 0, 1 if u ∈ H3/2+ε(Ω) for some ε > 0. (2.2) also holds for j = 2 if
u ∈ H2(Ω). Furthermore, it holds that

‖u‖Hj

loc
(Ω) �

(1
k
+ kj−1

)(
‖f‖L2(Ω) + ‖g‖L2(ΓR) +

j−2∑
�=1

‖f‖H�
loc(Ω)

)
(2.3)

for j = 3, 4, · · · , q if u ∈ H2(Ω) ∩ Hq

loc(Ω) for some positive integer q ≥ 3. Here

Hj

loc(Ω) =
{
v : v ∈ Hj(B) for any compact set B ⊂ interior Ω

}
.

Proof. Inequality (2.2) for j = 0, 1, 2 was proved in [19, 20, 33]. Inequality (2.3)
follows from (2.2) and an application of the standard cutoff function technique
together with an induction argument. We leave the derivation to the interested
reader. �
2.2. Formulation of hp-IPDG methods. To formulate our hp-IPDG methods,
we need to introduce some notation, most of them have already appeared in [27].
Let Th be a family of partitions of the domain Ω := Ω1 \ D parameterized by
h ∈ (0, h0). For any K ∈ Th, we define hK := diam(K). Similarly, for each
edge/face e of K ∈ Th, he := diam(e). We impose the following mild restrictions
on the partition Th:

(i) The elements of Th satisfy the shape-regular condition,
(ii) Th is locally quasi-uniform, that is, if two elements K and K ′ are adjacent

(i.e., meas(∂K ∩ ∂K ′) > 0), then hK � hK′ . Where meas(e) stands for
(d− 1)-dimensional Lebesgue measure of e.

For convenience, we assume diam(Ω) � 1, hence he, hK � 1.
For any two elements K, K ′ ∈ Th, we call e = ∂K ∩∂K ′ an interior edge/face of

Th if meas(e) > 0. Note that e could be a portion of a side/face of the element K
or K ′ in the case of geometrically nonconforming partition. Also, for any element
K ∈ Th, we call e = ∂K ∩ ∂Ω a boundary edge/face if meas(e) > 0. Then we define

EI
h := set of all interior edges/faces of Th,

ER
h := set of all boundary edges/faces of Th on ΓR,

ED
h := set of all boundary edges/faces of Th on ΓD,

ERD
h := ER

h ∪ ED
h = set of all boundary edges/faces of Th,

EID
h := EI

h ∪ ED
h = set of all edges/faces of Th except those on ΓR,

Eh := EI
h ∪ ERD

h = set of all edges/faces of Th.
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We also define the jump [v] of v on an interior edge/face e = ∂K ∩ ∂K ′ as

[v]|e :=
{

v|K − v|K′ , if the global label of K is larger,
v|K′ − v|K , if the global label of K ′ is larger.

If e ∈ ED
h , set [v]|e = v|e. The following convention is adopted in this paper:

{v}|e :=
1

2

(
v|K + v|K′

)
if e = ∂K ∩ ∂K ′.

If e ∈ ERD
h , set {v}|e = v|e. For every e = ∂K ∩ ∂K ′ ∈ EI

h, let ne be the unit
outward normal to edge/face e of the element K if the global label of K is bigger
and of the element K ′ if it is the other way around. For every e ∈ ERD

h , let ne = nΩ

be the unit outward normal to ∂Ω.
Let p ≥ 1 be a fixed integer, which will be used to denote the degree of the hp-

IPDG methods in this paper. For each integer 0 ≤ q ≤ p, we define the “energy”
space

Eq :=
∏

K∈Th

Hq+1(K),

and the sesquilinear form aqh(·, ·) on Eq × Eq

aqh(u, v) := bh(u, v) + i
(
L1(u, v) +

q∑
j=0

Jj(u, v)
)

∀u, v ∈ Eq,(2.4)

bh(u, v) :=
∑

K∈Th

(∇u,∇v)K(2.5)

−
∑

e∈EID
h

(〈{
∂u

∂ne

}
, [v]

〉
e

+σ

〈
[u] ,

{
∂v

∂ne

}〉
e

)
,

L1(u, v) :=
∑

e∈EID
h

d−1∑
�=1

β1,ep

he

〈[
∂u

∂τ �e

]
,

[
∂v

∂τ �e

]〉
e

,(2.6)

J0(u, v) :=
∑

e∈EID
h

γ0,e p

he
〈[u] , [v]〉e ,(2.7)

Jj(u, v) :=
∑
e∈EI

h

γj,e

(
he

p

)2j−1〈[
∂ju

∂nj
e

]
,

[
∂jv

∂nj
e

]〉
e

, j = 1, 2, · · · , q,(2.8)

and σ is a real number. γ0,e, · · · , γq,e > 0 and β1,e ≥ 0 are numbers to be specified

later. {τ �e}d−1
�=1 denote an orthogonal coordinate frame on the edge/face e ∈ Eh,

∂u
∂τ�

e
:= ∇u · τ �e stands for the tangential derivative of u in the direction τ �e , and

∂ju

∂nj
e

denotes the jth order normal derivative of u on e.
It is easy to check that (−Δu, v) = aqh(u, v) for all u ∈ Hq+1(Ω) and v ∈

Eq. Hence, aqh(·, ·) is a consistent discretization for −Δ. When σ = 1, aqh(·, ·) is
symmetric, that is, aqh(u, v) = aqh(v, u). On the other hand, when σ �= 1, aqh(·, ·)
is nonsymmetric. In particular, σ = −1 would correspond to the nonsymmetric
IPDG method studied in [42] for coercive elliptic problems. In this paper, for the
ease of presentation, we only consider the case σ = 1. The penalty constants in
i
(
L1(u, v)+ J0(u, v)+ · · ·+ Jq(u, v)

)
are iβ1,e, iγ0,e, · · · , iγq,e, respectively. So they

are pure imaginary numbers with positive imaginary parts. It turns out that if any
of them is replaced by a complex number with positive imaginary part, the ideas of
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the paper still apply. Here we set their real parts to be zero because the terms from
real parts do not help much (and do not cause any problem either) in our analysis.

Next, we introduce the following semi-norms on the space Eq:∣∣v∣∣
1,h

:=
( ∑
K∈Th

‖∇v‖2L2(K)

) 1
2

,(2.9)

‖v‖1,h,q :=

⎛⎝∣∣v∣∣2
1,h

+
∑

e∈EID
h

(
γ0,e p

he
‖[v]‖2L2(e) +

d−1∑
�=1

β1,ep

he

∥∥∥∥[ ∂v∂τ �e

]∥∥∥∥2
L2(e)

)
(2.10)

+

q∑
j=1

∑
e∈EI

h

γj,e

(
he

p

)2j−1 ∥∥∥∥[ ∂jv

∂nj
e

]∥∥∥∥2
L2(e)

⎞⎠
1
2

,

‖|v‖|1,h,q :=

⎛⎝‖v‖21,h,q +
∑

e∈EID
h

he

γ0,e p

∥∥∥∥{ ∂v

∂ne

}∥∥∥∥2
L2(e)

⎞⎠
1
2

.(2.11)

Clearly, ‖·‖1,h,q and ‖| · ‖|1,h,q are norms on Eq if ∂D �= ∅ but only semi-norms if

∂D = ∅.
It is easy to check that the sesquilinear form aqh(·, ·) satisfies: For any v ∈ Eq,

Re aqh(v, v) =
∣∣v∣∣2

1,h
− 2Re

∑
e∈EID

h

〈{
∂v

∂ne

}
, [v]

〉
e

,(2.12)

Im aqh(v, v) = L1(v, v) + J0(v, v) + · · ·+ Jq(v, v).(2.13)

Using the sesquilinear form aqh(·, ·) we now introduce the following weak formu-
lation for (1.1)–(1.2): Find u ∈ Eq ∩H1

ΓD
(Ω) ∩H2

loc(Ω) such that

(2.14) aqh(u, v)− k2(u, v) + ik〈u, v〉ΓR
= (f, v) + 〈g, v〉ΓR

for any v ∈ Eq ∩H1
ΓD

(Ω) ∩H2
loc(Ω). The above formulation is consistent with the

boundary value problem (1.1)–(1.2) because aqh(·, ·) is consistent with −Δ.
For any K ∈ Th, let Pp(K) denote the set of all polynomials whose degrees do

not exceed p. We define our hp-IPDG approximation space V p
h as

V p
h :=

∏
K∈Th

Pp(K).

