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Abstract: Background: Alterations of hypothalamic–pituitary–adrenal (HPA) axis activity and sero-
tonergic signaling are implicated in the pathogenesis of human obesity and may contribute to
its metabolic and mental complications. The association of these systems has not been investi-
gated in human obesity. Objective: To investigate the relation of HPA responsiveness and sero-
tonin transporter (5-HTT) availability in otherwise healthy individuals with obesity class II or III
(OB) compared to non-obesity controls (NO). Study participants: Twenty-eight OB (21 females;
age 36.6 ± 10.6 years; body mass index (BMI) 41.2 ± 5.1 kg/m2) were compared to 12 healthy NO
(8 females; age 35.8 ± 7.4 years; BMI 22.4 ± 2.3 kg/m2), matched for age and sex. Methods: HPA
axis responsiveness was investigated using the combined dexamethasone/corticotropin-releasing
hormone (dex/CRH) test, and curve indicators were derived for cortisol and adrenocorticotropic
hormone (ACTH). The 5-HTT selective tracer [11C]DASB was applied, and parametric images of the
binding potentials (BPND) were calculated using the multilinear reference tissue model and evaluated
by atlas-based volume of interest (VOI) analysis. The self-questionnaires of behavioral inhibition
system/behavioral activation system (BIS/BAS) with subscales drive, fun-seeking and reward were
assessed. Results: OB showed significant positive correlations of ACTH curve parameters with over-
all 5-HTT BPND (ACTHAUC: r = 0.39, p = 0.04) and 5-HTT BPND of the caudate nucleus (ACTHAUC:
r = 0.54, p = 0.003). In NO, cortisol indicators correlated significantly with BPND in the hippocampus
(cortisolAUC: r = 0.59, p = 0.04). In OB, BAS reward was inversely associated with the ACTHAUC

(r = −0.49, p = 0.009). Conclusion: The present study supports a serotonergic-neuroendocrine associ-
ation, which regionally differs between OB and NO. In OB, areas processing emotion and reward
seem to be in-volved. The finding of a serotonergic HPA correlation may have implications for other
diseases with dysregulated stress axis responsiveness, and for potential pharmacologic interven-tions.

Keywords: obesity; hypothalamic–pituitary–adrenal axis (HPA); serotonin transporter (5-HTT);
positron emission tomography (PET); reward
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1. Introduction

Obesity is a leading cause of preventable disease [1] and frequently associated with
the metabolic syndrome as a cluster of cardiovascular risk factors [2,3] as well as psy-
chosocial distress [4], stigmatization [5] and psychiatric illness [6]. While the pathogenesis
of obesity is heterogeneous, including genetic, epigenetic and environmental factors [7],
alterations of the stress response and central serotonergic signaling are acknowledged
contributors in the pathogenesis of obesity [8–10] and may contribute to some of its unfa-
vorable physical and mental health conditions ity [11,12]. Stress hormones are profoundly
intertwined with the intake, distribution and expenditure of energy [13]. Dysregulation of
the hypothalamic–pituitary–adrenal (HPA) axis is associated with obesity [11], which is
most prominently recognized in Cushing’s syndrome [14]. Experimentally, chronic mild
stress exposure leads to hyperphagia with preference for highly palatable food [15] as well
as anhedonia in disease models of depression [16], which parallels the dose-dependent
relation of chronic psychosocial stress with the prevalence of the metabolic syndrome [17]
or depressive symptoms in humans [18,19]. The preference for high caloric food in individ-
uals with an enhanced stress-induced cortisol reactivity [20,21] implicates vulnerability of
this neuroendocrinological endophenotype in the pathogenesis of obesity.

HPA axis activity is modulated by serotonin and vice versa [22,23]. Its depletion
experimentally increases [24,25], while serotonin administration decreases food intake [26].
In humans, the appetite-decreasing effect of serotonin has been exploited by the application
of fenfluramine or sibutramine as enhancers of serotonin (5-hydroxytryptamine, 5-HT)
concentrations in the synaptic cleft [27], or lorcaserin as an 5-HT2c agonist [28]. The 5-HT
transporter is a critical modulator of serotonergic activity since it limits concentrations
of 5-HT in the synaptic cleft by its reuptake into the presynaptic neuron to terminate
its action [29]. Changes in serotonergic signaling have been linked to obesity [30,31]
and reward sensitivity in OB [32]. An interaction of HPA axis activity with the central
serotonin system could be shown in animal models of stress-related disorders [33], in
genetic association studies in humans [34], in treatment trials of major depression [35],
as well as imaging studies of central serotonin transporter or receptor availability with
HPA axis reactivity in stress-related disorders [36,37]. The association between HPA axis
activity and the serotonergic system is of importance, as both systems are involved in the
pathogenesis of obesity and perhaps in some of its metabolic and mental complications,
but constitute potentially pharmacologically modifiable targets [38,39].

There is evidence that both serotonergic signaling and neuroendocrine factors are
closely related to the stress response, which plays a role in the development of obesity. To
directly investigate a potential association of the serotonergic system with the HPA axis
in this context, we applied the combined dexamethasone/CRH (dex/CRH) test for HPA
axis reactivity [40,41] and PET imaging with carbon-11 labelled N,N-dimethyl-2-(2-amino-
4-cyanophenylthio)benzyl-amine ([11C]DASB [31]) in OB compared with NO. We further
explored whether HPA activity is related to 5-HTTLPR genotype and reward seeking
behavior. We hypothesized that HPA axis activity and 5-HTT availability are associated,
and that these relations may regionally differ between OB and NO. We expected that HPA
axis responsiveness is negatively associated with reward sensitivity in OB.

