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�is paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore
with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview
of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and,
more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous
architectures that feature a mix of multicore CPUs and coprocessors. �e LAPACK-compliance simpli�es the use of the MAGMA
MIC library in applications, while providing them with portably performant DLA. High performance is obtained through the use
of the high-performance BLAS, hardware-speci�c tuning, and a hybridization methodology whereby we split the algorithm into
computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by
minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous
hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which
abstracts the application developer from the speci�cs of the Xeon Phi architecture and is therefore applicable to algorithms beyond
the scope of DLA.

1. Introduction and Background

Solving linear systems of equations and eigenvalue problems
is fundamental to scienti�c computing.�epopular LAPACK
library [1], and in particular its vendor optimized implemen-
tations such as Intel’s MKL [2] or AMD’s ACML [3], has been
the so
ware of choice to provide solver routines for dense
matrices on shared memory systems. �is paper considers
a redesign of the LAPACK algorithms and their implemen-
tation to add e�cient support for heterogeneous systems of
multicore processors with Intel Xeon Phi coprocessors. �is
is not the �rst time that DLA libraries have needed a redesign
to be e�cient on new architectures, notable examples being
the transition from LINPACK [4] to LAPACK [1] in the
1980s to make algorithms cache-friendly. Also, ScaLAPACK
[5] in the 1990s added support for distributed memory
systems. And at present time, the PLASMA and MAGMA

libraries [6] target e�ciency on, respectively, multicore and
heterogeneous architectures.

�e Intel Xeon Phi coprocessor is a hardware accelerator
that made its debut in the late 2012 as a platform for high-
throughput technical computing. It is sometimes known
under an alternative name of Many Integrated Cores (MICs).
For the purposes of this paper, the common mode of
operation for the device is called o�-load.However, the stand-
alone and reverse o�-load modes are also valid possibilities.
When in o�-load mode, the device receives work from the
host processor and reports back as soon as the computational
task completes. Any such assignment of work proceeds and
completes without the host device being involved. In a typical
scenario, the host is an Intel x86 CPU such as Sandy Bridge,
Ivy Bridge, or even more recent Haswell and Ivy Town. �e
CPU may monitor the activity of communication and/or
computation through an event-based interface and can also
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pursue its own computational activities between events. �is
is very similar to the operation of hardware accelerators based
on throughput-oriented GPUs and compute-capable FPGAs
that are specialized for certain types of workloads beyond
what could be achieved on standard multicore CPUs. In fact,
Xeon Phi is o
en considered to be an alternative to the hard-
ware accelerators fromAMDandNVDIAdespite the fact that
there exist many technical di�erences between the three.

�e development of new high-performance numerical
libraries is a complex endeavor, which requires meticulous
accounting for the extreme levels of parallelism, hetero-
geneity, and wide variety of accelerators and coprocessors
available in the current architectures. Challenges vary from
new algorithmic designs to choices of programming models,
languages, and frameworks that ease the development, future
maintenance, and portability. �is paper addresses these
issues while presenting our approach and algorithmic designs
in the development of the MAGMAMIC [7] library. Speci�c
di�erences between the GPU-based MAGMA [6] and the
MIC version are elaborated upon in Section 3.

To provide a uniformportability across a variety of copro-
cessors/accelerators, we developed an API that abstracts the
application developer from the low level speci�cs of the
architecture. In particular, we use low level vendor libraries,
like SCIF for Intel Xeon Phi (see Section 5), to de�ne API
for memory management and o�-loading computations to
coprocessors and/or accelerators.

To deal with the extreme level of parallelism and het-
erogeneity in the current architectures, MAGMA MIC uses
a hybridization methodology, described in Section 6, where
we split the algorithms of interest into computational tasks
of various granularities and properly schedule those tasks’
execution over the heterogeneous hardware. �us, we use a
Directed Acyclic Graph (DAG) approach to parallelism and
scheduling that has been developed and successfully used for
dense linear algebra libraries such as PLASMA andMAGMA
[6], as well as in general task-based approaches to parallelism,
such as runtime systems like StarPU [8] and SMPSs [9].