Clearly, V p
h ⊂ Eq ⊂ L2(Ω); but V p

h �⊂ H1(Ω). We are now ready to define our
hp-IPDG methods based on the weak formulation (2.14): For each 0 ≤ q ≤ p, find
uq
h ∈ V p

h such that

(2.15) aqh(u
q
h, vh)− k2(uq

h, vh) + ik〈uq
h, vh〉ΓR

= (f, vh) + 〈g, vh〉ΓR
∀vh ∈ V p

h .

Remark 2.1. (a) When p = q = 1, the above method (2.15) is exactly the scheme
proposed in [27]. The L1 term, which penalizes the jumps of the first order tangen-
tial derivatives, plays an important role for getting a better (theoretical) stability
estimate in [27]. However, our analysis, to be given in the next section, suggests
that the L1 term plays a less pivotal role for high order IPDG methods.

(b) In fact, (2.15) defines p+1 different IPDG methods for q = 0, 1, · · · , p. q = 1
would correspond to using high order elements in the IPDG formulation proposed
in [27].
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(c) The idea of penalizing the jumps of normal derivatives (i.e., the J1 term
above) for second order PDEs was used earlier by Douglas and Dupont [21] in the
context of C0 finite element methods, by Baker [9] (with a different weighting, also
see [26]) for fourth order PDEs. The idea of using multipenalties J0, J1, · · · , Jp
with positive penalty parameters was first used by Arnold in [3] for coercive elliptic
and parabolic PDEs. The use of the L1 term was first introduced in [27].

In the next two sections, we shall study the stability and error analysis for the
hp-IPDG method (2.15). We are especially interested in knowing how the stability
constants and error constants depend on the wave number k (and mesh size h
and element degree p, of course) and on the penalty parameters, and what is the
“optimal” relationship between mesh size h and the wave number k.

3. Stability estimates

The goal of this section is to derive stability estimates (or a priori estimates) for
schemes (2.15). To this end, momentarily, we assume that the solution uq

h to (2.15)
exists and will revisit the existence and uniqueness issues later at the end of the
section. We would like to note that because of its strong indefiniteness, unlike in the
case of coercive elliptic and parabolic problems (cf. [3, 4, 9, 21, 26, 42, 47]), the well-
posedness of scheme (2.15) is difficult to prove under practical mesh constraints.

To derive stability estimates for scheme (2.15), our approach is to mimic the
stability analysis for the Helmholtz problem (1.1)–(1.2) given in [19, 20, 33]. The
key ingredients of our analysis are to use a special test function vh = α · ∇uq

h

(defined elementwise) with α(x) := x−xΩ1
in (2.15) and to use the Rellich identity

(cf. [20] and below) on each element. Due to existence of multiple penalty terms in
aph(·, ·), which do not appear in [19, 20, 33], the analysis to be given below is much
more delicate and complicated than those of [19, 20, 33], although they are similar
conceptually. Since most proofs of this section are along the same lines as those of
the proofs in Section 4 of [27], we shall omit some details if they are already given
in [27], but shall provide them if there are meaningful differences.

We first cite the following lemma which establishes three integral identities and
plays a crucial role in our analysis. A proof of the lemma can be found in [27,
Lemma 4.1].

Lemma 3.1. Let α(x) := x−xΩ1
, v ∈ E1, K,K ′ ∈ Th and e ∈ EID

h . Then it holds
that

d ‖v‖2L2(K) + 2Re(v, α · ∇v)K =

∫
∂K

α · nK

∣∣v∣∣2,(3.1)

(d− 2) ‖∇v‖2L2(K) + 2Re
(
∇v,∇(α · ∇v)

)
K

=

∫
∂K

α · nK

∣∣∇v
∣∣2,(3.2) 〈{

∂v

∂ne

}
, [α · ∇v]

〉
e

− 〈α · ne {∇v} , [∇v]〉e(3.3)

=

d−1∑
�=1

∫
e

(
α · τ �e

{
∂v

∂ne

}
− α · ne

{
∂v

∂τ �e

})[
∂v

∂τ �e

]
,

where xΩ1
denotes the point in the star-shaped domain definition for Ω1 (see Defi-

nition 2.1).
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Remark 3.1. The identity (3.2) can be viewed as a local version of the Rellich
identity for the Laplacian Δ (cf. [19, 20]). Since V p

h ⊂ E1, hence, (3.1)–(3.3) hold
for any function v = vh ∈ V p

h .

We also need the following trace and inverse inequalities (cf. [43, 46, 12]).

Lemma 3.2. For any K ∈ Th and z ∈ Pp(K),

‖z‖L2(∂K) � p h− 1
2 ‖z‖L2(K) ,

‖∇z‖L2(K) � p2 h−1 ‖z‖L2(K) .

Now, taking vh = uq
h in (2.15) yields

(3.4) aqh(u
q
h, u

q
h)− k2 ‖uq

h‖
2

L2(Ω) + ik ‖uq
h‖

2

L2(ΓR) = (f, uq
h) + 〈g, uq

h〉ΓR
.

Therefore, taking the real part and the imaginary part of the above equation and
using (2.12) and (2.13) we get the following lemma.

Lemma 3.3. Let uq
h ∈ V p

h solve (2.15). Then

∣∣uq
h

∣∣2
1,h

− 2Re
∑

e∈EID
h

〈{
∂uq

h

∂ne

}
, [uq

h]

〉
e

− k2 ‖uq
h‖

2

L2(Ω)(3.5)

≤
∣∣(f, uq

h) + 〈g, uq
h〉ΓR

∣∣,∑
e∈EID

h

(
γ0,ep

he
‖[uq

h]‖
2

L2(e)
+

d−1∑
�=1

β1,ep

he

∥∥∥∥[∂uh

∂τ �e

]∥∥∥∥2
L2(e)

)
+ k ‖uq

h‖
2

L2(ΓR)
(3.6)

+

q∑
j=1

∑
e∈EI

h

γj,e

(
he

p

)2j−1 ∥∥∥∥[∂juq
h

∂nj
e

]∥∥∥∥2
L2(e)

≤
∣∣(f, uq

h) + 〈g, uq
h〉ΓR

∣∣.
From (3.5) and (3.6) we can bound

∣∣uq
h

∣∣
1,h

and the jumps in terms of ‖uq
h‖

2

L2(Ω).

In order to get the desired a priori estimates, we need to derive a reverse inequal-
ity whose coefficients can be controlled. Such a reverse inequality, which is often
difficult to get under practical mesh constraints, and stability estimates for uq

h will
be derived next.

Theorem 3.1. Let uq
h ∈ V p

h solve (2.15) and suppose β1,e ≥ 0, γ0,e, · · · , γq,e > 0.
Then

‖uq
h‖L2(Ω) +

1

k
‖uq

h‖1,h,q + ‖uq
h‖L2(ΓR) +

1

k

(
cΩ1

∑
e∈ER

h

‖∇uq
h‖

2

L2(e)

) 1
2

(3.7)

+
1

k

(∑
e∈ED

h

cD

(
k2 ‖uq

h‖
2

L2(e) + ‖∇uq
h‖

2

L2(e)

)) 1
2 � Csta,q M(f, g),

where

M(f, g) := ‖f‖L2(Ω) + ‖g‖L2(ΓR),(3.8)
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Csta,q :=
1

k
+

1

k2
+

1

k2
max
e∈ED

h

(γ0,e p
he

+
p5

γ0,eh2
e

+
β1,e p

5

h3
e

+
p2

he

)
(3.9)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

k2
max
e∈EI

h

(
p k2h2

e + p5

γ0,e h2
e

+
p

he
max

0≤j≤q−1

√
γj,e

γj+1,e
+

p2

he

+
p3

h2
e

√
β1,e

γ1,e
+

γq,e p
2q+3

h2
e

)
, if q < p,

1

k2
max
e∈EI

h

(
p k2h2

e + p5

γ0,e h2
e

+
p

he
max

0≤j≤q−1

√
γj,e

γj+1,e
+

p2

he

+
p3

h2
e

√
β1,e

γ1,e

)
, if q = p.

Proof. We divide the proof into three steps.

