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Abstract—Cloud offerings are increasingly serving workloads
with a large variability in terms of compute, storage and net-
working resources. Computing requirements (all the way to High
Performance Computing or HPC), criticality, communication
intensity, memory requirements, and scale can vary widely.
Virtual Machine (VM) placement and consolidation for effective
utilization of a common pool of resources for efficient execution
of such diverse class of applications in the cloud is challenging,
resulting in higher cost and missed Service Level Agreements
(SLAs). For HPC, current cloud providers either offer dedicated
cloud with dedicated nodes, losing out on consolidation benefits
of virtualization, or use HPC-agnostic cloud scheduling resulting
in poor HPC performance.

In this work, we address application-aware allocation of n VM
instances (comprising a single job request) to physical hosts from
a single pool. We design and implement an HPC-aware scheduler
on top of OpenStack Compute (Nova) and also incorporate it in
a simulator (CloudSim). Through various optimizations, specifi-
cally topology- and hardware-awareness, cross-VM interference
accounting and application-aware consolidation, we demonstrate
enhanced VM placements which achieve up to 45% improvement
in HPC performance and/or 32% increase in job throughput
while limiting the effect of jitter (or noise) to 8%.

Keywords-Cloud; High Performance Computing; Scheduling;
Placement;

I. INTRODUCTION

Cloud computing is increasingly being explored as a cost
effective alternative (and addition) to supercomputers for some
HPC applications [1]–[4]. Cloud provides the benefits of econ-
omy of scale, elasticity, flexibility, and customization (through
virtualization) to the HPC community. It is attracting several
users who cannot afford to deploy their own dedicated HPC
infrastructure due to up-front investment or sporadic demands.

Despite these benefits, today’s HPC is not cloud-aware,
and today’s clouds are not HPC-aware. As a consequence,
only embarrassingly parallel or small scale HPC applications
are good candidates today to run in cloud. The cloud com-
modity interconnects (or better, the absence of low-latency
interconnects), the performance overhead introduced by virtu-
alization, and the application-agnostic cloud schedulers are the
biggest obstacles for efficient execution of HPC applications
in cloud [2], [3].

Past research [1]–[4] on HPC in cloud has primarily focused
on evaluation of scientific parallel applications (such as those
using MPI [5]) and has reached pessimistic conclusions.
HPC applications are usually composed of tightly coupled

processes performing frequent inter-process communication
and synchronizations, and pose significant challenges to cloud
schedulers. There have been few efforts on researching VM
scheduling algorithms which take into account the nature of
HPC applications and have shown promising results [6]–[9].

In this paper, we postulate that the placement of VMs to
physical machines can have significant impact on performance.
With this as motivation, the primary questions that we address
are the following: Can we improve HPC application perfor-
mance in cloud through VM placement strategies tailored
to application characteristics? Is there a cost-saving potential
through increased resource utilization achieved by application-
aware consolidation? What are the performance-cost tradeoffs
in using VM consolidation for HPC?

We address the problem of how to effectively utilize a
common pool of resources for efficient execution of very
diverse classes of applications in the cloud. For that purpose,
we solve the problem of simultaneously allocating multiple
VM instances comprising a single job request to physical
hosts taken from a pool. We do this while meeting Service
Level Agreement (SLA) requirements (expressed in terms of
compute, memory, homogeneity, and topology), and while
attempting to improve the utilization of hardware resources.
Existing VM scheduling mechanisms rely on user inputs
and static partitioning of clusters into availability zones for
different application types (such as HPC and non-HPC).

The problem is particularly challenging because, in general,
a large-scale HPC application would ideally require a dedi-
cated allocation of cloud resources (compute and network),
since its performance is quite sensitive to variability (caused
by noise, or jitter). The per-hour charge that a cloud provider
would have to establish for dedicating the resources would
quickly make the proposition uneconomical for customers.
To overcome this problem, our technique identifies suitable
application combinations whose execution profiles well com-
plement each other and that can be consolidated on the same
hardware resources without compromising the overall HPC
performance. This enables us to better utilize the hardware,
and lower the cost for HPC applications while maintaining
performance and profitability, hence greatly enhancing the
business value of the solution.

The methodology used in this paper consists of a two
step process – 1) Characterizing applications based on their
use of shared resources in a multi-core node (with focus on



shared cache) and their tightly coupledness, and 2) using an
application-aware scheduler to identify groups of applications
that have complementary profiles.

The key contributions of this paper are:
• We identify the opportunities and challenges of VM

consolidation for HPC in cloud. In addition, we develop
scheduling algorithms which optimize resource allocation
while being HPC-aware. We achieve this by applying
Multi-dimensional Online Bin Packing (MDOBP) heuris-
tics while ensuring that cross-application interference is
kept within bounds. (§II, §III)

• We optimize the performance for HPC in cloud through
intelligent HPC-aware VM placement – specifically
topology awareness and homogeneity, showing perfor-
mance gains up to 25% compared to HPC-agnostic
scheduling. (§III, §VI)

• We implement the proposed algorithm in OpenStack
Nova scheduler to enable intelligent application-aware
VM scheduling. Through experimental measurements, we
show that compared to dedicated execution, our tech-
niques can result in up to 45% better performance while
limiting jitter to 8%. (§IV, §VI)

• We modify CloudSim [10] to make it suitable for simu-
lation of HPC in cloud. To our knowledge, our work is
the first effort towards simulation of HPC job scheduling
algorithms in cloud. Simulation results show that our
techniques can result in up to 32% increased throughput
compared to default scheduling algorithms. (§VII)

II. VM CONSOLIDATION FOR HPC IN CLOUD:
SCOPE AND CHALLENGES

There are two advantages associated with the ability to mix
HPC and other applications on a common platform. First,
better system utilization since the machines can be used for
running non-HPC applications when there is low incoming
flux of HPC applications. Secondly, placing different types
of VM instances on the same physical node can result in
advantages arising from resource packing.