2. Methods
2.1. Study Population

Twenty-eight otherwise healthy individuals with class II (BMI 35.0–39.9 kg/m2) or
class III obesity (≥40.0 kg/m2) were recruited from the outpatient clinic of the Integrated
Research and Treatment Centre, Adiposity Diseases, a university clinic for obesity and
associated disorders (OB, 21 females; age 36.6 ± 10.6 years; body mass index (BMI)
41.2 ± 5.1 kg/m2). Twelve NO (8 females; age 35.8 ± SD 7.4 years; BMI 22.4 ± 2.3 kg/m2)
from the local community were recruited by advertisements in the local media and matched
for age and sex. All participants were free of psychiatric or neurological diseases, vascular
encephalopathy, head trauma, drug or alcohol misuse, pregnancy or breast-feeding. No
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participant had used centrally acting medications, illicit drugs or glucocorticoid treatment
for at least 6 months. Participants received a general physical examination along with neu-
rological status and were seen by an experienced psychiatrist conducting a semi-structured
interview, and only participants without symptoms or signs of clinically relevant depres-
sion were included. For depressive symptoms, participants were further screened by the
Beck Depression Inventory II (BDI-II) [42]. In the OB group, three individuals scored >14,
which is the cut-off value for mild depression (two individuals with a score of 15 and 1
with 17). We abstained from excluding these individuals, as the BDI sores contrasted with
the clinical impression of the investigating psychiatrist, who did not find signs of clinically
relevant depression, and as scores seemed to be primarily driven by somatic complaints
rather than from depression. The consumption of alcohol and nicotine was recorded for
both groups.

Routine laboratory investigations and urine screening were performed. Five additional
individuals were studied but subsequently excluded from the analysis due to (i) insufficient
PET data statistics, (ii) severe psycho-social distress on the day of the dex/CRH test,
(iii) suspected Cushing’s disease based on the dex/CRH test results, (iv) reported severe
alcohol abuse in a second interview and (v) reported tachycardia after dexamethasone
ingestion so the dex/CRH test was not completed. Written informed consent was obtained
from all individuals. The study was conducted in accordance with the Declaration of
Helsinki and approved by the ethics committee of the Medical Faculty of the University of
Leipzig registered under the number 206-10-08032010 and by the German Bundesamt für
Strahlenschutz/Federal Office for Radiation Protection (number Z5-22461-2-2011-002). The
study was registered in the European clinical trial database (EudraCT 2012-000568-32) and
the German Clinical Trials Register (DRKS S00003537).

2.2. Procedures

MR imaging: Structural MR images were acquired using a 3T Siemens scanner and a
T1-weighted 3D magnetization prepared rapid gradient echo (MP-RAGE) sequence (time of
repetition 2300 ms, time of echo 2.98 ms, 176 slices, field of view (FoV) 256 × 240 mm, voxel
size 1 × 1 × 1 mm) for PET-MRI co-registration and (with other sequences based on the
Alzheimer’s Disease Neuroimaging Initiative protocol) for exclusion of brain pathologies
such as diffuse or confluent white matter hyperintensities in T2-weighted images, tumors,
stroke but not malformation without functional impairment.

PET imaging: [11C]DASB was synthesized according to [43]. Dynamic PET was
performed for 90 min after intravenous bolus injection (90 s) of (mean) 484 ± 10 MBq
[11C]DASB using the ECAT EXACT HR+ scanner (Siemens, Erlangen, Germany, intrinsic
resolution at the center: 4.3 mm, axial resolution: 5–6 mm field of view 15.5 cm, 3–4 mm
full width at half maximum) in three-dimension acquisition mode. Emission scan acquired
23 frames (4 × 0.25, 4 × 1, 5 × 2, 5 × 5, 5 × 10 min). We used a 10 min transmission scan
(from 3 68Ge sources), which was performed before the emission scan, for attenuation
correction and iterative reconstruction (10 iterations, 16 subsets) in transverse image series
(63 slices, 128 × 128 matrix, voxel size 2.6 × 2.6 × 2.4 mm3) with a Hann filter (cut-off
4.9 mm) for image reconstruction. Parametric images of 5-HTT binding potential (BPND)
were generated from the PET data by the multi-linear reference tissue model with two
parameters (MRTM2) and the cerebellar cortex as the reference tissue [31,44].

Imaging analysis: Regional analyses of BPND values were performed after co-registration
of BPND images with individual 3D magnetic resonance imaging (MRI) data using PMOD
software (Version 3.4) for re-alignment and stereo-tactical normalization (according to the
anterior commissure-posterior commissure line), as well as for delineating the volumes of
interest (VOI). Selected VOIs included brain regions that are involved in appetite regula-
tion, stress axis regulation, emotion or behavior [31,41]: frontal cortex (FC), orbitofrontal
cortex (OFC), dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex (ACC), in-
sula, hippocampus, amygdala, nucleus accumbens (NAcc), head of the caudate, putamen,
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thalamus, hypothalamus, substantia nigra (SN) and ventral tegmental area (VTA), dorsal
raphe nucleus (DRN), midbrain, pons.

Dex/CRH test: The dex/CRH test was performed as described previously [10,40].
In brief, participants received 1.5 mg dexamethasone per os at 23.00 h on the day before
CRH application. Study participants were advised to come in a relaxed state, avoiding
psychological or physical stress exceeding their daily routine. On the day of the test, an
intravenous cannula was inserted into the cubital vein at 14.30 h and kept patent by isotonic
saline infusion at a 20 mL/h rate. The first blood sample (before CRH stimulation) was
taken at 15.00 h. At 15.02 h, an i.v. bolus of 100 µg of synthetic human CRH (Ferring, Kiel,
Germany) was applied. Subsequent blood samples were taken at 15.30 h, 15.45 h, 16.00 h,
and 16.15 h. Samples were stored at 4 ◦C and centrifuged immediately after the test; serum
and plasma, respectively, were taken off, and samples were stored at −80 ◦C until assayed.
Cortisol was measured in serum; ACTH concentrations in EDTA plasma. Dex/CRH test
and 5-HTT PET imaging were conducted with a median time difference of 27 days (IQR
5.5–60.5 d).