Step 1: Derivation of a representation identity for ‖uq
h‖L2(Ω). Define vh ∈ E by

vh|K = α · ∇uq
h|K for every K ∈ Th. Since vh|K is a polynomial of degree no more

than p on K, hence, vh ∈ V p
h . Using this vh as a test function in (2.15) and taking

the real part of the resulted equation we get

(3.10) −k2 Re(uq
h, vh) = Re

(
(f, vh) + 〈g, vh〉ΓR

− aph(u
q
h, vh)− ik 〈uq

h, vh〉ΓR

)
.

It follows from (3.1), (3.4), and (3.10) that (compare with (4.11) of [27])

2k2 ‖uq
h‖

2

L2(Ω) = k2
∑

K∈Th

∫
∂K

α · nK

∣∣uq
h

∣∣2 + (d− 2)Re
(
(f, uq

h) + 〈g, uq
h〉ΓR

(3.11)

− aph(u
q
h, u

q
h)
)
+ 2Re

(
(f, vh) + 〈g, vh〉ΓR

− aph(u
q
h, vh)− ik 〈uq

h, vh〉ΓR

)
= k2

∑
K∈Th

∫
∂K

α · nK

∣∣uq
h

∣∣2 + (d− 2)Re
(
(f, uq

h) + 〈g, uq
h〉ΓR

)
+ 2Re

(
(f, vh) + 〈g, vh〉ΓR

)
+ 2k Im 〈uq

h, vh〉ΓR

−
∑

K∈Th

(
(d− 2) ‖∇uq

h‖
2

L2(K)
+ 2Re(∇uq

h,∇vh)K

)
+ 2

∑
e∈EID

h

(
(d− 2)Re

〈{
∂uq

h

∂ne

}
, [uq

h]

〉
e

+Re

〈{
∂uq

h

∂ne

}
, [vh]

〉
e

+Re

〈
[uq

h] ,

{
∂vh
∂ne

}〉
e

)
+ 2 Im

(
L1(u

q
h, vh) +

q∑
j=0

Jj(u
q
h, vh)

)
.

Using the identity
∣∣a∣∣2 − ∣∣b∣∣2 = Re(a+ b)(ā− b̄) we have

∑
K∈Th

∫
∂K

α · nK

∣∣uq
h

∣∣2 = 2
∑
e∈EI

h

Re 〈α · ne {uq
h} , [u

q
h]〉e +

〈
α · nΩ, |uq

h|2
〉
∂Ω

.(3.12)
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Using the identity again followed by the Rellich identity (3.2) we get (compare with
(4.13) of [27])∑

K∈Th

(
(d− 2) ‖∇uq

h‖
2

L2(K) + 2Re(∇uq
h,∇vh)K

)
=
∑

K∈Th

∫
∂K

α · nK

∣∣∇uq
h

∣∣2(3.13)

= 2
∑
e∈EI

h

Re 〈α · ne {∇uq
h} , [∇uq

h]〉e +
∑

e∈ERD
h

〈
α · ne, |∇uq

h|2
〉
e

= 2
∑

e∈EID
h

Re 〈α · ne {∇uq
h} , [∇uq

h]〉e +
∑
e∈ER

h

〈
α · ne, |∇uq

h|2
〉
e

−
∑
e∈ED

h

〈
α · ne, |∇uq

h|2
〉
e
.

Plugging (3.12) and (3.13) into (3.11) gives (compare with (4.15) of [27])

2k2 ‖uq
h‖

2

L2(Ω)(3.14)

= (d− 2)Re
(
(f, uq

h) + 〈g, uq
h〉ΓR

)
+ 2Re

(
(f, vh) + 〈g, vh〉ΓR

)
+ 2k2

∑
e∈EI

h

Re 〈α · ne {uq
h} , [u

q
h]〉e + k2

〈
α · nΩ, |uq

h|2
〉
∂Ω

+ 2k Im 〈uq
h, vh〉ΓR

−
∑
e∈ER

h

〈
α · ne, |∇uq

h|2
〉
e
+
∑
e∈ED

h

〈
α · ne, |∇uq

h|2
〉
e

− 2
∑

e∈EID
h

Re

〈{
∂uq

h

∂ne

}
, [uq

h]

〉
e

+ 2(d− 1)
∑

e∈EID
h

Re

〈{
∂uq

h

∂ne

}
, [uq

h]

〉
e

+ 2
∑

e∈EID
h

Re

(
−〈α · ne {∇uq

h} , [∇uq
h]〉e +

〈{
∂uq

h

∂ne

}
, [vh]

〉
e

)

+ 2
∑

e∈EID
h

Re

〈
[uq

h] ,

{
∂vh
∂ne

}〉
e

+ 2 Im
(
L1(u

q
h, vh) +

q∑
j=0

Jj(u
q
h, vh)

)
.

Step 2: Derivation of a reverse inequality. Our task now is to estimate each
term on the right-hand side of (3.14). Since the terms on the first four lines can be
bounded in the exact same way as in [27], we omit their derivations and only give
the final results here for the reader’s convenience.

2Re
(
(f, vh) + 〈g, vh〉ΓR

)
(3.15)

≤ CM(f, g)2 +
1

8

∣∣uq
h

∣∣2
1,h

+
cΩ1

4

∑
e∈ER

h

‖∇uq
h‖

2

L2(e) .

2k2
∑
e∈EI

h

Re 〈α · ne {uq
h} , [u

q
h]〉e(3.16)

≤ k2

3
‖uq

h‖
2

L2(Ω) + C
∑
e∈EI

h

p k2

γ0,e

γ0,ep

he
‖[uq

h]‖
2

L2(e) .

k2
〈
α · nΩ, |uq

h|2
〉
∂Ω

≤ Ck2 ‖uq
h‖

2

L2(ΓR) +
∑
e∈ED

h

k2
〈
α · ne, |uq

h|2
〉
e
.(3.17)
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2k Im 〈uq
h, vh〉ΓR

−
∑
e∈ER

h

〈
α · ne, |∇uq

h|2
〉
e

(3.18)

≤ Ck2 ‖uq
h‖

2

L2(ΓR)
− cΩ1

2

∑
e∈ER

h

‖∇uq
h‖

2

L2(e)
.

2(d− 1)
∑

e∈EID
h

Re

〈{
∂uq

h

∂ne

}
, [uq

h]

〉
e

(3.19)

≤ 1

8

∣∣uq
h

∣∣2
1,h

+ C
∑

e∈EID
h

p

γ0,e

γ0,e p

he
‖[uq

h]‖
2

L2(e)
.

The extra work here is to estimate the terms on the last two lines in (3.14). For
an edge/face e ∈ EID

h , let Ωe denote the set of element(s) in Th containing e as one
edge/face. By (3.3) we obtain

2
∑

e∈EID
h

Re

(
−〈α · ne {∇uq

h} , [∇uq
h]〉e +

〈{
∂uq

h

∂ne

}
, [vh]

〉
e

)
(3.20)

=2
∑

e∈EID
h

d−1∑
�=1

Re

∫
e

(
α · τ �e

{
∂uq

h

∂ne

}
− α · ne

{
∂uq

h

∂τ �e

})[
∂uq

h

∂τ �e

]

�
∑

e∈EID
h

p3h
− 3

2
e

∑
K∈Ωe

‖∇uq
h‖L2(K) ‖[u

q
h]‖L2(e)

≤1

8

∣∣uq
h

∣∣2
1,h

+ C
∑

e∈EID
h

p5

γ0,eh2
e

γ0,e p

he
‖[uq

h]‖
2

L2(e)
.

The first term on line six of (3.14) is bounded as follows (compare with (4.20) of
[27]):

2
∑

e∈EID
h

Re

〈
[uq

h] ,

{
∂vh
∂ne

}〉
e

�
∑

e∈EID
h

p h
− 1

2
e ‖[uq

h]‖L2(e)

∑
K∈Ωe

‖∇vh‖L2(K)(3.21)

�
∑

e∈EID
h

p3h
− 3

2
e ‖[uq

h]‖L2(e)

∑
K∈Ωe

‖∇uq
h‖L2(K)

≤1

8

∣∣uq
h

∣∣2
1,h

+ C
∑

e∈EID
h

p5

γ0,eh2
e

γ0,e p

he
‖[uq

h]‖
2

L2(e) .