Obtaining high performance depends on a combina-
tion of algorithmic and hardware-speci�c optimizations,
discussed in Section 6.4. �is is in addition to the use of
high-performance low-level libraries, which we address in
Section 5. �is has implications on the resulting so
ware: in
order to maintain the performance portability across hard-
ware, it is necessary to provide in the library a number of algo-
rithmic variations that are tunable, for example, at installation
time. �is is the basic premise of autotuning—a prominent
example of these kinds of advanced optimization techniques.

A performance study is presented in Section 7. Besides
verifying our approach and con�rming the appeal of the
Intel Xeon Phi coprocessors for high-performance DLA,
the results open up a number of future work opportunities
discussed in Section 8 that concludes the paper.

2. Related Work

Intel Xeon Phi [10, 11] is a family of Intel coprocessors
known before under the MICs (Many Integrated Cores)
moniker. Knights Corner (KNC) is the �rst o�cial product

accelerator card in a series that will be followed by Knights
Landing (KNL). Phi is a hardware platform based on x86
instruction set with modi�cations for throughput-oriented
workloads. In some sense, Phi may be regarded as an
alternative to NVIDIA’s compute GPU cards that require
CUDAprogramming [12] or AMD’s compute GPU cards that
are programmed with OpenCL [13] and the AMD’s GPU
libraries [14].

Phi’s use for scienti�c applications that require solution
to PDEs (Partial Di�erential Equations) was studied and
under some scenarios revealed opportunities and advantages
[15, 16].

�ere is a rich area of work on execution environments
that begin with serial code and result in parallel execution,
o
en using task superscalar techniques, for example, Jade
[17], Cilk [18], Sequoia [19], OmpSS [20], Habanero [21],
StarPU [8], or the DepSpawn [22] project.

3. Differences between GPU and
MIC Versions of MAGMA

Wemostly focus on the CUDA-based version ofMAGMA for
the comparison because it is the basis for functional interface
and, in terms of the feature set, it is our aim to reproduce it
on the Intel MIC coprocessor.

Fundamentally, hardware accelerators require refactoring
of the existing code base to accommodate the new compute
device and include it harmoniously into themixwith theCPU
so that the performance gains may be fully realized. In terms
of raw performance across a broad spectrum of applications,
the most e�cient programming language is CUDA [12].
Our experiments show that it easily outperforms portable
standards-based APIs such as OpenCL [23]. While it might
be tempting to include CUDA in the family of languages
derived from C and C++, it is worth noting that the clear
syntactic di�erences from the base language (mostly C++ and
its 1998 standard) form an easily distinguishable delineation
of the computational spaces of the CPU and the GPU. At
the CPU code level the triple-chevron launch notation, for
example, <<<blocks, threadsPerBlock>>>gpu kernel(args),
launches GPU kernels by means of incompatible syntax that
requires NVIDIA’s own nvcc compiler.�is divergent syntax
has spurred over the years a number of ways to simplify the
coding with the use of directive-based code and as of lately,
these e�orts have coalesced into the OpenACC initiative
[24, 25], directive-based approach that hides some of the
CUDA complexity behind compiler’s pragma syntax.

�e directive-based approach is what Intel MIC featured
from the beginning and this is what MAGMA’s port to
the coprocessor used. However, the MIC port of MAGMA
accommodated changes in the interfaces, feature set, and
performance levels. �us, the end user was shielded from
the e�ects of the growth of the platform and the �ux of
the so
ware ecosystem. A particular example of such an
underlying change was the early use of SCIF (see Section 5)
which was essential for exchanging noncontiguous memory
regions between the host and the device with a very low
overhead. �is has been progressively phased out as the
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Table 1: Programming models for the Intel Xeon Phi coprocessors and their current status and properties.

Programming model/API Status Portability Overhead Language support

SCIF Mature No None No

COI Mature Yes Minimal Yes

OpenMP 4.0 Early Yes Varies Yes

OpenCL Experimental Yes Minimal No

need for SCIF diminished with richer functionality available
through the directives and improvements in the Linux kernel
drivers and runtime overheads. From the user perspective,
this change was transparent for programming on Xeon Phi
while the recent changes in event-driven APIs of CUDAs had
to be percolated to MAGMA’s publicly visible interface.

