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Abstract— In this paper mathematical models of the HP Mem-
ristor for DC and periodic signal inputs are provided. The need
for a rigid model for the Memristor using conventional current
and voltage quantities is essential for the development of many
promising Memristors’ applications. Unlike the previous works,
which focuses on the sinusoidal input waveform, we derived rules
for any periodic signals in general in terms of voltage and current.
Square and triangle waveforms are studied explicitly, extending
the formulas for any general square wave. The limiting conditions
for saturation are also provided in case of either DC or periodic
signals. The derived equations are compared to the SPICE model
of the Memristor showing a perfect match.

I. INTRODUCTION

Memristor (M ) is believed to be the fourth fundamental

two terminals passive element, beside the Resistor (R), the

Capacitor (C) and the Inductor (L). The existence of such

element was postulated by Leon Chua in 1971[1], but without

finding its passive realization. In 1978 Chua and Kang extends

the idea to memristive devices and systems [2]. The real

Memristor was not found until 2008, when a team in Hewlett-

Packard labs had built the first electronic passive Memristor

[3]. This Memristor is based on partially doped TiO2 as shown

in Fig 1, where w ∈ (0, D).
Since its realization many applications are proposed for

the Memristor, memory [4], biology [5], and spintronic [6].

Recently the Memristor response for a sinusoidal input was

modeled using a linearized model of the pinched i-v hysteresis

as in [7] or qualitatively as in [8], [9].

In this paper we provide a mathematical model for the DC

input and symmetric periodic signals inputs. Unlike [7], [8],

[9] works, which focuses on the sinusoidal input wave form,

we derived rules for any periodic signals in general in terms

of voltage and current. Square and triangle wave forms are

studied explicitly. An extended rules for for any general square

wave are also provided. The limiting conditions for saturation

in case of either DC or periodic signals are also introduced.

We compare our derived equations with the SPICE model of

the Memristor [10] showing a perfect match.

II. HP MEMRISTOR

There are four fundamental circuit variables, the current i,
the voltage v, the charge q and the flux φ. Chua [1] realized
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Fig. 1. Memristor current versus time, and current and resistance versus input
voltage, for sinusoidal wave input voltage of 1Hz frequency and -1.5V peak
voltage. Memristor Parameters: Roff = 16kΩ, Ron = 100Ω, Ro = 4kΩ.
The abstract structure of the HP Memristor is also given.

that only five of the six possible combinations are used, so he

defines the missing combination to be the memristive one,

R (w) =
dq

dφ
=

v (t)

i (t)
(1)

where R is the instantaneous resistance and w is the state

variable of the Memristor.

The HP Memristor [3] was built on drifting the dopant

between doped and undoped potion of the material, which

models the memristive property. As shown in Fig.(1) w is

modeled by the length of the doped region, which is bounded

between 0 and device length D. The instantaneous resistance

of the Memristor is written as [3],

R = x ·Ron + (1− x)Roff (2)

where x = w/D, Ron is the resistance of the completely

doped Memristor, and Roff is for the completely undoped.

The Memristor resistance as a function of time is drived

in [8], [9]. We can generalize the resistance for linear dopant

drift as,

R2 = R2

o − 2kRdφ (t) , R ∈ (Ron, Roff ) (3)



where k = µv · Ron/D
2, µv is dopant drift mobility, φ (t) =

∫ t

0
v (τ) dτ is the flux at time t, Rd = Roff−Ron which is the

difference between the boundary resistances, and Ro = R (xo)
is the initial resistance at t = 0.

Fig. 1 shows the Memristor’s response for sinusoid input

voltage, using Eq.(3). The figure shows the Memristor’s cur-

rent versus both of time and voltage, and the Memristor’s

resistance versus voltage.

III. MODEL FOR THE DC VOLTAGE

For a Memristor with a DC input, the dopant boundary will

move in one direction towards 0 or D limits, depending on the

sign of the input voltage. After w reaches one of its two limits,

the Memristor will act as a constant resistance tends to Ron

or Roff . By evaluating the flux (φ) in Eq.(3), the resistance

as a function of time can be calculated as,

R2 = R2

o − 2kRdVDCt, R ∈ (Ron, Roff ) (4)

where VDC is the value of the DC voltage. The time required

for resistance saturation tsat , in which R reaches either Ron

or Roff can be calculated using Eq. (4), such that ,

tsat =















R2

o−R2

off

2VDCkRd
, VDC < 0

R2

o−R2

on

2VDCkRd
, VDC > 0

(5)

where the saturation direction depends on the sign of VDC .

Fig. 2(a) shows the required saturation time versus the am-

plitude of the DC input voltage. This figure shows that more

saturation time is required for smaller input voltages.