The penalty term L1(·, ·) is estimated as follows. Recall that vh|K = α · ∇uq
h|K

with α = x− xΩ1
for each K ∈ Th. Noting that

∂vh
∂τ �e

=
∂uq

h

∂τ �e
+ α · ∇

(∂uq
h

∂τ �e

)
(3.22)

=
∂uq

h

∂τ �e
+ α · ne

∂

∂τ �e

(∂uq
h

∂ne

)
+

d−1∑
m=1

α · τme
∂

∂τme

(∂uq
h

∂τ �e

)
, 1 ≤ 	 ≤ d− 1,
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by the definition of L1(·, ·) and Lemma 3.2 we get

2 ImL1(u
q
h, vh) = 2 Im

∑
e∈EID

h

d−1∑
�=1

β1,ep

he

(〈[
∂uq

h

∂τ �e

]
,

[
α · ne

∂

∂τ �e

(∂uq
h

∂ne

)]〉
e

(3.23)

+

d−1∑
m=1

〈[
∂uq

h

∂τ �e

]
,

[
α · τme

∂

∂τme

(
∂uq

h

∂τ �e

)]〉
e

)

≤ 2 Im
∑
e∈ED

h

d−1∑
�=1

β1,ep

he

〈
α · ne

∂uq
h

∂τ �e
,

∂

∂τ �e

(∂uq
h

∂ne

)〉
e

+ C
∑
e∈EI

h

d−1∑
�=1

β1,ep
3

h2
e

∥∥∥∥[∂uq
h

∂τ �e

]∥∥∥∥
L2(e)

∥∥∥∥[∂uq
h

∂ne

]∥∥∥∥
L2(e)

+ C
∑

e∈EID
h

d−1∑
�=1

β1,ep
3

h2
e

∥∥∥∥[∂uq
h

∂τ �e

]∥∥∥∥
L2(e)

∥∥∥∥[∂uq
h

∂τ �e

]∥∥∥∥
L2(e)

≤ 2 Im
∑
e∈ED

h

d−1∑
�=1

β1,ep

he

〈
α · ne

∂uq
h

∂τ �e
,

∂

∂τ �e

(∂uq
h

∂ne

)〉
e

+ C
∑
e∈EI

h

d−1∑
�=1

p3

h2
e

√
β1,e

γ1,e

(
γ1,ehe

p

∥∥∥∥[∂uq
h

∂ne

]∥∥∥∥2
L2(e)

+
β1,ep

he

∥∥∥∥[∂uq
h

∂τ �e

]∥∥∥∥2
L2(e)

)

+ C
∑

e∈EID
h

d−1∑
�=1

p2

he

β1,ep

he

∥∥∥∥[∂uq
h

∂τ �e

]∥∥∥∥2
L2(e)

.

We remark that ImL1(u
q
h, vh) = 0 when p = q = 1.

Next we estimate the penalty terms Jj(u
q
h, vh). Since uq

h and vh are piecewise
polynomials of degree p in general and those terms contain jumps of high order
normal derivatives, it is quite delicate to control those terms as shown below.

By direct calculations we get that on each edge/face e of K ∈ Th,

∂jvh

∂nj
e

= j
∂juq

h

∂nj
e

+ α · ∇
(∂juq

h

∂nj
e

)
(3.24)

= j
∂juq

h

∂nj
e

+ α · ne
∂j+1uq

h

∂nj+1
e

+

d−1∑
m=1

α · τme
∂

∂τme

(∂juq
h

∂nj
e

)
, 1 ≤ j ≤ p− 1,

∂pvh
∂np

e
= p

∂puq
h

∂np
e

+ α · ∇
(∂puq

h

∂np
e

)
= p

∂puq
h

∂np
e
.(3.25)

Here we have used the fact that (p+ 1)th order derivatives of uq
h are zero because

uq
h is a polynomial of degree at most p.
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For j = 1, 2, · · · , q − 1, by (3.24) we have

2 Im Jj(u
q
h, vh) = 2 Im

∑
e∈EI

h

γj,e

(
he

p

)2j−1(
α · ne

〈[
∂juq

h

∂nj
e

]
,

[
∂j+1uq

h

∂nj+1
e

]〉
e

(3.26)

+
d−1∑
�=1

α · τ �e
〈[

∂juq
h

∂nj
e

]
,

[
∂

∂τ �e

(∂juq
h

∂nj
e

)]〉
e

)

�
∑
e∈EI

h

γj,e

(
he

p

)2j−1 ∥∥∥∥[∂juq
h

∂nj
e

]∥∥∥∥
L2(e)

×
(∥∥∥∥[∂j+1uq

h

∂nj+1
e

]∥∥∥∥
L2(e)

+
p2

he

∥∥∥∥[∂juq
h

∂nj
e

]∥∥∥∥
L2(e)

)

�
∑
e∈EI

h

p

he

√
γj,e

γj+1,e

(
γj,e

(
he

p

)2j−1 ∥∥∥∥[∂juq
h

∂nj
e

]∥∥∥∥2
L2(e)

+γj+1,e

(
he

p

)2j+1 ∥∥∥∥[∂j+1uq
h

∂nj+1
e

]∥∥∥∥2
L2(e)

)

+
∑
e∈EI

h

p2

he
γj,e

(
he

p

)2j−1 ∥∥∥∥[∂juq
h

∂nj
e

]∥∥∥∥2
L2(e)

.

If q < p, then, from Lemma 3.2 and the inequality

∥∥∥∥∂qϕ

∂nq
e

∥∥∥∥
L2(∂K)

� ph
− 1

2
e

∣∣ϕ∣∣
Hq(K)

,

we have

Im2Jq(u
q
h, vh) �

∑
e∈EI

h

γq,e

(
he

p

)2q−1 ∥∥∥∥∂quq
h

∂nq
e

∥∥∥∥
L2(e)

p h
− 1

2
e

∑
K∈Ωe

∣∣vh∣∣Hq(K)
(3.27)

�
∑
e∈EI

h

γq,e

(
he

p

)2q−1
p2q+1

h
q+ 1

2
e

∥∥∥∥∂quq
h

∂nq
e

∥∥∥∥
L2(e)

∑
K∈Ωe

‖∇uq
h‖L2(K)

≤ 1

8

∣∣uq
h

∣∣2
1,h

+ C
∑
e∈EI

h

γq,e p
2q+3

h2
e

γq,e

(
he

p

)2q−1 ∥∥∥∥∂quq
h

∂nq
e

∥∥∥∥2
L2(e)

.

If q = p, (3.25) and the definition of Jp(·, ·) immediately imply that (compare with
(4.14) of [27])

(3.28) 2 ImJp(u
q
h, vh) = 2 Im Jp(u

q
h, u

q
h) = 0.

The estimate for Im J0(u
q
h, vh) is similar to (3.26), so we get

2 ImJ0(u
q
h, vh) = 2 Im

∑
e∈EID

h

γ0,e p

he

〈
[uq

h] ,

⎡⎣α · ne
∂uq

h

∂ne
+

d−1∑
j=1

α · τ je
∂uq

h

∂τ je

⎤⎦〉
e

(3.29)
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≤ 2 Im
∑
e∈ED

h

γ0,e p

he

〈
α · neu

q
h,

∂uq
h

∂ne

〉
e

+ C
∑
e∈EI

h

γ0,e p

he
‖[uq

h]‖L2(e)

∥∥∥∥[∂uq
h

∂ne

]∥∥∥∥
L2(e)

+ C
∑

e∈EID
h

γ0,e p

he
‖[uq

h]‖L2(e)

p2

he
‖[uq

h]‖L2(e)

≤ 2 Im
∑
e∈ED

h

γ0,e p

he

〈
α · neu

q
h,

∂uq
h

∂ne

〉
e

+ C
∑

e∈EID
h

p2

he

γ0,e p

he
‖[uq

h]‖
2

L2(e)

+ C
∑
e∈EI

h

p

he

√
γ0,e
γ1,e

(
γ0,e p

he
‖[uq

h]‖
2

L2(e) +
γ1,ehe

p

∥∥∥∥[∂uq
h

∂ne

]∥∥∥∥2
L2(e)

)
.