Assay methodology. Commercial chemiluminescence immunoassays were used to
measure hormone concentrations as described previously [41]. ACTH concentrations were
determined with Liaison® ACTH, DiaSorin, Italy, and cortisol concentrations with Cobas®,
Roche Diagnostics, Germany, following the manufacturers’ instructions. Respective intra-
and inter-assay coefficients of variation (CV) for ACTH were below 7.7% for a target
value of 9.53 pmol/L and below 7.3% for a target value of 62.3 pmol/L. Representative
intra- and interassay CVs for cortisol were below 3.2% for a target value of 86.2 nmol/L
and below 2.0% for a target value of 1120 nmol/L. The functional sensitivity of 20% CV
was set to be 0.84 pmol/L for ACTH and 8.5 nmol/L for cortisol, according to the
manufacturer’s instruction.

5-HTTLPR Genotyping

Bi-allelic status was determined as described previously [32]. In brief, genomic DNA
was extracted from 1 mL of a 5–10 mL peripheral blood sample with EDTA as antico-
agulant. Isolation steps were performed by applying pegGold DNA Mini kit (pegLab,
Erlangen, Germany) according to the manufacturer’s instructions. 5-HTTLPR gene poly-
morphism was determined with a standardized polymerase chain reaction amplification
procedure [45]. The primer sequences used were 5′-GAGGGACTGAGCTGGACAAC-3′

and 5′-GCAGCAGACAACTGTGTTCATC-3′, with a product length of ~ 620 bp for the
L-allele and 583 bp for the S-allele. Primers were purchased from Invitrogen (Paisley, UK).

2.3. Questionnaires Assessing the Behavioral Inhibition System (BIS)/Behavioral Activation
System (BAS), Depression and Anxiety

The sensitivity to reward and punishment was assessed using the behavioral inhibition
system/behavioral activation system (BIS/BAS) self-questionnaires as described previously
to assess the responsiveness of BAS and BIS personality characteristics (reactivity of the
aversive motivational system and appetitive motivational system) with the three subscales
drive, fun-seeking and reward [32,46]. Depressive symptoms were measured using the
BDI-II [42]. BDI scores were measured on the dex/CRH test day, BIS/BAS reward scores
and SCL-90 within the first 4 weeks after participant inclusion.

Statistical analysis: SPSS 25 was used for statistical analysis. Graphs were created
with GraphPad Prism 8 (La Jolla, CA, USA). For statistical analysis of dex/CRH test
results, post-CRH concentrations for ACTH and cortisol (30 min after CRH application),
maximum concentration (MAX) and area under the time course curve above zero according
to the trapezoid rule (“ground” area-under-the-curve; AUC) were calculated from the
plasma hormone concentrations measured (five time points mentioned, see Figure 1A,B).
ACTH/cortisol ratios were calculated for each indicator. Normal distribution was tested
using the Shapiro–Wilk test, which yielded p < 0.05 for all neuroendocrine data. After
exclusion of asymmetries of corresponding brain regions, BPND was averaged side-by-side
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to reduce the number of variables and multiple comparisons. Relationships between BPND
and dex/CRH test parameters, i.e., ACTH and cortisol MAX and AUC, respectively, were
analyzed using Spearman rank correlation for categorical data. All data are given as median
with interquartile range or mean ± standard deviation (SD), according to data distribution
and unless otherwise stated. Two-tailed significance was applied. The Mann–Whitney U
test (not-normally distributed data) or unpaired t-test (data with normal distribution) were
conducted for group comparison (2 groups) or Kruskal–Wallis test with Dunn’s correction
(>2 groups, data not-normally distributed or small sample size). Results were considered
significant at p < 0.05.

Brain Sci. 2022, 12, 1430 5 of 18 
 

using the BDI-II [42]. BDI scores were measured on the dex/CRH test day, BIS/BAS reward 
scores and SCL-90 within the first 4 weeks after participant inclusion. 

Statistical analysis: SPSS 25 was used for statistical analysis. Graphs were created 
with GraphPad Prism 8 (La Jolla, USA). For statistical analysis of dex/CRH test results, 
post-CRH concentrations for ACTH and cortisol (30 min after CRH application), maxi-
mum concentration (MAX) and area under the time course curve above zero according to 
the trapezoid rule (“ground” area-under-the-curve; AUC) were calculated from the 
plasma hormone concentrations measured (five time points mentioned, see Figure 1A,B). 
ACTH/cortisol ratios were calculated for each indicator. Normal distribution was tested 
using the Shapiro–Wilk test, which yielded p < 0.05 for all neuroendocrine data. After ex-
clusion of asymmetries of corresponding brain regions, BPND was averaged side-by-side 
to reduce the number of variables and multiple comparisons. Relationships between BPND 
and dex/CRH test parameters, i.e., ACTH and cortisol MAX and AUC, respectively, were 
analyzed using Spearman rank correlation for categorical data. All data are given as me-
dian with interquartile range or mean ± standard deviation (SD), according to data distri-
bution and unless otherwise stated. Two-tailed significance was applied. The Mann–Whit-
ney U test (not-normally distributed data) or unpaired t-test (data with normal distribu-
tion) were conducted for group comparison (2 groups) or Kruskal–Wallis test with Dunn’s 
correction (>2 groups, data not-normally distributed or small sample size). Results were 
considered significant at p < 0.05. 