To quantify the potential cost savings that can be achieved
through consolidation, we performed an approximate calcu-
lation using pricing of Amazon EC2 instances [11]. Amazon
EC2 offers a dedicated pool of resources for HPC applica-
tions known as Cluster Compute. We consider two instance
types shown in Table I and, as a concrete example, Table II
shows the distribution of actually executed jobs calculated
from METACENTRUM-02.swf logs obtained from the Par-
allel Workload Archive [12]. It is clear that there is a wide
distribution and some HPC applications have small memory
footprint while some need large memory. Also, according to
the US DoE, there is a technology trend towards decreasing
memory per core for exascale supercomputers, indicating that
memory will be even more crucial resource in future [13]. If
the memory left unused by some applications in the Cluster
Compute instance can be used by placing a High Memory
instance on the same node by trading 13 EC2 Compute Units
and 34.2 GB memory (still leaving 60.2 - 34.2 = 26 GB), then

TABLE I: Amazon EC2 instance types and pricing

Resource Instance type
High-Memory Dou-
ble Extra Large

Cluster Compute
Eight Extra Large

API name m2.2xlarge cc2.8xlarge
EC2 Comp. Units 13 88
Memory 34.2 GB 60.5 GB
Storage 850 GB 3370 GB
I/O Perf. High Very High
Price ($/hour) 0.9 2.4

TABLE II: Distribution of job’s memory requirement
Memory per core Number of Jobs
<512MB 87075 (84.00%)
512MB-1GB 10062 (9.71%)
1GB-2GB 5946 (5.74%)
2GB-4GB 379 (0.37%)
4GB-8GB 161 (0.16%)
>8GB 33 (0.03%)
Total 103656 (100%)
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Fig. 1: Tradeoff: Resource packing vs. HPC-awareness

from Table I pricing, for every 2.4$, one can get additional
0.9$. However, the price of cluster compute instance needs to
be reduced by a factor of 2.4/(88/13), since that instance will
have 13 EC2 units less. Hence, through better resource pack-
ing, we can get % benefits of [2.4−2.4/(88/13)+0.9]−2.4

2.4 = 23%.
However, traditionally, HPC applications are executed on

dedicated nodes to prevent any interference arising from
co-located applications. This is because the performance of
many HPC applications strongly depends on the slowest node
(for example, when they synchronize through MPI barriers).
Figure 1 illustrates this tradeoff between resource packing
and optimized HPC performance with an example. Here we
have two incoming VM provisioning requests, first – for 4
instances each with 1 core, 512 MB memory and second – for
2 instances each with 1 core, 3 GB memory. There are two
available physical servers each with 4 cores and 4 GB memory.
Figure shows two ways of placing these VMs on physical
servers. The boxes represent the 2 dimensions – x dimension
being cores, y dimension being memory. Both requests are
satisfied in the right figure, but not in left figure, since there is
not enough memory on an individual server to meet the 3 GB
requirement although there is enough memory in the system as
a whole. Hence, the right figure is a better strategy since it is
performing 2-dimensional bin packing. Now consider that the
1 core 512 MB VMs (green) are meant for HPC. In that case,
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(b) Total cores (and VMs) per application = 16

Fig. 2: Application Performance in shared node execution
(2 cores for each application on a node) normalized wrt to
dedicated execution (using all 4 cores of a node for same
application). Total cores (and VMs) per application = 16,
physical cores per node = 4
the left figure can result in better HPC performance compared
to the right one because of two reasons – a) No interference
from applications of other users running on same server, and b)
all inter-process communications is within node. This tradeoff
between better HPC performance vs. better resource utilization
makes VM scheduling for HPC a challenging problem.

A. Cross-Application Interference

Even though there are potential benefits of using consol-
idation of VMs for HPC, it is still unclear whether (and to
what extent) we can achieve increased resource utilization
at an acceptable performance penalty. For HPC applications,
the degradation due to interference accumulates because of
the synchronous and tightly coupled nature of many HPC
applications. We compared the performance of a set of HPC
applications in a co-located vs. dedicated execution. Figure 2
demonstrates the effect of running two different applications
while sharing a multi-core node (4-core, 8GB, 3 GHz Open
Cirrus [14] node). Each VM needs 1-vcpu, 2GB memory,
and uses KVM-hypervisor and CPU-pinned configuration.
Applications used here are NPB [15] (EP = Embarrisingly
Parallel, LU = LU factorization, IS = Integer Sort) problem
size class B and C and ChaNGa [16] = Cosmology. More
details of testbed and applications are discussed in Section V.

In this experiment, we first ran each application using all 4
cores of a node. We then ran VMs from 2 different applications
on each node (2 VMs of each application on a node). Next, we
normalized the performance for both applications in second
case (shared node) with respect to the first case (dedicated
node), and plotted them as shown in Figures 2a (4 VMs each
application) and 2b (16 VMs each applications) for different

application combinations. In the figures, the x-label shows the
application combination, and the first bar shows normalized
performance for the first application in x-label. Similarly the
second bar shows that of second application in x-label. We can
observe that some application combinations have normalized
performance close to one for both applications e.g. EP.B-
ChaNGa. For some applications, co-location has a significant
detrimental impact on performance on at least one application
e.g. combinations involving IS.B.