We also need the following estimate (compare with (4.22) of [27])∑
e∈ED

h

(
k2
〈
α · ne, |uq

h|2
〉
e
+
〈
α · ne, |∇uq

h|2
〉
e

(3.30)

+

d−1∑
�=1

2β1,ep

he
Im

〈
α · ne

∂uq
h

∂τ �e
,

∂

∂τ �e

(∂uq
h

∂ne

)〉
e

+
2γ0,e p

he
Im

〈
α · neu

q
h,

∂uq
h

∂ne

〉
e

)

≤ −
∑
e∈ED

h

〈
α · nD, k2|uq

h|2 + |∇uq
h|2 − 2

d−1∑
�=1

β1,ep

he

∣∣∣∂uq
h

∂τ �e

∣∣∣∣∣∣ ∂

∂τ �e

(∂uq
h

∂ne

)∣∣∣
− 2

γ0,e p

he
|uq

h||∇uq
h|
〉

e

≤ −cD
∑
e∈ED

h

(
k2‖uq

h‖2L2(e) +
1

2
‖∇uq

h‖2L2(e)

)

+ C
∑
e∈ED

h

β1,e p
5

h3
e

d−1∑
�=1

β1,e p

he

∥∥∥∥∂uq
h

∂τ �e

∥∥∥∥2
L2(e)

+ C
∑
e∈ED

h

γ0,e p

he

γ0,e p

he
‖uq

h‖
2

L2(e)
,

where we have used the inverse inequality and the assumption that D is star-shaped
to derive the last inequality.

Step 3: Finishing up. We only prove the case of q = p since the proof for q < p
is the same except using (3.27) instead of (3.28). Substituting (3.26), (3.28), (3.29)
(with q = p) and (3.15)–(3.19) into (3.14), and using (3.30) we obtain

2k2 ‖up
h‖

2

L2(Ω)

≤(d− 2)Re
(
(f, up

h) + 〈g, up
h〉ΓR

)
+ CM(f, g)2 +

k2

3
‖up

h‖
2

L2(Ω)

− 3

8

∣∣up
h

∣∣2
1,h

+
∣∣up

h

∣∣2
1,h

− 2
∑

e∈EID
h

Re

〈{
∂up

h

∂ne

}
, [up

h]

〉
e
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− cΩ1

4

∑
e∈ER

h

‖∇up
h‖

2

L2(e) + Ck2 ‖up
h‖

2

L2(ΓR)

− cD
∑
e∈ED

h

(
k2‖up

h‖2L2(e) +
1

2
‖∇up

h‖2L2(e)

)

+ C
∑
e∈EI

h

(
p (k2 + 1)

γ0,e
+

p5

γ0,eh2
e

+
p2

he

)
γ0,e p

he
‖[up

h]‖
2

L2(e)

+ C
∑
e∈ED

h

(
γ0,e p

he
+

p5

γ0,eh2
e

+
p2

he

)
γ0,e p

he
‖[up

h]‖
2

L2(e)

+ C
∑
e∈ED

h

β1,e p
5

h3
e

d−1∑
�=1

β1,e p

he

∥∥∥∥∂up
h

∂τ �e

∥∥∥∥2
L2(e)

+ C
∑
e∈EI

h

d−1∑
�=1

p3

h2
e

√
β1,e

γ1,e

(
γ1,ehe

p

∥∥∥∥[∂up
h

∂ne

]∥∥∥∥2
L2(e)

+
β1,ep

he

∥∥∥∥[∂up
h

∂τ �e

]∥∥∥∥2
L2(e)

)

+ C
∑

e∈EID
h

d−1∑
�=1

p2

he

β1,ep

he

∥∥∥∥[∂up
h

∂τ �e

]∥∥∥∥2
L2(e)

+ C

p−1∑
j=1

∑
e∈EI

h

p2

he
γj,e

(
he

p

)2j−1 ∥∥∥∥[∂jup
h

∂nj
e

]∥∥∥∥2
L2(e)

+ C

p−1∑
j=0

∑
e∈EI

h

p

he

√
γj,e

γj+1,e

(
γj,e

(
he

p

)2j−1 ∥∥∥∥[∂jup
h

∂nj
e

]∥∥∥∥2
L2(e)

+γj+1,e

(
he

p

)2j+1 ∥∥∥∥[∂j+1up
h

∂nj+1
e

]∥∥∥∥2
L2(e)

)
.

Therefore, it follows from Lemma 3.3 and (3.9) that

2k2 ‖up
h‖

2

L2(Ω) +
3

8

∣∣up
h

∣∣2
1,h

+
cΩ1

4

∑
e∈ER

h

‖∇up
h‖

2

L2(e)

+ cD
∑
e∈ED

h

(
k2‖up

h‖2L2(e) +
1

2
‖∇up

h‖2L2(e)

)

≤ CM(f, g)2 +
4k2

3
‖up

h‖
2

L2(Ω)
+ Ck2Csta,p

∣∣(f, up
h) + 〈g, up

h〉ΓR

∣∣
≤ Ck2C2

sta,pM(f, g)2 +
5k2

3
‖up

h‖
2

L2(Ω)
,

where we have used the following inequality, which is a consequence of (3.6),

k2 ‖up
h‖

2

L2(ΓR) ≤ k2 ‖up
h‖

2

L2(Ω) +M(f, g)2
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to derive the last inequality. M(f, g) and Csta,p are defined by (3.8) and (3.9),
respectively. Hence,

‖up
h‖L2(Ω) +

1

k

∣∣up
h

∣∣
1,h

+
1

k

(
cΩ1

∑
e∈ER

h

‖∇up
h‖

2

L2(e)

) 1
2

+
1

k

(∑
e∈ED

h

cD

(
k2‖up

h‖2L2(e) + ‖∇up
h‖2L2(e)

)) 1
2

� Csta,pM(f, g),

which together with (3.6) gives (3.7). The proof is completed. �
As (2.15) can be written as a linear system, an immediate consequence of the

above stability estimate is the following well-posedness theorem for (2.15).

Theorem 3.2. For k > 0 and h > 0, the hp-IPDG method (2.15) has a unique
solution uq

h provided that γ0,e, γ1,e, · · · , γq,e > 0 and β1,e ≥ 0.

Next we consider the case of quasi-uniform meshes. Note that large penalty
parameters (γj , j ≥ 1) for jumps of normal derivatives may cause a large interpo-
lation error in the norm ‖·‖1,h,q, and hence, may pollute the error estimates of the

IPDG solution (see Section 4). It is interesting to minimize the stability constant
Csta,q under the constraints of β1,e ≥ 0 and p

γ0,e
+
∑q

j=1 p
2j−1γj,e � 1. We have the

following consequence of Theorem 3.1. The proof is straightforward and is omitted.

Theorem 3.3. Let h = maxhe. Suppose the mesh Th is quasi-uniform, that is,
he � h. Suppose k � 1 and k h � 1. Assume that γj,e � γj , j = 0, 1, · · · , q,∑q

j=1 p
2j−1γj � 1, 0 ≤ β1,e � h2

p4 γ0, and that{
γ0 � p

7
3h− 2

3 , γj � p−
10
3 h

2
3 γj−1 if q = p,

γ0 � min
{
p

3q+1
q+1 h− q

q+1 , p
7
3h− 2

3

}
, γj �

(
γ0 h
p4

)2
γj−1, γq � 1

γ0p2q−2 if q < p.

Suppose D = ∅ if q ≥ 2 or q = p = 1. Then

‖uq
h‖L2(Ω)

+
1

k
‖uq

h‖1,h,q � Csta,qM(f, g),

where

Csta,q �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p

8
3

k2h
4
3

if q = p,

max

{
p

8
3

k2h
4
3

,
p

2q+4
q+1

k2h
q+2
q+1

}
if q < p.

It is clear that, in the above theorem, γ0 � p
7
3h− 2

3 if q = p or q ≥ 2, γ0 �
p

3q+1
q+1 h− q

q+1 otherwise. We conclude this section with several remarks.

Remark 3.2. (a) The hp-IPDG method (2.15) is well-posed for all h, k > 0 provided
that all penalty parameters are positive. As a comparison, we recall that the
standard finite element method is well-posed only if mesh size h satisfies a constraint
h = O(k−ρ) for some ρ ≥ 1, hence, the existence is only guaranteed for very small
mesh size h when wave number k is large.

(b) It is well known that [3, 4, 9, 26, 42, 47] symmetric IPDG methods for coercive
elliptic and parabolic PDEs often require the penalty parameter γ0,e is sufficiently
large to guarantee the well-posedness of numerical solutions, and the low bound for
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γ0,e is theoretically hard to determine and is also problem-dependent. However,
this is no issue for scheme (2.15), which solves the (indefinite) Helmholtz equation,
because they are well-posed for all γ0,e > 0.