 
Figure 1. HPA axis responsiveness in the course of time and average parametric [11C]DASB PET 
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combined dex/CRH test in individuals with obesity (n = 28; squares, solid line) and non-obesity 
controls (n = 12; circles, dashed line). After 1.5 mg dexamethasone, taken orally at 23.00 h the night 

Figure 1. HPA axis responsiveness in the course of time and average parametric [11C]DASB PET
imaging. Time course of HPA axis responsiveness by ACTH (A) and cortisol response (B) to the
combined dex/CRH test in individuals with obesity (n = 28; squares, solid line) and non-obesity
controls (n = 12; circles, dashed line). After 1.5 mg dexamethasone, taken orally at 23.00 h the night
before testing, 100 µg CRH were applied i.v. at 15.02 h. Post-CRH cortisol (which was 30 min after
CRH stimulation, taken at 15.30 h) was significantly higher in OB (marked with *, p = 0.01). Data are
given as mean with 95% confidence interval. Shown are individuals who also underwent [11C]DASB
PET; full sample (n = 39 vs. n = 22 available in [10]). dex, dexamethasone; CRH, corticotropin-releasing
hormone; ACTH, adrenocorticotropic hormone. (C) Averaged parametric [11C]DASB PET image
of the entire cohort with a single participant’s T1 MRI (taken from Statistical Parametric Mapping
toolbox) in MNI space. DRN: dorsal raphe nuclei.

3. Results
3.1. Study Population Characteristics

Participant characteristics and epidemiological data are summarized in Table 1. The
study population referenced here was included in the studies of Schinke et al. [10] and
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Hesse et al. [31]. OB had higher BDI scores than NO (OB 6.5 [3–11] vs. NO 0 [0–3.3],
p < 0.0001), without reaching subthreshold of mild depression. BAS fun was slightly lower
in OB than in NO (OB 11.1 ± 2.0 vs. NO 12.4 ± 1.7, p = 0.028, see Table 1).

Table 1. Participant characteristics, questionnaires and seasonal data.

Obesity Group Non-Obesity Controls p-Value

Number of participants (female) 28 12
Sex, male/female 7/21 4/8 0.70 c

Age (years) 36.6 ± 10.6 35.8 ± 7.4 0.81 a

BMI (kg/m2) 41.2 ± 5.1 22.4 ± 2.3 <0.0001 a

Smoking habits, # with score 0/1/2/3 19/0/2/7 10/1/0/1 0.48 d

Beck Depression Inventory 6.5 [3–11] 0 [0–3.3] <0.0001 b

SCL-90-anxiety 49.0 ± 7.6 44.8 ± 5.7 0.09 b

BAS Drive 14 [11.25–14] 13 [12–14] 0.48 b

BAS Fun 11.1 ± 2.0 12.4 ± 1.7 0.028 b

BAS Reward 16.3 ± 2.2 17.3 ± 1.9 0.22 b

BIS 19.0 ± 3.8 18.6 ± 2.7 0.85 b

Injected activity (MBq) 481.3 ± 10.9 487.5 ± 6.4 0.08 a

a t-test; b Mann–Whitney U test; c Fisher’s exact test; d Pearson’s chi-square test; BMI, body mass index; Smoking,
0. non-smoker 1. occasionally, 2. not more than 3 cigarettes/d, 3. yes. Data given as median with interquartile
range or mean ± standard deviation. bold: significant at p < 0.05.

3.2. Individuals with Obesity Tend to Have a Higher HPA Axis Responsiveness and a Higher
Adrenal Sensitivity to ACTH

Parameters of HPA axis responsiveness of OB vs. NO are described in detail in [10].
Individuals with obesity showed higher HPA axis responsiveness than their non-obese
counterparts in the dex/CRH test with statistical significance for cortisol 30 min after
stimulation with CRH (see Table 2 and Figure 1A,B), as well as a higher adrenal sensitivity to
ACTH as measured by a lower ACTH/cortisol ratio (see Table 2). ACTH related parameters
did not substantially differ between OB and NO (Table 2). Explorative analyses according
to participants’ sex showed no significant differences in the ACTH or cortisol response
between female and male NO or female and male OB (Supplementary Figure S1A–D). In
male individuals with obesity, ACTH measured in the post-CRH sample was higher than in
male non-obesity controls (OB: 1.95 pmol/l vs. NO: 1.05 pmol/l, p = 0.024, Kruskal–Wallis
test with Dunn’s multiple comparison correction, see Suppl. Figures S1F and S2A).

Table 2. Dex/CRH test indicators in the obesity group and non-obesity controls.

Obesity Group
(n = 28)

Non-Obesity
Controls (n = 12) p-Value

ACTH1500h <0.84 (<0.84–<0.87) <0.84 (<0.84–<0.84) 0.42
ACTHpostCRH 1.66 (1.21–2.42) 1.48 (0.91–1.82) 0.17
ACTHMAX 2.10 (1.57–2.98) 1.85 (1.34–3.06) 0.46
ACTHAUC 6.78 (5.03–9.21) 5.53 (4.05–8.82) 0.33

Cortisol1500h 20.0 (15.2–23.3) 15.8 (11.0–24.2) 0.29
CortisolpostCRH 48.9 (32.6–154.1) 25.5 (20.1–38.1) 0.01
CortisolMAX 74.4 (38.6–170.5) 66.4 (25.9–100.7) 0.29
CortisolAUC 216.0 (114.2–525.5) 165.4 (87.8–262.5) 0.22

ACTH/cortisolpostCRH 0.029 (0.013–0.050) 0.059 (0.034–0.097) 0.02
ACTH/cortisolMAX 0.023 (0.013–0.047) 0.038 (0.021–0.062) 0.22
ACTH/cortisolAUC 0.025 (0.014–0.053) 0.043 (0.027–0.066) 0.19

Median (interquartile range). CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone. MAX,
maximum, AUC, area under the curve. Mann–Whitney U test was applied for group comparison. ACTH in
pmol/l, cortisol in nmol/l, ACTH/cortisol ratio in pmol/nmol; AUC unitless. Data for the whole group of
participants (n = 39 OB vs. n = 22 NO) are available in [10]. bold: significant at p < 0.05.
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3.3. HPA Axis Responsiveness Differentially Relates to 5-HTT Availability between OB and NO