The maximum required saturation time regardless the initial

value of the Memristor resistance is given by,

(tsat)max =
Roff +Ron

2 |VDC | k
(6)

which can be approximated as
(

D2Roff/ (2µvRonVDC)
)

as

observed before by HP experiments in [3]. Fig. 2(b) shows

the maximum saturation time required by the Memristor for

different values of Roff . It appears from the figure that more

saturation time is required in case of higher off-resistance.
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Fig. 2. (a)Saturation time versus the amplitude voltage, where Roff =
16kΩ. (b) Maximum saturation time for a DC input versus the voltage
magnitude for different Roff . Memristor’s parameters: Ron = 100Ω and
Ro = 11kΩ
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Fig. 3. Calculated saturation time compared to SPICE simulations for
nonlinear dopant drift (p = 10) and almost linear drift (p = 100) at 3V
DC. Memristor’s parameters: Ron = 100Ω, Roff = 16kΩ and Ro = 8kΩ

The initial resistance for symmetric saturation times, tsat =
0.5 (tsat)max , in case of equal magnitude positive and nega-

tive voltage is given by,

R∗

o =

√

R2
on +R2

off

2
≈ Roff√

2
(7)

which is greater than the average value (Ron +Roff ) /2, and

the difference increases as Rd increases.

Fig. 3 shows the SPICE simulations results for two different

p, which models the effect of nonlinear dopant drift [10], and

the calculated saturation time. The calculated saturation time is

identical with SPICE simulation at p = 100 which matches the

linear dopant case. Also comparing with the nonlinear output,

at p = 10, shows a neglected error.

IV. GENERAL MODEL FOR PERIODIC SIGNALS

For any periodic signal with zero area under the curve and

starting with zero voltage, the Memristor’s resistance reaches

its maximum or minimum value, at t = (n+ α)T , where

n = 0, 1, 2, ..., such that,

R2

M = R2

o − 2kRdAα, RM ∈ (Ron, Roff ) (8)

where Aα is the area of the first half cycle [0, αT ]. The nature

of this value either maximum (Rmax) or minimum (Rmin)
depending on the sign of Aα. Again, at t = {0, T, 2T, ...}
the resistance returns to its initial value, such that, R = Ro,

since the total net-area at these instances equals to zero.

Unsaturated resistance limiting net-areas (flux)

Both of the resistance range and the rotation of the pinched

i-v hysteresis are affected with the area by the voltage curve

(flux). Generally, the boundaries for non-saturating resistance

can be calculated by substituting RM with Roff and Ron in

Eq. (8), such that,

Aoff =
1

2k

(

R2

off −R2

o

Ron −Roff

)

< 0 (9)

Aon =
1

2k

(

R2

on −R2

o

Ron −Roff

)

> 0 (10)



Fig. 4. Intervals of the Memristor’s resistance versus the area under the
voltage curve (flux).

where Aoff and Aon are the limiting first half cycles area

for just reaching saturation at Roff and Ron respectively. The

difference between these boundaries is given by,

|Asat| =
Roff +Ron

2k
(11)

which is independent of Ro. This value considered as the

minimax required half cycle area by the Memristor’s resistance

to reach saturation, either Roff or Ron, when Ro equals to

Ron or Roff respectively.

Fig. 4 shows the interval range of the resistance, which is

limited by Aoff and Aon

V. SQUARE WAVEFORMS

A. Non-zero net-area waveform

In general for any non-zero net-area square wave the re-

sistance with increase or decrease gradually, with or without

oscillation , until completely saturated at either Roff or

Ron.The direction of saturation depends on the sign of total

area under the curve and the grade of the change depends on

the total area magnitude. For zero net-area signal resistance

will continually oscillates returning to Ro at the end of each

cycle.

The value of the resistance at start of each cycle, t = nT
where n = 0, 1, 2, ..., is given by,

R2

i (n) = R2

i (n− 1)− 2kRd

f
(Vo1α+ Vo2 (1− α))

= R2

o −
2nkRd

f
[Vo1α+ Vo2 (1− α)] (12)

where Ri (n) ∈ (Ron, Roff ), Ri (0) = Ro, and f is the

frequency. Where [Vo1α+ Vo2 (1− α)] denotes to is total total

area under the curve, α is the duty cycle , and Vo1 and Vo2

are the amplitude voltage at the first and second parts of the

cycle respectively

The Memristor’s resistance reaches its maximum or mini-

mum value, at t = (n+ α)T , where n = 0, 1, 2, ..., as,

R2

M (n) = R2

i (n)−
2αVo1kRd

f

= R2

o −
2kRd

f
[(n+ 1)Vo1α+ Vo2 (1− α)] (13)

where Ri (n) ∈ (Ron, Roff ). Fig. 5 shows a perfect matching

between the calculated Ri and RM for a non-zero net-area
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Fig. 5. Simulated Memristor resistance versus time and calculated RM and
Ri, for non-symmetric square wave input voltage. Vo1 = −2.5V , Vo2 =
2.5V , α = 0.52 and frequency = 10Hz. Memristor parameters: Ron =
100Ω, Roff = 16kΩ and Ro = 11kΩ. Simulation parameter p = 40.

waveform and the SPICE simulation. This figure also illus-

trates the effect of the non-zero net-area on the Memristor’s

resistance steady state, when the duty cycle increases from

50% up to 52%.