The other facet of the interference problem is positive
interference. Through experimental data, we notice that we
can achieve significant performance improvement for some
application combinations e.g. LU.C-ChaNGa for 4 cores
case shows almost 120% better performance for LU.C with
ChaNGa’s normalized performance close to 1. The positive
impact on performance when co-locating different HPC ap-
plications presents to us another opportunity for optimizing
VM placement. What needs to be explored is why some co-
locations perform well while others do not (Section III).

B. Topology Awareness

The second challenge to VM consolidation for HPC in
cloud is the applications’ sensitivity to network topology.
Since many parallel processes constituting an HPC application
communicate frequently, time spent in communication forms
a significant fraction of total execution time. The impact
of cluster topology has been widely researched by HPC
researchers, but in the context of cloud, it is up to the cloud
provider to use VM placement algorithms which map the
multiple VMs of an HPC application in a topology-aware
manner to minimize inter-VM communication overhead. The
importance of topology awareness can be understood by a
practical example – Open Cirrus HP Labs cluster has 32 nodes
(4-cores each) in a rack, and all nodes in a rack are connected
by a 1Gbps link to a switch. The racks are connected using a
10Gbps link to a top-level switch. Hence, the 10Gbps link is
shared by 32 nodes with an effective bandwidth of 10Gbps/32
= 0.312 Gbps between two nodes in different racks for all-
to-all communication. However, the point-to-point bandwidth
between two nodes in the same rack is 1 Gbps. Thus, packing
VMs to nodes in the same rack will be beneficial compared
to a random placement policy, which can potentially distribute
them all over the cluster. However, topology-aware placement
can conflict with the goals of achieving better resource utiliza-
tion as demonstrated by Figure 1.

C. Hardware Awareness

Another characteristic of HPC applications is that they are
generally iterative and bulk synchronous, with computation
phase followed by barrier synchronization phase. Since all pro-
cesses must finish the previous iteration before next iteration
can be started, a single slow process can slow down the entire
application. Since clouds evolve over time and demand, they
consist of heterogeneous servers. Furthermore, the underlying
hardware is not visible to the user who expects all VMs to
achieve identical performance. The commonly used approach
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Fig. 3: (a,b) Application Performance using 2 cores per node normalized wrt to dedicated execution using all 4 cores of a
4-core node for same application. First bar for each application shows the case when leaving 2 cores idle (no co-located
applications). Rest bars for each application show the case when co-located with other applications (combinations of
Figure 1). (c) Average per core last level cache misses: Using only 2 cores vs. using all 4 cores of a node
to address heterogeneity in cloud is to create a new compute
unit (e.g. Amazon EC2 Compute unit) and allocate hardware
based on this unit. This allows allocation of a CPU core to
multiple VMs using shares (e.g. 80-20 CPU share). However, it
is impractical for HPC applications since the VMs comprising
a single application will quickly get out of sync when sharing
CPU with other VMs, resulting in much worse performance.
To overcome these problems, Amazon EC2 uses a dedicated
cluster for HPC. However, the disadvantage is lower utilization
which results in higher price. Hence, the third challenge
for VM placement for HPC is to ensure homogeneity. VM
placement needs to be hardware-aware to ensure that all k
VMs of a user request are allocated same type of processors.

III. METHODOLOGY

Having identified the opportunities for HPC-aware VM
consolidation in cloud, we discuss our methodology for ad-
dressing the challenges discussed in Section II. We formulate
the problem as an initial VM placement problem: Map k VMs
(v1, v2, .., vk) each with same, fixed resource requirements
(CPU, memory, disk etc.) to n physical servers P1, P2, ..., Pn,
which are unoccupied or partially occupied, while meeting
resource demands. Moreover, we focus on providing the user
an HPC-optimized VM placement. Our solution consists of
a) One-time application characterization, and b) application-
aware scheduling. Next, we discuss these two components.

A. Application Characterization

Our goal is to identify what characteristics of applications
affect their performance when they are co-located with other
applications on a node. To get more insights into the per-
formance observed in Figure 2, we plot the performance of
each application obtained when running alone (but using 2
VMs on a 4 core node, leaving 2 cores idle) normalized with
respect to the performance obtained when using all 4 cores
for same application (See Figures 3a and 3b first bar for
each application). We can see that LU benefits most when
run in 2 core per node case, EP and ChaNGa achieve almost
same performance, and IS suffers. This indicates that the
contention of shared resources in multi-core nodes is a critical
factor for these applications. To confirm our hypothesis, we

measured the number of last level cache (LLC) misses per
sec for each application using hardware performance counters
and Linux tool oprofile. Figure 3c shows LLC misses/sec
for our application set, and demonstrates that LU suffers a
huge number of misses, indicative of larger working set size
(or cache-intensiveness). In our terminology, cache-intensive
refers to larger working set. Co-relating Figures 3a and 3c,
we see that applications which are more cache-intensive (that
is suffer more LLC misses per sec) are the ones that benefit
most in 2-core per node case, whereas applications which
are low to moderate cache-intensive (e.g. EP and ChaNGa)
are mostly not affected by the use of 2 or 4-cores per node.
One exception to this is IS.B.4, because this application is
highly communication-intensive and hence suffers because of
the inter-node communication happening in 2-core per node
case. Barring this exception, one fairly intuitive conclusion that
can be drawn from this experiment is that it is indeed beneficial
to co-locate cache-intensive applications (such as LU) and
application with less cache usage (such as EP) on same node.
This is confirmed by more closely examining Figure 2.