Regions of interest delineated for 5-HTT BPND are shown in a representative image
in Figure 1C. In OB, there was a significant positive correlation of ACTHAUC with overall
5-HTT BPND (r = 0.39, p = 0.04), whereas no association was found for cortisol curve
parameters (cortisolAUC: r = 0.09, p = 0.65, see Table 2, Figure 2A,B). Region-specific
analyses revealed a significant positive relation between ACTHAUC and 5-HTT BPND of the
caudate nucleus (ACTHAUC: r = 0.54, p = 0.003), but not of other brain regions (Figure 3C–F).
In NO, no correlation of HPA axis curve parameters with overall 5-HTT BPND was found
(ACTHAUC: r = 0.05, p = 0.88; cortisolAUC: r = 0.13, p = 0.68; see Table 3, Figure 3A,B).
Region-specific analyses showed that cortisol but not ACTH curve parameters correlated
significantly with 5-HTT BPND of the hippocampus (r = 0.59, p = 0.04, see Table 2, Figure 3F).
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Figure 2. Association of 5-HTT BPND with HPA axis responsiveness in dedicated brain areas in
participants with obesity. Spearman correlation of 5-HTT BPND of dedicated brain areas with
hypothalamic–pituitary–adrenal (HPA) responsiveness in the obesity group. ACTH and cortisol
AUC were derived from the dex/CRH test (unitless). Significant positive associations were found for
5-HTT BPND on group level ((A), averaged) and for the caudate nucleus with ACTHAUC (C), but not
for the hippocampus (E). Cortisol AUC did not correlate significantly to 5-HTT binding potential
(B,D,F). Dots indicate individual 5-HTT BPND and HPA axis hormone values of the participants. Data
are given with regression line and 95% confidence interval. dex, dexamethasone; CRH, corticotropin-
releasing hormone; ACTH, adrenocorticotropic hormone, AUC, area under the curve.
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Table 3. Spearman correlations of dex/CRH test indicators and 5-HTT BPND in the obesity group
and non-obesity controls.

Participants with Obesity (n = 28) Non-Obesity Controls (n = 12)

ACTHAUC CortisolAUC ACTHAUC CortisolAUC

Group 0.39 (0.04) 0.09 (0.65) 0.05 (0.88) 0.13 (0.68)
FC 0.29 (0.14) 0.00 (0.98) 0.23 (0.47) 0.56 (0.06)

OFC/vmPFC 0.35 (0.07) 0.01 (0.96) 0.09 (0.78) 0.08 (0.81)
dlPFC 0.33 (0.09) −0.11 (0.58) 0.13 (0.68) 0.50 (0.10)
ACC 0.30 (0.12) 0.08 (0.68) −0.17 (0.60) 0.20 (0.53)

Insula 0.20 (0.30) 0.06 (0.75) 0.23 (0.47) 0.36 (0.25)
Hippocampus 0.05 (0.81) −0.07 (0.71) 0.55 (0.07) 0.59 (0.04)

Amygdala 0.24 (0.22) −0.08 (0.68) −0.38 (0.23) −0.39 (0.21)
NAcc 0.29 (0.13) 0.05 (0.81) −0.29 (0.37) 0.14 (0.66)

Head of the caudate 0.54 (0.003) 0.15 (0.45) −0.18 (0.57) −0.34 (0.29)
Putamen 0.24 (0.23) −0.02 (0.93) −0.03 (0.93) −0.11 (0.73)
Thalamus 0.03 (0.89) −0.18 (0.37) 0.32 (0.31) 0.24 (0.44)

Hypothalamus 0.12 (0.53) −0.14 (0.49) 0.15 (0.63) 0.17 (0.59)
Substantia nigra/VTA 0.19 (0.34) −0.22 (0.26) 0.15 (0.65) 0.13 (0.68)

Midbrain 0.22 (0.27) −0.22 (0.27) 0.16 (0.62) 0.03 (0.91)
Pons 0.04 (0.82) −0.18 (0.37) −0.33 (0.30) 0.32 (0.31)

Dorsal raphe nuclei −0.07 (0.71) −0.08 (0.70) 0.03 (0.93) 0.14 (0.67)
Spearman correlation and significance (p). MAX, maximum; AUC, area under the curve; ACTH in pmol/L,
cortisol in nmol/L; AUC unitless; FC, frontal cortex, OFC/vmPFC, orbito-frontal/ventromedial prefrontal cortex;
dlPFC, dorso-lateral prefrontal cortex; ACC, anterior cingulate cortex; VTA, ventral tegmental area; NAcc, nucleus
accumbens; bold: significant at p < 0.05.

3.4. BAS Reward Scores Relate Differentially to HPA Responsiveness in OB vs. NO

In OB, BAS reward was negatively associated with the ACTHAUC (r = −0.49,
p = 0.009), while the other questionnaires (BDI, SCL-90 anxiety, BAS Drive/Fun, BIS)
were not associated with HPA responsiveness (Table 4, Figure 4A,B). In NO, only SCL-90
anxiety scores were linked with cortisolAUC (r = 0.58, p = 0.049) with borderline significance,
but not with the other questionnaires or endocrine parameters (see Table 4).

Table 4. Spearman correlations of dex/CRH test indicators with questionnaires of depression, anxiety
and reward.