(c) In the linear element case of q = p = 1, a better estimate is obtained in [27]
with the help of the penalty term L1. Unfortunately the penalty term L1 does not
help very much for higher order elements.

(d) The stability estimates will be improved greatly when k3h2p−2 ≤ C0, where
C0 is some constant independent of k, h, p, and the penalty parameters (see Theo-
rem 5.1). The above estimates are only interesting when k h � 1 and k3h2p−2 � 1.

(e) We can see that choosing q = p is helpful for the stability analysis (cf. (3.26)–
(3.28) in the proof of Theorem 3.1 and Theorem 3.3). On the other hand, noting
that if the jump of the hp-IPDG solution up

h (a piecewise polynomial of degree p
or less) and the jumps of its j-th normal derivatives, j = 1, · · · , p, are all zeros,
then up

h is a polynomial of degree p or less on the whole domain Ω. Therefore, the
hp-IPDG method with q = p can be viewed as an “interior penalty discontinuous
spectral method”. Numerical tests for the linear element case in [27] shows that
penalizing the jump of normal derivative (i.e. p = q = 1) improves the stability for
k3h2 � 1 and gives better numerical solutions. Numerical tests for the higher order
element case will be given in a separate work.

4. Error estimates

In this section, we derive the error estimates of the solutions of scheme (2.15).
This will be done in two steps. First, we introduce elliptic projections of the PDE
solution u and derive error estimates for the projections. We note that such a
result also has an independent interest. Second, we bound the error between the
projections and the IPDG solutions by making use of the stability results obtained
in Section 3. In this and the next section, we assume that the mesh Th is quasi-
uniform, that γj,e � γj > 0 for j = 0, 1, · · · , q, and that β1,e � β1 ≥ 0. Let
h = maxhe. For simplicity, we also assume that the mesh Th is conforming, that is,
Th contains no hanging nodes, since the parallel results for nonconforming meshes
can be derived in a similar way.

4.1. Elliptic projection and its error estimates. For any w ∈ Eq ∩H1
ΓD

(Ω)∩
H2

loc(Ω), we define its elliptic projection w̃q
h ∈ V p

h by

(4.1) aqh(w̃
q
h, vh) + ik 〈w̃q

h, vh〉ΓR
= aqh(w, vh) + ik 〈w, vh〉ΓR

∀vh ∈ V p
h .

In other words, w̃q
h is an IPDG approximation to the solution w of the following

(complex-valued) Poisson problem:

−Δw = F in Ω,

∂w

∂nΓR

+ ikw = ψ on ΓR,

w = 0 on ΓD

for some given functions F and ψ which are determined by w.
Before estimating the projection error, we state the following continuity and

coercivity properties for the sesquilinear form aqh(·, ·). Since they follow easily from
(2.4)–(2.13), so we omit their proofs to save space.
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Lemma 4.1. For any v ∈ Eq and w ∈ Eq ∩H1
ΓD

, the mesh-dependent sesquilinear

form aqh(·, ·) satisfies

(4.2) |aqh(v, w)|, |a
q
h(w, v)| � ‖v‖1,h,q ‖|w‖|1,h,q.

In addition, for any 0 < ε < 1, there exists a positive constant cε independent of k,
h, p, and the penalty parameters such that

(4.3) Re aqh(vh, vh)+
(
1−ε+

cε p

γ0

)
Im aqh(vh, vh) ≥ (1−ε) ‖vh‖21,h,q ∀vh ∈ V p

h .

To estimate the projection error, we also need the following approximation prop-
erties of the space V p

h ∩H1
ΓD

(Ω).

Lemma 4.2.

(i) Let μ = min {p+ 1, s} and q < μ. Suppose u ∈ Hs(Ω) ∩ H1
ΓD

(Ω). Then

there exists ûh ∈ V p
h ∩H1

ΓD
(Ω) such that

‖u− ûh‖L2(ΓR) �
hμ− 1

2

ps−
1
2

‖u‖Hs(Ω) ,(4.4)

‖|u− ûh‖|1,h,q �
(
1 +

p

γ0
+

q∑
j=1

p2j−1γj

) 1
2 hμ−1

ps−1
‖u‖Hs(Ω) .(4.5)

(ii) Suppose u ∈ H2(Ω) ∩H1
ΓD

(Ω). Then there exists ûh ∈ V p
h ∩H1

ΓD
(Ω) such

that (4.4) holds with s = 2 and(
‖|u− ûh‖|21,h,0 +

q∑
j=1

Jj(ûh, ûh)
) 1

2

(4.6)

�
(
1 +

p

γ0
+ p γ1 +

q∑
j=2

p2j−2γj

) 1
2 h

p
‖u‖H2(Ω) ,

where γ1 = 0 if q = 0. Note that the left-hand side of (4.6) equals ‖|u− ûh‖|1,h,q if

u ∈ Hmax{q+1,2}(Ω) ∩H1
ΓD

(Ω).

Proof. The following hp approximation properties are well-known for the hp finite
element functions (cf. [8, 30, 31]):

• There exists ǔh ∈ V p
h such that, for j = 0, 1, · · · , s,

(4.7) ‖u− ǔh‖Hj(Th)
:=
( ∑

K∈Th

‖u− ǔh‖2Hj(K)

) 1
2 � hμ−j

ps−j
‖u‖Hs(Ω) .

• There exists ûh ∈ V p
h ∩H1

ΓD
(Ω) such that

(4.8) ‖u− ûh‖Hj(Ω) �
hμ−j

ps−j
‖u‖Hs(Ω) , j = 0, 1.

Here the invisible constants in the two inequalities above depend on s but are
independent of k, h, p, and the penalty parameters. Then (4.4) follows from (4.8)
and the trace inequality.
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It follows from the inverse inequalities in Lemma 3.2 that, for 1 ≤ j ≤ q + 1,

‖u− ûh‖Hj(Th)
≤ ‖u− ǔh‖Hj(Th)

+ ‖ǔh − ûh‖Hj(Th)
(4.9)

� ‖u− ǔh‖Hj(Th)
+

p2(j−1)

hj−1
‖ǔh − ûh‖H1(Ω)

� hμ−j

ps−2j+1
‖u‖Hs(Ω) .

Therefore, by the following local trace inequality,

‖v‖2L2(∂K) � h−1
K ‖v‖2L2(K) + ‖v‖L2(K) ‖∇v‖L2(K) ,

we have ∑
K∈Th

∑
e⊂∂K

∥∥∥∥∂j(u− ûh)

∂nj
e

∥∥∥∥2
L2(e)

(4.10)

�h−1 ‖u− ûh‖2Hj(Th)
+ ‖u− ûh‖Hj(Th)

‖u− ûh‖Hj+1(Th)

�h2μ−2j−1

p2s−4j
‖u‖2Hs(Ω) .

Noting that ûh is continuous, we have from (4.8) and (4.10),

‖|u− ûh‖|21,h,q =
∣∣u− ûh

∣∣2
1,h

+

q∑
j=1

∑
e∈EI

h

γj,e

(
he

p

)2j−1 ∥∥∥∥[∂j(u− ûh)

∂nj
e

]∥∥∥∥2
L2(e)

(4.11)

+
∑

e∈EID
h

he

γ0,e p

∥∥∥∥{∂(u− ûh)

∂ne

}∥∥∥∥2
L2(e)

�
(
1 +

p

γ0
+

q∑
j=1

p2j−1γj

)h2μ−2

p2s−2
‖u‖2Hs(Ω) .

That is, (4.5) holds.
(4.6) can be proved similarly as above. It is clear that (4.8) and (4.9) hold with

s = 2 and (4.10) holds with s = 2 and j = 1, that is,

‖u− ûh‖Hj(Ω) �
h2−j

p2−j
‖u‖H2(Ω) , j = 0, 1,(4.12)

‖u− ûh‖H2(Th)
� p ‖u‖H2(Ω) ,(4.13) ∑

e∈EI
h

∥∥∥∥[∂ûh

∂ne

]∥∥∥∥2
L2(e)

�
∑

K∈Th

∑
e⊂∂K

∥∥∥∥∂(u− ûh)

∂ne

∥∥∥∥2
L2(e)

� h ‖u‖2H2(Ω) .(4.14)

We have from Lemma 3.2 and (4.13) that, for 2 ≤ j ≤ q,∑
e∈EI

h

∥∥∥∥[∂j ûh

∂nj
e

]∥∥∥∥2
L2(e)

�
∑

K∈Th

∑
e⊂∂K

∥∥∥∥∂j ûh

∂nj
e

∥∥∥∥2
L2(e)

� p2

h
‖ûh‖2Hj(Th)

(4.15)

�
(p2
h

)2j−3

‖ûh‖2H2(Th)
�
( p
h

)2j−3

p2j−2 ‖u‖2H2(Th)
.