HPC applications introduce another dimension to the prob-
lem of accounting cross-application interference. In general,
the effect of noise/interference gets amplified in applications
which are bulk synchronous. For synchronous HPC applica-
tions, even if only one VM suffers a performance penalty, all
the remaining VMs would have to wait for it to reach the
synchronization point. Even though the interference suffered
by individual processes may be less over a period of time, the
overall effect on application performance can be significant
due to the accumulation of noise over all processes. Hence,
we characterize applications along two dimensions:

1) Cache-intensiveness – We assign each application a cache
score (= 100K LLC misses/sec), representative of the pressure
it puts on the shared cache and memory controller subsystem.
We acknowledge that one can use working set size as a metric,
but we chose LLC misses/sec since it can be experimentally
measured using hardware performance counters.

2) Parallel Synchronization and Network Sensitivity – We
map applications to four different application classes, which
can be specified by a user when requesting VMs:



• ExtremeHPC: Extremely tightly coupled or topology-
sensitive applications for which the best will be to provide
dedicated nodes, example – IS.

• SyncHPC: Sensitive to interference, but less compared to
ExtremeHPC and can sustain small degree of interference
to get consolidation benefits, examples – LU, ChaNGa.

• AsyncHPC: Asynchronous (and less communication sen-
sitive) and can sustain more interference than SyncHPC,
examples – EP, MapReduce applications.

• NonHPC: Do not perform any communication, can sus-
tain more interference, and can be placed on heteroge-
neous hardware, example – Web applications.

B. Application-aware Scheduling

With this characterization, we devise an application-
characteristics aware VM placement algorithm which is a
combination of HPC-awareness (topology and homogeneity
awareness), Multi-dimensional Online Bin packing, and Inter-
ference minimization through cache-sensitivity awareness. We
discuss the details of this scheduler in the next section.

IV. AN HPC-AWARE SCHEDULER

Next, we discuss the design and implementation of the
proposed techniques on top of OpenStack Nova scheduler [17].

A. Background: OpenStack Nova Scheduler

OpenStack [17] is an open source software, being developed
by collaboration of multiple inter-related projects, for large-
scale deployment and management of private and public
clouds from large pools of infrastructure resources (compute,
storage, and networking). In this work, we focus on the
compute component of OpenStack, known as Nova. Nova
scheduler performs the task of selecting physical nodes where
a VM will be provisioned. Since OpenStack is a popular
cloud management system, we implemented our scheduling
techniques on top of existing Nova scheduler (Diablo 2011.3).

The default scheduler makes VM placement based on the
VM provisioning request (request_spec), and the exist-
ing state and occupancy of physical hosts (capability data).
request_spec specifies the number and type of requested
instances (VMs), instance type maps to resource requirements
such as number of virtual cores, amount of memory, amount
of disk space. Host capability data contains the current capa-
bilities (such as free CPUs, free memory) of physical servers
(hosts) in the cloud. Using request_spec and capabilities
data, the scheduler performs a 2-step algorithm:

1) Filtering – excludes hosts incapable of fulfilling the
request (e.g free cores < requested virtual cores).

2) Weighing – computes the relative fitness of filtered list
of hosts to fulfill the request using cost functions such
as least free host. Multiple cost functions can be used.

Next, the list of hosts is sorted by the weighted score, and
VMs are provisioned on hosts using this sorted list.

However Nova Scheduler is HPC-agnostic since:
• Existing filtering and weighing strategies do not consider

the nature of application (e.g. HPC vs. non-HPC).

Algorithm 1 Pseudo code for Scheduler Algorithm
1: capability = list of capabilities of unique hosts
2: request spec = request specification
3: numHosts = capability.length()
4: filteredHostList = new vector < int >
5: rackList = new set < int >
6: hostCapacity, rackCapacity, filteredHostList ← Calculate-

HostAndRackCapacity(request spec, capabilities)
7: if (request spec.class == ExtremeHPC) || (request spec.class

== SyncHPC) then
8: sortedHostList← sort filteredHostList by decreasing order of

hostCapacity[j] where j ∈ filteredHostList.
9: PrelimBuildP lan ← stable Sort sortedHostList by decreas-

ing order of rackCapacity[capability[j].rackid] where j ∈
filteredHostList.

10: else
11: PreBuildP lan = filteredHostList
12: end if
13: if request spec.class == ExtremeHPC then
14: buildP lan = new vector[int]
15: for i = 1 to i <= numFilteredHosts do
16: for j = 1 to j <= hostCapacity[PreBuildP lan[i]] do
17: buildP lan.push(PreBuildP lan[i])
18: end for
19: end for
20: else
21: buildP lan ← MDOBP (request spec, Prebuildplan, capabi-

lities)
22: end if
23: return buildP lan

24: procedure MDOBP(request spec,Prebuildplan, capabil-
ities)

25: buildP lan = new vector[int]
26: for i = 1 to i < request spec.numInstances do
27: repeat
28: node ← chooseBestF itHost(request spec, Prebuildplan,

capabilities) // use a multi-dimensional heuristic
29: until meetsInterferenceCriteria(node, request spec,

capabilities)
30: buildP lan.insert(node);
31: update temporary capability database
32: end for
33: return buildP lan

34: procedure meetsInterferenceCriteria(node, request spec,
capabilities)

35: α = Total cache threshold for any application
36: β = Total cache threshold for SyncHPC, in general α >> β
37: totalCacheScore =

∑
i i.cacheScore∀i such that i is an instance

currently running on node
38: if (totalCacheScore+ request spec.cacheScore) > α then
39: return false
40: end if
41: if i.class = SyncHPC for any i – an instance currently running on

node then
42: if (totalCacheScore+ request spec.cacheScore) > β then
43: return false
44: end if
45: end if
46: return true

• Scheduler ignores processor heterogeneity and network
topology.