Obesity Group (n = 28) Non-Obesity Controls (n = 12)

ACTHAUC CortisolAUC ACTHAUC CortisolAUC

Beck Depression
Inventory 0.13 (0.51) 0.13 (0.53) −0.03 (0.94) 0.13 (0.70)

SCL-90 anxiety 0.06 (0.79) −0.09 (0.71) 0.31 (0.33) 0.58 (0.049)
BAS Drive −0.19 (0.34) −0.16 (0.43) 0.16 (0.62) −0.03 (0.92)
BAS Fun −0.18 (0.35) −0.07 (0.72) 0.57 (0.05) 0.35 (0.25)

BAS Reward −0.49 (0.009) −0.20 (0.32) 0.52 (0.09) 0.04 (0.90)
BIS −0.25 (0.21) −0.35 (0.07) 0.27 (0.40) 0.15 (0.65)

Spearman correlation and significance (p). MAX, maximum; AUC, area under the curve; BAS, behavioral
activation score; BIS, behavioral inhibition score. bold: significant at p < 0.05.
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Figure 4. Reward sensitivity in relation to HPA axis responsiveness or 5-HTT BPND of dedicated
brain areas in individuals with obesity. Spearman correlation of BAS reward scores with HPA axis
responsiveness as measured by (A) ACTH and (B) cortisol response (AUC) and with averaged 5-HTT
BPND (C) and caudate nucleus 5-HTT BPND (D). ACTH and cortisol AUC were derived from the
dex/CRH test (unitless). Significant negative associations with BAS reward scores were found for
ACTHAUC with BAS reward (A) and for 5-HTT BPND on group level and for the caudate nucleus
(C,D). Data are given with regression line and 95% confidence interval. dex, dexamethasone; CRH,
corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone, AUC, area under the curve.

3.5. In Obesity, BAS Reward Scores Are Associated with Overall 5-HTT BPND and Caudate
Nucleus 5-HTT BPND

We further explored if in OB, overall and caudate nucleus 5-HTT BPND relate to the
questionnaire results. We found significant negative associations between overall BAS
reward scores and overall 5-HTT BPND (r = −0.57, p = 0.002), and 5-HTT BPND in the head
of the caudate (r = −0.58, p = 0.001), see Table 5 and Figure 4C,D.

Table 5. Spearman correlations of questionnaires of depression, anxiety and reward with 5-HTT
BPND of dedicated brain areas in participants with obesity.

Obesity Group (n = 28)

Beck
Depression
Inventory

SCL-90
Anxiety BAS Drive BAS Fun BAS Reward BIS

Group 0.34 (0.07) −0.29 (0.21) −0.26 (0.19) −0.19 (0.32) −0.57 (0.002) −0.22 (0.26)
Head of the caudate 0.31 (0.11) −0.21 (0.37) −0.11 (0.58) −0.15 (0.44) −0.58 (0.001) −0.26 (0.18)

Spearman correlation and significance (p). MAX, maximum; AUC, area under the curve; BAS, behavioral
activation score; BIS, behavioral inhibition score. bold: significant at p < 0.05.
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3.6. Explorative Analyses of HPA Axis Responsiveness according to 5-HTTLPR Genotype Does
Not Point towards Substantial Differences between the S/S, S/L and L/L Allele Carriers

The obesity group was divided into three different subgroups according to their
5-HTTLPR-genotype (S/S, S/L, L/L). Two OB had an S/S, 13 OB S/L and 13 OB L/L
alleles, whose dex/CRH test results were compared. There was no statistically significant
difference in HPA axis responsiveness between individuals with S/L and L/L genotype
(for ACTHAUC: S/L 7.21 [4.96–10.47] vs. L/L 6.58 [5.40–8.29], p ≥ 0.99; for cortisolAUC: S/L
258.8 [157.2–806.8] vs. L/L 138.0 [96.5–487.1], p = 0.73, Kruskal–Wallis test with Dunn’s
correction, respectively). HPA axis responsiveness in S/S allele carriers was in the range of
the aforementioned, albeit the small subgroup size only allowed preliminary comparison
(S/S ACTHAUC: 4.56 [4.10–5.02], p = 0.23 [S/S vs. L/S], p = 0.40 [S/S vs. L/L]; cortisolAUC:
147.8 [119.1–176.6], p = 0.96 [S/S vs. L/S], p ≥ 0.99 [S/S vs. L/L], Kruskal–Wallis test with
Dunn’s correction, respectively), see Figure 5.

Brain Sci. 2022, 12, 1430 11 of 18 
 

Table 5. Spearman correlations of questionnaires of depression, anxiety and reward with 5-HTT 
BPND of dedicated brain areas in participants with obesity. 

 
Obesity Group (n = 28) 

Beck Depres-
sion Inventory SCL-90 Anxiety BAS Drive BAS Fun BAS Reward BIS 

Group 0.34 (0.07) −0.29 (0.21) −0.26 (0.19) −0.19 (0.32) −0.57 (0.002) −0.22 (0.26) 
Head of the 

caudate 
0.31 (0.11) −0.21 (0.37) −0.11 (0.58) −0.15 (0.44) −0.58 (0.001) −0.26 (0.18) 

Spearman correlation and significance (p). MAX, maximum; AUC, area under the curve; BAS, be-
havioral activation score; BIS, behavioral inhibition score. bold: significant at p < 0.05. 

3.6. Explorative Analyses of HPA Axis Responsiveness according to 5-HTTLPR Genotype Does 
Not Point towards Substantial Differences between the S/S, S/L and L/L Allele Carriers 

The obesity group was divided into three different subgroups according to their 5-
HTTLPR-genotype (S/S, S/L, L/L). Two OB had an S/S, 13 OB S/L and 13 OB L/L alleles, 
whose dex/CRH test results were compared. There was no statistically significant differ-
ence in HPA axis responsiveness between individuals with S/L and L/L genotype (for AC-
THAUC: S/L 7.21 [4.96–10.47] vs. L/L 6.58 [5.40–8.29], p ≥ 0.99; for cortisolAUC: S/L 258.8 
[157.2–806.8] vs. L/L 138.0 [96.5–487.1], p = 0.73, Kruskal–Wallis test with Dunn’s correc-
tion, respectively). HPA axis responsiveness in S/S allele carriers was in the range of the 
aforementioned, albeit the small subgroup size only allowed preliminary comparison (S/S 
ACTHAUC: 4.56 [4.10–5.02], p = 0.23 [S/S vs. L/S], p = 0.40 [S/S vs. L/L]; cortisolAUC: 147.8 
[119.1–176.6], p = 0.96 [S/S vs. L/S], p ≥ 0.99 [S/S vs. L/L], Kruskal–Wallis test with Dunn’s 
correction, respectively), see Figure 5. 