Another departure from the CUDA-based MAGMA was
the device- and so
ware-speci�c tuning and optimization
(described in more detail in Section 6). �ere is very little
commonality between the targeted systems, both in terms of
hardware and so
ware. �e Xeon Phi implementation has
to balance the performance sensitivity of the BLAS calls in
MKL, custom kernels, and their mapping onto the much
di�erent hardware substrate. Similarly, the levels and layering
of parallelism nesting (so
ware threads, hardware threads,
versus BLAS threads) are anything but what is presented to
the CUDA programmer. Despite the di�erences, however,
MAGMA’s external interface remains almost indistinguish-
able.

4. Compiler Support for Off-Load

In this paper, we consider the o�-load mode as the primary
mode of operation for the Xeon Phi coprocessor. �e device
receives work from the host processor and reports back
upon completion of the assignment without the host being
involved in between these two events. �is is very similar
to the operation of network o�-load engines, speci�cally,
the TCP o�-load engines (TOEs) that feature an optimized
implementation of the TCP stack that handles themajority of
the network tra�c to lessen the burden of themain processor,
which handles other operating system and user application
tasks.

�e o�-load mode for the Xeon Phi devices has direct
support from the compiler in that it is possible to issue
requests to the device and ascertain the completion of tasks
directly from the user’s C/C++ code. �e support for this
mode of operation is o�ered by the Intel compiler through
Phi-speci�c pragma directives: offload, offload attribute,
offload transfer, and offload wait [10]. �is is very closely

related to the o�-load directives now included in the
OpenMP 4 standard. In fact, the two are syntactically and
semantically equivalent, barring the di�erence in the “omp”
pre�x for the OpenMP syntax. A similar standard for GPUs
is called OpenACC. A summary of various programming
methods on Xeon Phi is provided in Table 1. From our
rudimentary experiments we concluded that the compiler
directive overhead is very close to that of the Common
O�oad Interface (COI) library.

5. Programming Model: Host-Device with
a Server Based on LLAPI

For many scienti�c applications, the o�-load model o�ered
by the Intel compiler, described in Section 4, is su�cient.
�is is not the case for a fully equivalent port of MAGMA
to the Xeon Phi because of the very rich functionality that
MIC MAGMA inherits from both its CUDA and OpenCL
ports. We had to use the LLAPI (low-level API) based on
Symmetric Communication InterFace (SCIF) that o�ers, as
the name suggests, a very low level interface to the host
and device hardware. �e use of this API is discouraged
for most workloads as it tends to be error-prone and o�ers
very little abstraction on top of the hardware interfaces.
What motivated us to use it for the port of our library
was (1) the asynchronous events capability that allows low-
latency messaging between the host and the device to notify
about completion of kernels on Xeon Phi as well as (2) the
possibility of hiding the cost of data transfer between the host
and the device which requires the transfer of submatrices to
overlap with the computation. �e direct access to the DMA
(Direct Memory Access) engine allowed us to maximize the
bandwidth of data transfers over the PCI Express bus. �e
only requirement was that the memory regions for transfer
be page-aligned and pinned to guarantee their �xed location
in the physical memory. Figure 1(a) shows the interaction
between the host and the server running on the Xeon Phi
and responding to requests that are remote invocations of
numerical kernels on data that have already been transferred
to the device.

6. Hybridiziation Methodology and
Optimization Strategies

�e hybridization methodology used in CUDA MAGMA
[26], adopted for MIC MAGMA, is an extension of the
task-based approach for parallelism and developing DLA on
homogeneous multicore systems [6]. In particular,

(i) the computation is split into BLAS-based tasks of
various granularities, with their data dependencies, as
shown in Figure 1(b);

(ii) small, nonparallelizable taskswith signi�cant control-
�ow are scheduled on the CPUs;

(iii) large, parallelizable tasks are scheduled on Xeon Phi.

�e di�erence with multicore algorithms is the task splitting,
which here is of various granularities to make di�erent tasks
suitable for particular architectures and the scheduling itself.
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Figure 1: (a) MIC MAGMA programming model with a LLAPI server mediating requests between the host CPU and the Xeon Phi device.
(b) DLA algorithm as a collection of BLAS-based tasks and their dependencies. �e algorithm’s critical path is, in general, scheduled on the
CPUs and large data-parallel tasks on the Xeon Phi.

Speci�c algorithms using this methodology, and covering the
main classes of DLA, are described in the subsections below.