• Scheduler considers the k VMs requested by an HPC user
as k separate placement problems, there is no co-relation
between the placement of VMs of a single request.

There has been recent and ongoing work on adapting Nova
scheduler to make it architecture- and HPC-aware [8], [9].

B. Design and Implementation

Algorithm 1 describes our scheduling algorithm us-
ing OpenStack terminology. The VM provisioning request
(request_spec) now contains application class and name
in addition to existing parameters. The algorithm proceeds
by calculating the current host and rack free capacity, that is



number of additional VMs of requested specification that can
be placed at a particular host and rack (line 6). While doing so,
it sets the capacity of all the hosts which have a running VM
as zero if the requested VM type is ExtremeHPC to ensure
that only dedicated nodes are used for ExtremeHPC. Next,
if the class of requested VM is ExtremeHPC or SyncHPC,
the scheduler creates a preliminary build plan which is a list
of hosts ordered by rackCapacity of the rack to which a
host belongs and hostCapacity for hosts of same rack.
The goal is to allocate VMs to same host and same rack
to the extent possible to minimize inter-VM communication
overhead for these application classes. For ExtremeHPC, this
PreBuildPlan is used for provisioning VMs, whereas for
the rest classes, the algorithm performs multi-dimensional
online bin packing to fit VMs of different characteristics
together on same host (line 21). Procedure MDOBP uses a
bin packing heuristic for selecting a host from available
choices (line 28). We use a dimension-aware heuristic – select
the host for which the vector of requested resources aligns
the most with the vector of remaining capacities. The key
intuition can be understood by revisiting the example of
2-dimensional bin-packing in Figure 1. For best utilization
of the capacity in both dimensions, it is desirable that the
final sum of all the VM vectors on a host is close to the
top right corner of the host rectangle. Hence, we select the
host such that placing the requested VM on it would move
the vector representing its occupied resources towards the
top right corner. Our heuristic is similar to those studied
by Lee et al. [18]. Formally, consider remaining or residual
capacities (CPURes, MemRes) of a host, i.e. subtract from
the capacity (total CPU, total memory) the total demand of all
the items (VM cores, VM memory) currently assigned to it.
Also consider requested VM: (CPUReq(= 1), MemReq).
This heuristic selects the host with the minimum θ where
cos(θ) is calculated using dot product of the two vectors, and
is given by: (CPUReq∗CPURes)+(MemReq∗MemRes)

√
CPURes2+MemRes2

√
CPUReq2+MemReq2

, with

CPURes >= CPUReq,MemRes >=MemReq.

Next, the selected host is checked to ensure that placing the
requested VM on it does not violate the interference criteria
(line 29). We use the following criteria – the sum of cache
scores of the requested VM and all the VMs running on a host
should not exceed a threshold, which needs to be determined
through experimental analysis. This threshold is different if
the requested VM or one or more VMs running on that
host is of class SyncHPC since applications of this class can
tolerate lesser interference (line 44). In addition, we maintain a
database of interference indices to record interference between
those applications which suffer large performance penalty
when sharing hosts. This information is used to avoid co-
locations which are definitely not beneficial. The output of
Algorithm 1 is buildPlan which is the list of hosts where
the VMs should be provisioned.

To ensure homogeneity, hosts are grouped into different
lists based on their processor type, and the algorithm operates
on these groups. Currently, we use CPU frequency as the
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Fig. 4: Implementation details and control flow of a
provisioning request
distinction criteria between processor types. For more accurate
distinction, additional factors such as MIPS can be considered.

Figure 4 shows the overall control flow for a VM pro-
visioning request, highlighting the additional features and
changes that we introduced while implementing the HPC-
aware scheduling algorithm in OpenStack Nova. We modified
both euca-tools and OpenStack EC2 API to allow additional
parameters to be passed along with a VM provisioning
request. Further, we store these additional properties (such
as application class and cache score) of running VMs in
the Nova database. Also, we create and maintain additional
information – interference indices, which is a record of inter-
ference suffered by each application with other applications
during a characterization run. New tables app_running
with columns that store the host name and applications running
on it, and app_interferences that stores the interference
between any of them were added to Nova DB. Nova DB API
was modified to include a function to read this database.

We extended the existing abstract_scheduler.py
in Nova to create HPCinCloud_scheduler.py
which contains the additional functions
_scheduleMDOBP, choose_best_fit_host, and
meet_interference_criteria.

V. EVALUATION METHODOLOGY

In this section, we describe our cloud setup and the appli-
cations which we used.



A. Experimental Testbed

We evaluated our techniques on a cloud setup using Open-
Stack on Open Cirrus testbed at HP Labs site [14]. This cloud
has 3 types of servers:
• Intel Xeon E5450 (12M Cache, 3.00 GHz)
• Intel Xeon X3370 (12M Cache, 3.00 GHz)
• Intel Xeon X3210 (8M Cache, 2.13 GHz)

The cluster topology is as described in Section II-B.
For virtualization, we chose KVM [19], since prior research

has indicated that KVM is a good choice for virtualization for
HPC clouds [20]. For network virtualization, we experimented
with different network drivers such as rtl8139, eth1000, virtio-
net, and settled on virtio-net because of better network perfor-
mance (also shown in [6]). We used VMs of type m1.small (1
core, 2 GB memory, 20 GB disk). However, these choices do
not influence the generality of our conclusions.