Now (4.6) follows by combining (4.12)–(4.15). This completes the proof of the
lemma. �
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Let u be the solution of problem (1.1)–(1.3) and ũq
h its elliptic projection defined

as above. Define η := u−ũq
h. Then (4.1) immediately implies the following Galerkin

orthogonality:

(4.16) aqh(η, vh) + ik 〈η, vh〉ΓR
= 0 ∀vh ∈ V p

h .

Lemma 4.3. Suppose problem (1.1)–(1.3) is Hmax{q+1,2}-regular. Then the fol-
lowing error estimate holds:

‖u− ũq
h‖1,h,q +

√
λk ‖u− ũq

h‖L2(ΓR)(4.17)

� inf
zh∈V p

h ∩H1
ΓD

(Ω)

(
λ‖|u− zh‖|1,h,q +

√
λk ‖u− zh‖L2(ΓR)

)
,

Moreover, suppose that the following Poisson problem is H2-regular in the sense
that for any F ∈ L2(Ω) there is a unique w ∈ H2(Ω) such that

−Δw = F in Ω,(4.18)

∂w

∂n
− ikw = 0 on ΓR,(4.19)

w = 0 on ΓD,(4.20)

and

(4.21)
∣∣w∣∣

H2(Ω)
� ‖F‖L2(Ω) .

Then there also holds the estimate

‖u− ũq
h‖L2(Ω)

�h

p

(
1 +

p

γ0
+ p γ1 +

q∑
j=2

p2j−2γj +
kh

λp

) 1
2

(4.22)

× inf
zh∈V p

h ∩H1
ΓD

(Ω)

(
λ‖|u− zh‖|1,h,q +

√
λk ‖u− zh‖L2(ΓR)

)
,

where λ := 1 + p
γ0

and γ1 = 0 if q = 0.

Proof. For any zh ∈ V p
h ∩ H1

ΓD
(Ω), let ηh = ũq

h − zh. From ηh + η = u − zh and
(4.16), we have

(4.23) aqh(ηh, ηh) + ik 〈ηh, ηh〉ΓR
= aqh(u− zh, ηh) + ik 〈u− zh, ηh〉ΓR

.

Take ε = 1
2 in (4.3) and assume, without loss of generality, that c 1

2
> 1

2 . It follows

from (4.3) and (4.23) that

1

2
‖ηh‖21,h,q ≤Re aqh(ηh, ηh) +

(1
2
+

c 1
2
p

γ0

)
Im aqh(ηh, ηh)

=Re
(
aqh(u− zh, ηh) + ik 〈u− zh, ηh〉ΓR

)
−
(1
2
+

c 1
2
p

γ0

)
k 〈ηh, ηh〉ΓR

+
(1
2
+

c 1
2
p

γ0

)
Im
(
aqh(u− zh, ηh) + ik 〈u− zh, ηh〉ΓR

)
≤Cλ

(
‖ηh‖1,h,q ‖|u− zh‖|1,h,q + k ‖u− zh‖2L2(ΓR)

)
− λk

4
‖ηh‖2L2(ΓR) .

Therefore,

‖ηh‖21,h,q + λk ‖ηh‖2L2(ΓR) �λ2‖|u− zh‖|21,h,q + λk ‖u− zh‖2L2(ΓR)(4.24)
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which together with η = u− zh − ηh yields (4.17).
To show (4.22), we use the standard Nitsche’s duality argument (cf. [11, 15]).

Let w be the solution of (4.18)–(4.20) with F := η and let ŵh be defined in
Lemma 4.2(ii) (with u replaced by w). From (4.16),

a0h(η, ŵh) + ik 〈η, ŵh〉ΓR
= −i

q∑
j=1

Jj(η, ŵh).

Testing the conjugated (4.18) with F = η by η and using the above equality and
Lemma 4.2(ii) we get

‖η‖2L2(Ω) = a0h(η, w) + ik 〈η, w〉ΓR

= a0h(η, w − ŵh) + ik 〈η, w − ŵh〉ΓR
− i

q∑
j=1

Jj(η, ŵh)

� ‖η‖1,h,0 ‖|w − ŵh‖|1,h,0 + k ‖η‖L2(ΓR) ‖w − ŵh‖L2(ΓR)

+

q∑
j=1

Jj(η, η)
1
2 Jj(ŵh, ŵh)

1
2

� ‖η‖1,h,q
(
‖|w − ŵh‖|21,h,0 +

q∑
j=1

Jj(ŵh, ŵh)
) 1

2

+ k ‖η‖L2(ΓR) ‖w − ŵh‖L2(ΓR)

� ‖η‖1,h,q
(
1 +

p

γ0
+ p γ1 +

q∑
j=2

p2j−2γj

) 1
2 h

p

∣∣w∣∣
H2(Ω)

+ k ‖η‖L2(ΓR)

h
3
2

p
3
2

∣∣w∣∣
H2(Ω)

,

which together with (4.17) and (4.21) gives (4.22). The proof is completed. �

Remark 4.1. The regularity assumption on problem (4.18)–(4.20) generally imposes
a restriction on the domain Ω (hence on the scatterer D). If ΓR and ΓD are smooth
or D = ∅ and Ω is a convex polygon, then the assumption is known to be true (cf.
[11]). But for general domain Ω, one only gets H1+α regularity for some α ∈ (0, 1],
as a result, (4.22) then has to be replaced by a suboptimal estimate. We also note
that the invisible constant in the estimate (4.21) depends on the domain Ω, the
dependence is complicated unless Ω has a very simple geometry.

By combining Lemma 4.3 and Lemma 4.2(i) we have the following estimates for
the projection error.

Lemma 4.4. Let μ = min {p+ 1, s} and q < μ. Suppose problem (1.1)–(1.3) is
Hs-regular and (4.18)–(4.20) is H2-regular. Then the following estimates hold:

‖u− ũq
h‖1,h,q +

√
λk ‖u− ũq

h‖L2(ΓR) � Cerr,q
hμ−1

ps−1
‖u‖Hs(Ω) ,(4.25)

‖u− ũq
h‖L2(Ω) � Ĉerr,q

hμ

ps
‖u‖Hs(Ω) ,(4.26)
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where

Cerr,q := λ
(
1 +

p

γ0
+

q∑
j=1

p2j−1γj +
kh

λp

) 1
2

,

Ĉerr,q :=
(
1 +

p

γ0
+ p γ1 +

q∑
j=2

p2j−2γj +
kh

λp

) 1
2

Cerr,q, λ := 1 +
p

γ0
.

Remark 4.2. The requirement q < s in the lemma is clear since the projection ũq
h

is not defined for q > s. However, for q < s, ‖u− ũq
h‖1,h,q can be bounded without

using full regularity of u, and such a bound is also useful (see Lemma 5.1).

4.2. Error estimates for u−uq
h. In this subsection we shall derive error estimates

for scheme (2.15). This will be done by exploiting the linearity of the Helmholtz
equation and making use of the stability estimates derived in Theorem 3.1 and the
projection error estimates established in Lemma 4.4.

Let u and uq
h denote the solutions of (1.1)–(1.3) and (2.15), respectively. Assume

that u ∈ Hs(Ω) with s ≥ q + 1, then (2.14) holds for vh ∈ V p
h . Define the error

function eh := u − uq
h. Subtracting (2.15) from (2.14) yields the following error

equation:

(4.27) aqh(eh, vh)− k2(eh, vh) + ik〈eh, vh〉ΓR
= 0 ∀vh ∈ V p

h .

Let ũq
h be the elliptic projection of u as defined in the previous subsection. Write

eh = η − ξ with η := u− ũq
h, ξ := uq

h − ũq
h. From (4.27) and (4.16) we get

aqh(ξ, vh)− k2(ξ, vh) + ik〈ξ, vh〉ΓR
= aqh(η, vh)− k2(η, vh) + ik〈η, vh〉ΓR

(4.28)

= −k2(η, vh) ∀vh ∈ V p
h .