6.1. Design and Functionality. �e MIC MAGMA interface
is similar to LAPACK. For example, compare LAPACK’s LU
factorization interface to MIC MAGMA’s:

lapackf77 dgetrf(&M, &N, hA, &lda, ipiv,
&info)

magma dgetrf mic(M, N, dA, 0, ldda, ipiv,
&info, queue)

Here, hA is the typical CPU pointer (double ∗) to the
matrix of interest in the CPUmemory and dA is a pointer in
the Xeon Phi memory (its type is magmaDouble ptr). �e
last argument in every MICMAGMA call is Xeon Phi queue,
throughwhich the computationwill be streamed on the Xeon
Phi device (its type is magma queue t).

To abstract the user away from knowing the low-level
directives, library functions (such as BLAS), CPU-Phi data
transfers, and memory allocations and deallocations are
rede�ned in terms of MIC MAGMA data types and func-
tions. �is design allows us to more easily port the MIC
MAGMA library tomany devices as was the case for the GPU
accelerators that either use CUDA [12] or OpenCL [13, 23]
and eventually to merge them in order to maintain a single
source code tree with conditional compilation options that
allow seamless targeting of speci�c hardware. Also, the MIC
MAGMA wrappers provide a complete set of functions for
programming hybrid high-performance numerical libraries.
�us, not only users but also application developers can opt
to use the MIC MAGMA wrappers. MIC MAGMA provides

the four standard �oating-point arithmetic precisions: single
and double precision real as well as single and double
precision complex. It has routines for the so-called one-
sided factorizations (LU, QR, and Cholesky), and recently
we are developing the two-sided factorizations (Hessenberg
and bi- and tridiagonal reductions), linear system and least
squares solvers, matrix inversions, symmetric and nonsym-
metric standard eigenvalue problems, SVD, and orthogonal
transformation routines.

6.2. Task Distribution Based on Hardware Capability. Pro-
gramming models that raise the level of abstraction are of
great importance for reducing so
ware development e�orts.
A traditional approach has been to organize algorithms in
terms of BLAS calls, where hardware speci�c optimizations
would be hidden in BLAS implementations such as Intel’s
MKL or AMD’s ACML. �is is still valid and used but has
shown some drawbacks on new architectures. In particular,
parallelization is achieved using a fork-join approach since
each BLAS call, for example, a matrix-matrix multiplication,
can be performed in parallel (fork) but a synchronization is
needed before performing the next call (join). �e number
of synchronizations thus can become prohibitive bottlenecks
for performance on highly parallel devices such as the MICs.
�is type of programming has been popularized under the
Bulk Synchronous Processing name [27].

Instead, the algorithms (like matrix factorizations) are
broken into computational tasks (e.g., panel factorizations
followed by trailing submatrix updates) and pipelined for
execution on the available hardware components (see below).
Moreover, particular tasks are scheduled for execution on the
hardware components that are best suited for them. �us,
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(1) PanelStartReceiving
on CPU(�1);

(2) for �� = �1, �2, . . . do
(3) PanelFactorize

on CPU(��);
(4) PanelSendto MIC(��);
(5) TrailingMatrixUpdate

on MIC(��+1);
(6) PanelStartReceiving

on CPU(��+1);
(7) TrailingMatrixUpdate

on MIC(��+2, . . .);

Algorithm 1: Two-phase (�rst: panel, two: update) factorization of
� = [�1, �2, . . .] with lookahead of depth 1. Matrix � and the result
are assumed to reside on the MIC memory.

this task distribution based on hardware capability allows the
user for the e�cient use of each hardware component. In the
case of DLA factorizations, the less parallel panel tasks are
scheduled for execution on multicore CPUs and the parallel
updatesmainly on theMICs.We illustrate this inAlgorithm 1.

6.3. LU, QR, and Cholesky Factorizations for Intel Xeon
Phi. �e one-sided factorization routines implemented and
currently available through MIC MAGMA are as follows:

magma zgetrf mic computes an LU factorization of
a general �-by-� matrix � using partial pivoting
with row interchanges;

magma zgeqrf mic computes a QR factorization of a
general �-by-� matrix �;
magma zpotrf mic computes the Cholesky factor-
ization of a complex Hermitian positive de�nite
matrix �.

Routines in all standard four �oating-point precision arith-
metics are available, following LAPACK’s naming conven-
tion. Namely, the �rst letter of the routine name (a
er the
pre�x magma ) indicates the precision – z, c, d, or s for
double complex, single complex, double real, or single real,
respectively. �e su�x mic indicates that the input and the
output matrices are in the Xeon Phi memory.