B. Benchmarks and Applications

We used the NAS Parallel Benchmarks (NPB) [15] prob-
lem size class B and C (the MPI version, NPB3.3-MPI),
which are widely used by HPC community for performance
benchmarking, and provide good coverage of computation,
communication, and memory characteristics. We also used
three larger HPC applications:
• NAMD [21] – A highly scalable molecular dynamics

application used ubiquitously on supercomputers. We
used the ApoA1 input (92k atoms) for our experiments.

• ChaNGa [16] – A cosmology application which perform
collisionless N-body simulation using Barnes-Hut tree for
force calculation. We used a 300,000 particle system.

• Jacobi2D – A 5-point stencil computation kernel which
averages values in a 2-D grid, and is used in scientific
simulations, numerical algebra, and image processing.

These applications are written in Charm++ [22] which is an
object-oriented parallel programming language. We used the
net-linux-x86-64 machine layer of Charm++ with –O3
optimization level.

VI. EXPERIMENTAL RESULTS

Next, we evaluate the benefits of HPC-aware VM placement
and the effect of jitter arising from VM consolidation.

A. HPC-Aware Placement

To demonstrate the impact of topology awareness and
homogeneity, we compared the performance obtained by HPC-
aware scheduler with random VM placement. In these experi-
ments, we did not perform VM consolidation. Figure 5 shows
the performance obtained by our VM placement (Homo)
compared to the case when two VMs are mapped to a
slower processors, rest to the faster processor (Hetero). We
calculated % improvement = (THetero − THomo)/THetero.
We can see that the improvement achieved depends on the
nature of application and the scale at which it is run. Also, the
improvement is not equal to the ratio of sequential execution
time on slower processor to that on faster processor. This can
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Fig. 5: % improvement achieved using HPC awareness
(homogeneity) compared to the case where 2 VMs were
on slower processors and rest on faster processors
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(b) Homogeneous: All 8 VMs on same type of processors

Fig. 6: CPU Timelines of 8 VMs running Jacobi2D
be attributed to the communication time and parallel overhead,
which is not necessarily dependent on the processor speeds.
For these applications, we achieved up to 20% improvement
in parallel execution time, which means we save 20% of time
* N CPU-hours, where N is the number of processors used.

We analyzed the performance bottleneck using the Pro-
jections [23] tool. Figure 6 shows the CPU (VM) timelines
for an 8-core Jacobi2D experiment, x-axis is time, y-axis is
the (virtual) core number, white portion shows idle time, and
colored portions represent application functions. In Figure 6a,
there is lot more idle time on VMs 3-7 compared to first 2
VMs (running on slower processors) since VMs 3-7 have to
wait for VMs 0-1 to reach the synchronization point. The small
idle time in Figure 6b due to the communication time.

Next, we compared the performance obtained when using
the VM placement provided by HPC-optimized algorithm vs.
the default VM placement vs. without virtualization on the
same testbed (see Figure 7). The default placement selects
the host with least free CPU cores (or PEs) agnostic of its
topology and hardware. In this experiment, the first host in
the cloud had slower processor type. Figure 7 shows that
even communication-intensive applications such as NAMD
and ChaNGa scale well for Cloud-opt case, and achieve per-
formance close to that obtained on physical platform. Benefits
up to 25% are achieved compared to the default scheduler.

However, performance achieved on the physical platform
itself is up to 4X worse compared to ideal scaling at 64 cores,
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(c) Jacobi2D – 4K by 4K matrix
Fig. 7: Runtime Results: Execution Time vs. Number of cores / VMs for different applications.

Application Class Cache Time Placement
Score ded. run β=100 β=40 β=60

IS.B.4 ExtremeHPC47 89.5 4×N1 4×N1 4×N1
LU.C.16 SyncHPC 16 180.18 4×(N2-N5) 2×(N1-N8) after

App1,App3-App5
3×(N2-N6)
+1×N7

LU.B.4 SyncHPC 29 147 3×N6+1×N7 1×(N2-N5) 2×N1+2×N8
after App1

ChaNGa.4 SyncHPC 7.5 100.42 1×N6+3×N7 1×(N2-N5) 1×(N2-N5)
EP.B.4 AsyncHPC 2.5 101.5 4×N8 1×(N2-N5) 1×N6+3×N7  0.8
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Fig. 8: Table of applications, and figure showing percentage improvement achieved using application-aware scheduling
compared to the case when applications were run in dedicated manner
likely due to the absence of an HPC-optimized network. A
detailed analysis of the communication performance of this
cloud (with different virtualization drivers) was done in [6].

B. Case Study of Application-Aware Scheduling

Here, we consider 8 nodes (32 cores) of our experimental
testbed, and perform VM placement for the application stream
shown in Figure 8 using the application-aware scheduler. The
application suffix is the number of requested VMs. Figure 8
shows the characteristics of these applications and the output
of scheduler with three different cache thresholds (β). The
output (Placement) is presented in the form of the nodes
(and cores per node) to which the scheduler mapped the
application. This figure also shows the achieved performance
for these cases compared to the dedicated execution using all
4 cores per node. When the cache threshold is too large, there
is less performance improvement due to aggressive packing
of cache-intensive applications on the same node. On the
contrary, a very small threshold results in unnecessary wastage
of some CPU cores if there are few applications with very
small cache scores. This is illustrated by the placement shown
in Figure 8, where the execution of some applications was
deferred because the interference criteria were not satisfied
due to small cache threshold. Moreover, there is additional
penalty (communication overhead) associated when not using
all cores of a node for running an HPC application. Hence, the
cache threshold needs to be chosen carefully through extensive
experimentation. In this case, we see that the threshold of 60
works the best. For this threshold and our application set, we
achieve performance gains up to 45% for a single application
while limiting negative impact of interference to 8%.