B. Zero net-area waveform

Square wave will have a zero net-area under the curve if,

Vo1

Vo2

=
α− 1

α
(14)

in this case, the resistance with respect to time can be derived

from Eq. (3), such that,

R2 =

{

R2

o − 2Vo1kRdt, (a)

R2

o − 2Vo2kRd (T − t) , (b)
(15)

where R ∈ (Ron, Roff ), Vo is amplitude voltage and T is the

period time. Part (a) of the equation is applied in the first half

cycle and part (b) in the second one. Due to symmetry the

calculated values for resistance are repeated every cycle.
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Fig. 6. SPICE simulation results for Memristor current and resistance versus
time and voltage for square wave input voltage, with −1.5 amplitude voltage
and frequency of 1Hz. Ron = 100Ω, Roff = 16kΩ, Ro = 11kΩ and
p = 40.



By substituting Eq. (14) in Eq. (13), the maximum or

minimum resistance, reached at t = (n+ α)T where n =
0, 1, 2, ..., is derived by,

R2

M = R2

o −
2αVokRd

f
, RM ∈ (Ron, Roff ) (16)

Fig. 6 shows the Memristor’s current and resistance versus

both time and voltage for symmetric zero net-area input

waveform. While Fig. 7(a) shows the matching between the

calculated resistance versus the SPICE simulated one, in case

of saturating resistance at Roff , since the first half cycle area

Aα is greater than Aoff as given in Eq. (9).

VI. TRIANGLE WAVEFORMS

For symmetric zero-net area triangle waveform input voltage

the resistance with respect to time can be derived from Eq. (3),

R2 =















R2

o − 4VofKRdt
2, (a)

R2

o − VokRd

2f

(

1− 8f2 (T/2− t)
2

)

, (b)

R2

o − 4VofKRd (T − t)
2
, (c)

(17)

where R ∈ (Ron, Roff ) and T is the period time. Part (a) of

the equation is applied in the first quarter cycle, part (b) in the

second and third quarters and part (c) for the fourth quarter.

Due to symmetry the calculated values for resistance are

repeated every cycle. Fig. 7(b) shows the matching between

the calculated and SPICE simulated resistance versus time, in

case of saturating resistance at Roff , since the first half cycle

area Aα is greater than Aoff as given in Eq. (9).

Using Eq. (8) the maximum or the minimum resistance of

the Memristor, at t = (n+ 1/2)T where n = 0, 1, 2, ..., is,

R2

M = R2

o −
VokRd

2f
, RM ∈ (Ron, Roff ) (18)

where Vo is the amplitude voltage of the input signal. Fig. 8

shows the matching between the calculated and SPICE results

for zero net-area input waveform.
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Fig. 7. Memristor resistance versus time for, (a) square wave input vantage
with −1.5 amplitude voltage and frequency of 1Hz, (b) triangle wave
input vantage with −2 amplitude voltage and frequency of 1Hz.. Memristor
parameters: Ron = 100Ω, Roff = 16kΩ and Ro = 11kΩ. Simulation
parameter p = 40.

0 0.5 1 1.5 2
−1.5

0

1.5

Time
0 0.5 1 1.5 2

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

Time

R
es

is
ta

n
ce

−1.5 −1 −0.5 0 0.5 1 1.5
1

1.2

1.4

1.6
x 10

4

Voltage

R
es

is
ta

cn
e

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

0

1.5
x 10

−4

Voltage

C
u
rr

en
t

Current (10
−4
)

Voltage

Calculated Simulated

Fig. 8. Calculated and SPICE simulation (p = 100) results for Memristor
current and resistance versus time and voltage for triangle wave input voltage,
with −1.5 amplitude voltage and frequency of 1Hz. Ron = 100Ω, Roff =
16kΩ and Ro = 11kΩ.

VII. CONCLUSION

In this paper, many mathematical models of the HP Memris-

tor for DC and periodic waveforms input voltage are derived.

The Memristors resistance as function of time, saturation time,

maximum saturation time, and also the value of the initial

resistance for equal saturation times are discussed. General

boundary conditions for the net-flux per cycle and the satu-

ration cases, showing the range of the Memristors resistance

in each interval are introduced. Memristors resistance maxima

and minima for any periodic input voltage either for zero and

nonzero net-flux per cycle are mathematically derived. Time

domain equations for the Memristors resistance, current and

power in case of zero net-flux per cycle are easily derived. All

mathematical equations are compared to the SPICE model of

the HP Memristor showing a perfect match.
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