 
Figure 5. Explorative analyses of HPA axis responsiveness according to 5-HTTLPR genotype in OB. 
Comparison of the dex/CRH test indicators (A) ACTHAUC and (B) cortisolAUC (unitless) grouped by 
5-HTTLPR genotype. Due to the small subgroup of individuals with the S/S genotype, comparison 
could only be explorative by nature, and no substantial differences were observed. ACTH, adreno-
corticotropic hormone, AUC, area under the curve. 

4. Discussion 
The current study adds to the previous notion of an increased HPA axis responsive-

ness in people with obesity [10], as it associates the neuroendocrine stress response with 
serotonergic activity in the living human brain. In obesity, ACTH curve indicators were 
positively associated with averaged 5-HTT BPND throughout the brain, while region-spe-
cific correlations could be found between ACTH curve indicators and 5-HTT BPND of the 

Figure 5. Explorative analyses of HPA axis responsiveness according to 5-HTTLPR genotype in OB.
Comparison of the dex/CRH test indicators (A) ACTHAUC and (B) cortisolAUC (unitless) grouped
by 5-HTTLPR genotype. Due to the small subgroup of individuals with the S/S genotype, com-
parison could only be explorative by nature, and no substantial differences were observed. ACTH,
adrenocorticotropic hormone, AUC, area under the curve.

4. Discussion

The current study adds to the previous notion of an increased HPA axis responsive-
ness in people with obesity [10], as it associates the neuroendocrine stress response with
serotonergic activity in the living human brain. In obesity, ACTH curve indicators were pos-
itively associated with averaged 5-HTT BPND throughout the brain, while region-specific
correlations could be found between ACTH curve indicators and 5-HTT BPND of the
caudate nucleus, but not for cortisol parameters. In non-obesity controls, cortisol AUC
correlated positively with hippocampal 5-HTT BPND. These findings support a potential
serotonergic–HPA relation that regionally differs between OB and NO. These associations
may be explained by either (i) a modulatory effect of the serotonergic tone on the HPA
axis, (ii) a bottom-up effect of stress hormones on 5-HTT availability, or (iii) a common,
unidentified cause, or a co-variate that mediates this relation, respectively.

Central serotonergic neurons project from the raphe nuclei to virtually all brain re-
gions [47]. Serotonin can both facilitate and inhibit HPA activity and vice versa, probably
depending, i.a., on the site of action [23,48]. On a hypothalamic level, serotonin agonists
experimentally stimulate CRH-containing PVN neurons, subsequently augmenting ACTH
and cortisol release [22], which corroborates the acute effect of serotonin reuptake inhibitors
on HPA axis activity in humans [49]. Serotonergic signaling from other brain regions, e.g.,
the prefrontal cortex or the anterior cingulate cortex, was rather suggested to inhibit HPA
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activity [9,50,51]. Inversely, cortisol increases 5-HT reuptake in vitro [52,53], in vivo [54]
and, as measured by the cortisol awakening response (CAR), associates with prefrontal
5-HTT in humans [50]. Interestingly, in OB, ACTH but not cortisol parameters correlated
with 5-HTT, which may be explained by an enhanced glucocorticoid clearance in OB [55,56].

While we previously found a negative association of NAT availability in the hy-
pothalamus with HPA axis activity in individuals with obesity [41], the serotonergic-
neuroendocrine association of the current study was rather found in the limbic system.
Notably, while in NO the HPA response is associated with 5-HTT availability in the
hippocampus as an acknowledged glucocorticoid feedback site inhibiting HPA axis ac-
tivity [57,58], this association localizes to the caudate nucleus in OB, a brain area rather
associated with motor function, emotional behavior and reward processing [59]. The hip-
pocampus is known to inhibit HPA axis activity via glutamatergic projections activating
GABAergic neurons in the hypothalamic PVN [58], while the role of the caudate nucleus
in the context of HPA function is less established. The absence of a direct anatomical or
functional connection from the caudate to the hypothalamus [60,61] raises the question
of whether another co-variate mediates this relation, such as mood or reward. Only two
studies investigated HPA axis responsiveness with in vivo 5-HTT availability by means
of [11C]DASB, either in healthy volunteers applying the cortisol awakening response
(CAR) [50] or in patients with major depression or anxiety disease using the dexametha-
sone CRH test [36]. While the former showed a positive relation between prefrontal 5-HTT
and CAR, suggesting prefrontal serotonergic inhibition of HPA responsiveness [50], the
latter found a negative association between thalamic 5-HTT with dex/CRH test parameters
and anxiety, supporting that HPA axis dysregulation partly accounts for the effects of
altered serotonergic neurotransmission on anxiety [36].

Although the reward questionnaires BAS and BIS did not show any substantial differ-
ences between the NO and OB group, it is of note that in OB, BAS reward questionnaires
correlated negatively both with HPA responsiveness and with caudate nucleus 5-HTT. The
relation of BMI and BAS reward has been extensively studied in individuals with obesity
and non-obesity controls, proving rather a non-linear, inverted U-shape relation [62]. In
obese participants, a higher BMI was associated with lower BAS reward scores, consistent
with a reward deficiency potentially predisposing to hedonic eating [46]. Previously, in
depressed individuals, a lower reward dependency, i.e., a lower response to rewarding
stimuli, was associated with an impaired suppression of the cortisol response [63]. The
finding of an inverse relation between HPA responsiveness and reward sensitivity in OB
of our cohort hence fosters the assumption that higher HPA reactors in participants with
obesity rather need higher external stimuli to perceive reward, potentially explaining the
tendency to rather consume highly palatable food. Of note, caudate nucleus hypofunction
in the reward circuitry was previously found to predispose to overeating [59,64,65]. As
caudate 5-HTT and HPA axis responsiveness were associated in our OB sample, both being
inversely associated with reward sensitivity, it can be assumed that HPA dysregulation
partly explains the association between 5-HTT and reward.