�e typical hybrid computation and communication pat-
tern for the one-sided factorizations (LU, QR, and Cholesky)
is shown in Figure 2. At a given iteration, panel � is copied to
the CPU and factored using LAPACK, and the result is copied
back to Xeon Phi. �e trailing matrix, consisting of the next
panel � + 1 and the rest of the matrix, is updated on the Xeon
Phi. A
er receiving panel � back from the CPU, panel � + 1 is
updated �rst using panel � and the result is sent to the CPU
(as being the next panel to be factored there). While the CPU
starts the factorization of �, the rest of trailing matrix, panels
� + 1, � + 2, . . ., is updated on the Xeon Phi device in parallel
with the CPU factorization of panel � +1. In this pattern, only
data to the right of the current panel is accessed andmodi�ed,
and the factorizations that use it are known as right-looking.
�e computation can be organized di�erently, to access and
modify data only to the le
 of the panel, in which case the
factorizations are known as le
-looking.

submatrix i
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P
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an

el
 i

CPU Xeon Phi

N
ex

t 
p
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el
i
+
1

Trailing

Figure 2: Typical computational pattern for the hybrid one-sided
factorizations in MIC MAGMA.

An example of a le
-looking factorization, demonstrating
a hybrid implementation, is given in Algorithm 2 for the
Cholesky factorization.�e algorithm introduces a notion of
a blocking factor denoted as �	, which is the algorithm-level
entity that de�nes the number of columns in the panel and the
inner dimension of the outer-product update to the trailing
submatrix. Copying the panel to the CPU, in this case just
a square block on the diagonal, is done on line 4. �e data
transfer is asynchronous, so before we factor it on the CPU
(line 8), we synchronize on line 7 to enforce that the data has
arrived. Note that the CPU work from line 8 is overlapped
with the Xeon Phi work on line 6. �is is indeed the case
because line 6 is an asynchronous call/request from the CPU
to Xeon Phi to start a ZGEMM operation. �us, the control
is passed to lines 7 and 8 while Xeon Phi is performing the
ZGEMM.�e resulting factored panel from the CPU work is
sent to Xeon Phi on line 11 and used on line 14, a
er making
sure that it has arrived through the sync command on line
13.

6.4. Hybrid Implementation and Optimization Techniques.
In order to explain our hybrid methodology and the opti-
mization that we have developed, let us give a detailed
analysis for the QR decomposition algorithm. While the
description below only addresses the QR factorization, it is
straightforward to derive with the same ideas the analysis for
both the Cholesky and LU factorizations. For that we start
brie�y by recalling the description of the QR algorithm.

�e QR factorization is a transformation that factorizes
an
×�matrix� into its factors� and�where� is a unitary
matrix of size 
 × 
 and � is an upper trapezoidal matrix of
size
×�.�eQRalgorithm can be described as a sequence of
steps where, at each step, a QR of a panel is performed based
on accumulating a number of Householder transformations
in what is called a “panel factorization” which are, then,
applied all at once by means of high performance Level 3
BLAS operations inwhat is called the “trailingmatrix update.”
Despite the fact that this approach can exploit the parallelism
of the Level 3 BLAS during the trailing matrix update, it
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(1) for  = 0, �	, 2 �	, 3 �	, . . . , � − 1 do

(2) 	 = min(�	, � − );
(3) magma zherk mic(MagmaUpper, MagmaConjTrans, 	, , 
 one, dA(0, ), ldda, one, dA(, ), ldda, queue);
(4) magma zgetmatrix async mic(	, 	, dA(, ), ldda, work, 0, 	, queue, &event);
(5) if  + 	 < � then

(6) magma zgemm mic(MagmaConjTrans, MagmaNoTrans,
	, � −  − 	, , 
� one, dA(0, ), ldd, dA(0,  + 	), ldda, queue);

(7) magma event sync mic(event);
(8) lapackf77 zpotrf(MagmaUpperStr, &	, work, &	, info);
(9) if ∗info ! = 0 then

(10) ∗info + = ;
(11) magma zsetmatrix async mic(	, 	, work, 0, 	, dA(, ), ldda, queue, &event);
(12) if  + 	 < � then