The above equation implies that ξ ∈ V p
h is the solution of scheme (2.15) with source

terms f = −k2η and g ≡ 0. Then an application of Theorem 3.1 and Lemma 4.4
immediately gives

Lemma 4.5. ξ = uq
h − ũq

h satisfies the following estimate:

‖ξ‖L2(Ω) +
1

k
‖ξ‖1,h,q � Csta,q k

2 Ĉerr,q
hμ

ps
‖u‖Hs(Ω) .(4.29)

We are ready to state our error estimate results for scheme (2.15), which follows
from Lemma 4.5, Lemma 4.4 and an application of the triangle inequality.

Theorem 4.1. Let u and uq
h denote the solutions of (1.1)–(1.3) and (2.15), re-

spectively. Suppose u ∈ Hs(Ω) ∩H1
ΓD

(Ω). Let μ = min{p+ 1, s} and q < μ. Then
under the assumptions of Lemma 4.4 we have

‖u− uq
h‖1,h,q �

(
Cerr,q +

k3h

p
Csta,qĈerr,q

) hμ−1

ps−1
‖u‖Hs(Ω) ,(4.30)

‖u− uq
h‖L2(Ω)

� Ĉerr,q

(
1 + k2Csta,q

) hμ

ps
‖u‖Hs(Ω) .(4.31)

Remark 4.3. q < s is required in the theorem because ‖u− uq
h‖1,h,q is not defined

for q > s. However, we note that the hp-IPDG solution uq
h is always well-defined

regardless the regularity of underlying PDE solution u. For q < s, ‖u− uq
h‖1,h,q

can be bounded without using full regularity of u, and such a bound is also useful
(see Lemma 5.2).
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By combining Theorem 4.1 and Theorem 3.3 we have the following theorem that
gives the best convergence order so far which we can obtain theoretically for the
method (2.15) under the mesh condition k3h2p−2 � 1 (cf. Theorem 5.1).

Theorem 4.2. Under the assumptions of Theorem 3.3 and 4.1, we have

‖u− uq
h‖1,h,q + k ‖u− uq

h‖L2(Ω)(4.32)

�
{

k p
5
3h− 1

3
hμ−1

ps−1 ‖u‖Hs(Ω) if q = p,

k max
{
p

5
3h− 1

3 , p
q+3
q+1h− 1

q+1

}
hμ−1

ps−1 ‖u‖Hs(Ω) if q < p.

Proof. The proof is obvious since Cerr,q � Ĉerr,q � 1. �

Remark 4.4. (a) Estimates (4.30)–(4.32) are so-called preasymptotic error estimates
which are suboptimal in h and k. They can be improved to optimal order when
k3h2p−2 ≤ C0, where C0 is some constant independent of k, h, p, and the penalty
parameters (see Theorem 5.1). The second term on the right-hand side of (4.30) is
called a pollution term for ‖u− uq

h‖1,h,q.
(b) Suppose ‖u‖Hs(Ω) � ks−1. Then Theorem 4.2 shows that ‖u− uq

h‖1,h,q +

k ‖u− uq
h‖L2(Ω)

→ 0 if q = p and p
8
3−skshμ− 4

3 → 0, or if q = 1 < p and

p3−skshμ− 3
2 → 0.

5. Stability-error iterative improvement

In this section we derive some improved optimal order stability and error esti-
mates for the hp-IPDG solution under the mesh condition that k3h2p−2 ≤ C0 by
using a stability-error iterative procedure, where C0 is some constant independent
of k, h, p, and the penalty parameters (see Theorem 5.1).

By combining Lemma 4.3 and Lemma 4.2(ii), we have the following estimates
for the projection error when only the H2-norm of the solution u is allowed in the
error bound.

Lemma 5.1. Suppose problem (1.1)–(1.3) is Hmax{q+1,2}-regular and (4.18)–(4.20)
is H2-regular. Then the following estimates hold:

‖u− ũq
h‖1,h,q +

√
λk ‖u− ũq

h‖L2(ΓR)
� Cerr,2,q M(f, g)

k h

p
,(5.1)

‖u− ũq
h‖L2(Ω) � Ĉerr,2,q M(f, g)

k h2

p2
,(5.2)

where

Cerr,2,q := λ
(
1 +

p

γ0
+ p γ1 +

q∑
j=2

p2j−2γj +
kh

λp

) 1
2

,

Ĉerr,2,q := λ
(
1 +

p

γ0
+ p γ1 +

q∑
j=2

p2j−2γj +
kh

λp

)
, λ := 1 +

p

γ0
.

By a similar argument to that used to prove Theorem 4.1, we have the following
error bounds which only involves M(f, g).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HP -DG METHODS FOR THE HELMHOLTZ EQUATION 2021

Lemma 5.2. Let u and uq
h denote the solutions of (1.1)–(1.3) and (2.15), respec-

tively. Suppose u ∈ Hmax{q+1,2}(Ω) ∩ H1
ΓD

(Ω) and (4.18)–(4.20) is H2-regular.
Then

‖u− uq
h‖1,h,q �

(
Cerr,2,q +

k3h

p
Csta,qĈerr,2,q

)
M(f, g)

k h

p
,(5.3)

‖u− uq
h‖L2(Ω)

� Ĉerr,2,q

(
1 + k2Csta,q

)
M(f, g)

k h2

p2
.(5.4)

We are now ready to state our final main theorem of this paper.

Theorem 5.1. Let u and uq
h denote the solutions of (1.1)–(1.3) and (2.15), re-

spectively. Suppose u ∈ Hmax{q+1,2}(Ω)∩H1
ΓD

(Ω) and (4.18)–(4.20) is H2-regular.

Assume that k � 1, k h � 1, and that pγ0
−1+

∑q
j=1 p

2j−1γj � 1. Then there exists
a constant C0 > 0, which is independent of k, h, p, and the penalty parameters,
such that if k3h2p−2 ≤ C0, then the following stability estimates hold:

‖uq
h‖1,h,q � M(f, g),(5.5)

‖uq
h‖L2(Ω)

� 1

k
M(f, g).(5.6)

Moreover, if u ∈ Hs(Ω) ∩H1
ΓD

(Ω), then the following error estimates hold:

‖u− uq
h‖1,h,q �

(
1 +

k2h

p

) hμ−1

ps−1
‖u‖Hs(Ω) ,(5.7)

‖u− uq
h‖L2(Ω) � k

hμ

ps
‖u‖Hs(Ω) .(5.8)

Proof. We only prove (5.5) since (5.6) can be proved similarly and (5.7)–(5.8) fol-
low from the improved stability estimates and the argument used in the proof of
Theorem 4.1.

From Theorem 3.1 we have

(5.9) ‖uq
h‖1,h,q � k Csta,q M(f, g),

where Csta,q is defined in (3.9). From Lemma 5.2 we have

(5.10) ‖u− uq
h‖1,h,q �

(
Cerr,2,q +

k2h

p
k Csta,qĈerr,2,q

)k h
p

M(f, g).

Now it follows from Theorem 2.1 and the triangle inequality that

‖uq
h‖1,h,q ≤ ‖u‖1,h,q + ‖u− uq

h‖1,h,q = |u|1,h + ‖u− uq
h‖1,h,q(5.11)

�
(
1 + Cerr,2,q

k h

p
+

k3h2

p2
Ĉerr,2,q k Csta,q

)
M(f, g).

Repeating the above process yields that there exists a constant C1 independent of
k, h, p, and the penalty parameters, and a sequence of positive numbers Λj such
that

‖uq
h‖1,h,q ≤ ΛjM(f, g),(5.12)

with

Λ0 � k Csta,q, Λj = C1

(
1 + Cerr,2,q

k h

p

)
+ C1 Ĉerr,2,q

k3h2

p2
Λj−1, j = 1, 2, · · · .
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A simple calculation yields that if C1 Ĉerr,2,q k
3h2 < θ p2 for some positive constant

θ < 1, then

lim
j→∞

Λj =
C1p (p+ Cerr,2,q k h)

p2 − C1 Ĉerr,2,q k3h2
,

which implies (5.5) by noting that Cerr,2,q, Ĉerr,2,q � 1 and that Cerr,2,q k h �(
C2

err,2,qk
3h2
) 1

2 �
(
Ĉerr,2,qk

3h2
) 1

2 � p. �

Note that the stability estimates in (5.5) and (5.6) are of the same order as the
PDE stability estimates given in Theorem 2.1.
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