OB patients had higher BDI scores than NO without reaching subthreshold depression
or its clinical symptoms, and scores did not correlate with HPA responsiveness. The
BDI is the most widely used questionnaire to assess depressive symptoms in OB [66]
in whom depression is a frequent mental co-morbidity [67]. It is of note that physical
symptoms of obesity overlap with symptoms of depression such as altered body scheme,
fatiguability or somatic preoccupation, which seem to have driven the higher scores and
may explain the lack of clinical signs of depression [66] and the absent association with the
endocrine challenge. While HPA axis hyperresponsiveness is a robust finding in patients
with depression [40], symptom severity is usually not associated with endocrine parameters,
which corroborates our finding [63]. Interestingly, in NO, greater anxiety scores associate
with higher HPA responsiveness and are in line with previous findings in patients with
affective disorders [36].
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Comparative analyses of HPA activity grouped by the 5-HTTLPR genotype in our
cohort could only be explorative, as the sample size for the S/S genotype was low with
2/28 individuals, corroborating the low prevalence in the European population [68]. While
the role of 5-HTT polymorphisms mediating gene environment interactions in affective
disorders is debated [69–71], pointing towards only modest effects if existent at all [72],
some studies found hints for a higher HPA responsiveness using the dex/CRH test in
individuals with depression carrying the S/S allele [36,73] or in healthy S/S females by
means of the cortisol awakening response [74], or saliva after a defined psychosocial
stressor [75]. Data from our small subgroup of non-depressed OB S/S carriers do not point
in this direction. A possible explanation is that although the S/S allele is associated with
a lower 5-HTT expression in vitro [76], this association is less pronounced in the living
human brain due to, e.g., epigenetic signatures such as gene promotor methylation that are
more closely associated with 5-HTT protein expression [32] and further modulate long-term
cortisol concentrations [77].

The combination of quantitative 5-HTT PET imaging with endocrine stimulation
tests and psychometric measures in the same individuals is a strength of the study. Some
potential limitations must be addressed: All individuals received the same dose of dex-
amethasone and CRH despite varying BMIs, as neuroendocrine testing was performed
according to the standard protocol [40,78]. Sufficient suppression by 1.5 mg oral dexametha-
sone in both groups was indicated by equal pre-CRH concentrations of ACTH and cortisol.
A previous dose–response study observed incomplete suppression of ACTH and cortisol
only at very low dosages of dexamethasone; the application of 1 mg dexamethasone, which
was found to be a near-maximum dose, resulted in equal suppression in overweight and
normal weight controls [79]. Serum dexamethasone concentrations do not depend on
BMI [80], supporting that dexamethasone measurement does not improve performance of
the dexamethasone suppression test at doses of 1 mg or higher. Although clinically relevant
depression was an exclusion criterion, three individuals in the OB group had a BDI-II score
of 15 or higher, which is the threshold for mild depression. Physical complaints are highly
prevalent in OB and overlap with symptoms of depression, complicating its assessment
in OB [81]. Although BDI-II scores in the OB group seemed to be primarily driven by
items of physical symptoms, we cannot entirely exclude the presence of subclinical depres-
sion in these individuals, which may have influenced endocrine or 5-HTT measurement.
Despite the relatively large sample size in the obesity group, the number of participants
still appeared too small to reliably differentiate effects of sex or, e.g., handedness on the
outcome of endocrine and 5-HTT measures or their association. As explorative analyses
of HPA axis responsiveness according to 5-HTTLPR genotype were limited by the small
sample size of S/S carriers, tri-allelic genotyping should be considered as an alternative
approach for 5-HTTLPR assessment in the future since the LG variant is considered to
function more similarly to the S allele than to the LA allele, which would allow pooling
of the subgroups [82]. Notably, all participants were recruited from the outpatient clinic
of the Integrated Research and Treatment Centre, Adiposity Diseases, meaning that these
individuals either sought weight reduction programs or were interested in study participa-
tion, which may have affected cohort selection towards individuals motivated for healthier
behavior. Due to the cross-sectional nature of the study, we cannot answer the question of
causality in either direction. However, previous studies showed that trauma experience
early in life leads to a higher cortisol stress reactivity by epigenetic modifications [83],
suggesting that environmental factors lead to an acquired, fairly stable change in HPA
axis reactivity. On the other hand, the finding of a higher HPA responsiveness in healthy
first-degree relatives of patients with affective disorders suggests a vulnerability marker of
depression [84].

5. Conclusions

In conclusion, the current study supports an association between altered neuroen-
docrine HPA axis responsiveness and central serotonin signaling in OB predominantly
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affecting brain reward areas. Since alterations of serotonergic signaling, HPA axis activity
and rewarding behavior have also been consistently reported in affective disorders [40,48]
as well as in metabolic disease [10,11,41,85], these findings may represent a state predis-
posing for physical and mental illness. Both HPA responsiveness and 5-HTT availability
are potentially modifiable [35,86]. It needs to be clarified in longitudinal studies whether
addressing, e.g., a dysregulated HPA axis in OB, leads to weight loss, beneficial changes in
reward sensitivity or serotonergic signaling in susceptible individuals.
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cortex. PET, positron emission tomography. SCL-90, symptom-checklist 90. vmPFC, ventro-
medial prefrontal cortex. VOI, volumes of interest. VTA, ventral tegmental area.
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