We also measured the overhead of our scheduling algorithm
by measuring the execution time. The average time to handle

a request for 1, 16 instances was 1.58s, 1.80s respectively by
our scheduler compared to 1.54s, 1.67s for default scheduler.

VII. SIMULATION

CloudSim is a simulation tool modeling a cloud computing
environment in a datacenter, and is widely used for evaluation
of resource provisioning algorithms [10]. In this work, we
modified it to enable the simulation of High Performance
Computing jobs in cloud. HPC machines have massive number
of processors, whereas CloudSim is designed and implemented
for cloud computing environment, and works mainly with
jobs which needs single processor. Hence, for simulating
HPC in cloud, the primary modification we performed was
to improve the handling of multi-core jobs. We extended
the existing vmAllocationPolicySimple class to create
a vmAllocationPolicyHPC which can handle a user
request comprising multiple VM instances and performs
application-aware scheduling (discussed in Algorithm 1).

At the start of simulation, a fixed number of VMs (of
different specified types) are created, and jobs (cloudlets) are
submitted to the data center broker which maps a job to a VM.
When there are no pending jobs, all the VMs are terminated
and simulation completes. Since our focus was on mapping
of VMs to physical hosts, we created a one-to-one mapping
between cloudlets and VMs. Moreover, we implemented VM
termination during simulation to ensure complete simulation.
Without dynamic VM creation and termination, the initial set
of VMs run till the end of simulation, leading to indefinitely
blocked jobs in the system since the VMs where they can run
never get scheduled because of the limited datacenter capacity.

We simulated the execution of jobs from the logs ob-
tained from parallel workload archive [12]. We used the
METACENTRUM-02.swf logs since these logs contain in-
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Fig. 9: Simulation Results: Number of completed jobs vs time for different scheduling techniques, 1024 cores
formation about a job’s memory consumption. For each job
record (n cores, m MB memory, execution time) in the log file,
we create n VMs each with 1-core and m/n MB memory. We
simulated the execution of first 1500 jobs from the log file on
1024 cores, and measured the number of completed jobs after
100 seconds. Figure 9a shows that the number of completed
jobs after 100 seconds increased by around 109/801 = 13.6%
when using MDOBP instead of the default heuristic (selecting
a node with least free PEs) for the constrained memory case
(2GB per node), whereas there was no improvement for this
job set when the nodes had large memory per core. This is
attributed to the fact that this job set has very few applications
with large memory requirement. However, with the trend of
the big memory applications, also true for the next generation
exascale applications, we expect to see significant gains for
architectures with large memory per node as well.

We also simulated our HPC-aware scheduler (including
cache-awareness) by assigning each job a cache score from
(0-30) using a uniform distribution random number generator.
We used two different values of the cache threshold (See
Figure 9b IFMDOBP). We simulated the jobs with modified
execution times of all jobs by -10% and -20% to account
for the improvement in performance resulting from cache-
awareness as seen from results in Section VI. The number
of completed jobs after 100 seconds further increased to 1060
for the cache threshold of 60 and adjustment of -10%, which
is a reasonable choice based on the results obtained in Sec-
tion VI-B. Hence, overall we get improvement in throughput
by 259/801 = 32.3% compared to default scheduler. Also,
we can see that a small cache threshold (β=40) can actually
degrade overall throughput because some cores will be left
unused to ensure that the interference requirements are obeyed.

VIII. RELATED WORK

Previous studies on HPC applications in cloud have con-
cluded that cloud cannot compete with supercomputers based
on the metric $/GFLOPS for large scale HPC applications
because of bottlenecks such as interconnect and I/O perfor-
mance [1]–[4]. However, clouds can be cost-effective for some
applications, specifically those with less communication and
at low scale [3], [4]. In this work, we explore VM placement

techniques to make HPC in cloud more economical through
improved performance and resource utilization.

Work on scheduling in cloud can be classified into three
areas: 1) Initial VM Placement – where the problem is to
map a (set of) VM(s) of a single user request to available
pool of resources. 2) Offline VM Consolidation – where the
problem is to map VM(s) from different user requests, hence
with different resource requirements to physical resources to
minimize the number of active servers to save energy. 3) Live
Migration – where remapping decisions are made for live
VMs. Our focus is on the first problem, since our research
is towards infrastructure clouds (IaaS) such as Amazon EC2,
where VM allocation and mapping happen as and when VM
requests arrive. Offline VM consolidation has been extensively
researched [24], [25], but is not applicable to IaaS. Also, live
migration has associated costs, and introduces further noise.

For initial VM placement, existing cloud management sys-
tems such as OpenStack [17], Eucalyptus [26], and Open-
Nebula [27] use Round Robin (next available server), First
Fit (first available server), or Greedy Ranking based (best fit
according to certain criteria e.g. least free RAM) strategies,
which operate in one-dimension (CPU or memory). Other
researchers have proposed genetic algorithms [28]. A detailed
description and validation of VM consolidation heuristics
is provided in [18]. However, these techniques ignore the
intrinsic nature of HPC VMs – tightly coupledness.

Fan et al. discuss topology-aware deployment for scientific
applications in cloud, and map the communication topology
of a parallel application to the VM physical topology [7].
Recently, OpenStack community has been working on making
the scheduler architecture-aware and suitable for HPC [8], [9].
Amazon EC2 has a Cluster Compute instance which allows
placement groups such that all instances within a placement
group are expected to get low latency and full bisection 10
Gbps bandwidth [29]. It is not known how strictly those
guarantees are met and what techniques are used to meet them.

In this work, we extend our previous work on HPC-
aware scheduler [6] in multiple ways - First, we use multi-
dimensional online bin packing (MDOBP) for considering
resources along all dimensions (such as CPU and memory).



MDOBP algorithms have been explored in offline VM consol-
idation research, but we apply these to initial VM placement
problem and in the context of HPC in cloud. Second, we
leverage the additional knowledge about the application char-
acteristics, such as HPC or non-HPC, synchronization, com-
munication, and cache characteristics to limit cross-application
interference. We got insights from studies which have explored
the effects of shared multi-core node on cross-VM interfer-
ence, both in HPC and non-HPC domain [24], [30], [31].

There are many tools for scheduling HPC jobs on clusters,
such as Oracle Grid Engine, ALPS, OpenPBS, SLURM,
TORQUE, and Condor. They are all job schedulers or resource
management systems for cluster or grid environment, and aim
to utilize system resources in an efficient manner. They differ
from scheduling on cloud since they work with physical not
virtual machines, and hence cannot benefit from the traits
of virtualization such as consolidation. Nodes are typically
allotted to a single user, and not shared with other users.

IX. LESSONS, CONCLUSIONS AND FUTURE WORK

We summarize the lessons learned through this research:
• Although it may be counterintuitive, HPC can benefit

greatly by consolidating VMs using smart co-locations.
• A cloud management system such as OpenStack would

greatly benefit from a scheduler which is aware of the
application characteristics such as cache, synchronization
and communication behavior, and HPC vs non-HPC.

• Careful VM placement and execution of HPC and other
workloads can result in better resource utilization, cost
reduction, and hence broader acceptance of HPC clouds.

Through experimental research, we explored the opportuni-
ties and challenges of VM consolidation for HPC in cloud.
We designed and implemented an HPC-aware scheduling
algorithm for VM placement which achieves better resource
utilization and limits cross-application interference through
careful co-location. Through experimental and simulation re-
sults, we demonstrated benefits of up to 32% increase in job
throughput and performance improvement up to 45% while
limiting the effect of jitter to 8%.

In future, we plan to consider other factors which can affect
performance of a VM in a shared multi-core node such as I/O
(network and disk). Another direction of research is to address
other challenges for adoption of cloud by HPC community.
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[23] L. Kalé and A. Sinha, “Projections : A Scalable Performance Tool,”
in Parallel Systems Fair, International Parallel Processing Symposium,
Apr. 1993.

[24] A. Verma, P. Ahuja, and A. Neogi, “Power-aware Dynamic Placement
of HPC Applications,” ser. ICS ’08. New York, NY, USA: ACM, 2008,
pp. 175–184.

[25] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya, “Energy-Efficient
Scheduling of HPC Applications in Cloud Computing Environments,”
CoRR, vol. abs/0909.1146, 2009.

[26] D. Nurmi et al., “The Eucalyptus Open-source Cloud-computing Sys-
tem,” in Proceedings of Cloud Computing and Its Applications, 2008.

[27] “The Cloud Data Center Management Solution ,” http://opennebula.org.
[28] J. Xu and J. A. B. Fortes, “Multi-Objective Virtual Machine Placement

in Virtualized Data Center Environments,” ser. GREENCOM-CPSCOM
’10. Washington, DC, USA: IEEE Computer Society, pp. 179–188.

[29] “High Performance Computing (HPC) on AWS,” http://aws.amazon.
com/hpc-applications.

[30] J. Mars et al., “Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations,” ser. MICRO-44 ’11. New
York, NY, USA: ACM, 2011, pp. 248–259.

[31] J. Han, J. Ahn, C. Kim, Y. Kwon, Y.-R. Choi, and J. Huh, “The Effect of
Multi-core on HPC Applications in Virtualized Systems,” ser. Euro-Par
2010. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 615–623.

http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf
http://dx.doi.org/10.1109/OCS.2011.10
http://xlcloud.org/bin/download/Download/Presentations/Workshop_26072012_Scheduler.pdf
http://xlcloud.org/bin/download/Download/Presentations/Workshop_26072012_Scheduler.pdf
http://wiki.openstack.org/HeterogeneousArchitectureScheduler
http://wiki.openstack.org/HeterogeneousArchitectureScheduler
http://aws.amazon.com/ec2
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://science.energy.gov/ascr/research/scidac/exascale-challenges
http://science.energy.gov/ascr/research/scidac/exascale-challenges
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://openstack.org
http://opennebula.org
http://aws.amazon.com/hpc-applications
http://aws.amazon.com/hpc-applications

	Introduction
	VM Consolidation for HPC in Cloud:  Scope and Challenges
	Cross-Application Interference
	Topology Awareness
	Hardware Awareness

	Methodology
	Application Characterization
	Application-aware Scheduling

	An HPC-Aware Scheduler
	Background: OpenStack Nova Scheduler
	Design and Implementation

	Evaluation Methodology
	Experimental Testbed
	Benchmarks and Applications

	Experimental Results
	HPC-Aware Placement
	Case Study of Application-Aware Scheduling

	Simulation
	Related Work
	Lessons, Conclusions and Future Work
	References