(13) magma event sync mic(event);
(14) magma ztrsm mic(MagmaLe
, MagmaUpper, MagmaConjTrans, MagmaNonUnit,

	, � −  − 	, � one, dA(, ), ldda, dA(,  + 	), ldda, queue);

Algorithm 2: Cholesky factorization in MIC MAGMA.

has a number of limitations when implemented on massively
multithreaded system such as the Intel Xeon Phi coprocessor
due to the nature of its operations. On the one hand, the
panel factorization relies on Level 2 BLAS operations that
cannot be e�ciently parallelized on either Xeon Phi or any
accelerator such as GPU-based architectures, and thus it can
be considered to be close to sequential operations that limit
the scalability of the algorithm. On the other hand, this
algorithm is referred to as the fork-join approach since the
execution �ow will show a sequence of sequential operations
(panel factorizations) interleaved with parallel ones (trailing
matrix updates). In order to take advantage of the high
execution rate of the massively multithreaded system, in
particular, the Phi coprocessor, we redesigned the standard
algorithm in a way to perform the Level 3 BLAS operations
(trailing matrix update) on the Xeon Phi while performing
the Level 2 BLAS operations (panel factorization) on the
CPU. We also proposed an algorithmic change to remove
the fork-join bottleneck and to minimize the overhead of
the panel factorization by hiding its costs behind the parallel
trailing matrix update. �is approach can be described as
the scalable lookahead techniques [28]. Our idea is to split
the trailing matrix update into two phases: the update of the
lookahead panel (panel of step � + 1, i.e., dark blue portion of
Figure 2) and the update of the remaining trailing submatrix
(clear blue portion of Figure 2). �us, during the submatrix
update the CPU can receive asynchronously the panel � + 1
and perform its factorization. As a result, our MIC MAGMA
implementation of the QR factorization can be described by
a sequence of the three phases described below. Consider a
matrix � that can be represented as

� = [[
[

�11 �12 �13
�21 �22 �23
�31 �32 �33

]]
]

. (1)

(i) Phase 1: 
e Panel Factorization. At a step �, this phase
consists of a QR transformation of the panel � �:�,� as in (2).

�is operation consists of calling two routines: the DGEQR2
that factorizes the panel and produces �	 Householder
re�ectors (�∗�) and an upper triangular matrix ��� of size �	×
�	, which is a portion of the �nal � factor, and the DLARFT
that generates the triangular matrix ��� of size �	 × �	 used
for the trailing matrix update.�is phase is performed on the
CPU:

[[
[

�11
�21
�31

]]
]

�⇒ [[
[

�11
�21
�31

]]
]

, [�1,1] , [�1,1] . (2)

(ii) Phase 2: 
e Look Ahead Panel Update. �e transforma-
tion that was computed in the panel factorization needs to
be applied to the rest of the matrix (trailing matrix, i.e., the
blue portion of Figure 2).�is phase consists in updating only
the next panel (dark blue portion of Figure 2) in order to let
the CPU start its factorization as soon as possible while the
update of the remaining portion of thematrix is performed in
phase 3.�e idea is to hide the cost of the panel factorization.
�is operation, presented in (3), is performed on the Phi
coprocessor and involves the DLARFB routine which has
been redesigned as a sequence of DGEMMs to better take
advantage of the Level 3 BLAS operations:

[[[
[

�12
�̃22
�̃32

]]]
]

= [� − �∗�������∗�] [[
[

�12
�22
�32

]]
]

. (3)

(iii) Phase 3: 
e Trailing Matrix Update. Similarly to phase
2, this phase consists of applying the Householder re�ectors
generated during the panel factorization of step �, according
to (3), to the remaining portion of the matrix (the trailing
submatrix, i.e., the clear blue portion of Figure 2). �is
operation is also performed on the Phi coprocessor, while, in
parallel to it, the CPU performs the factorization of the panel
� + 1 that has been computed in phase 2.



Scienti�c Programming 7

�is hybrid technique of distribution of tasks in CPU-Phi
allows us to hide thememory bound operations that occurred
during the panel factorization (phase 1) by performing such
operation on the CPU in parallel with the trailing submatrix
update (phase 3) on the Phi coprocessor. However, one of the
key parameters to performance tuning is the blocking size
as the performance and the overlap between the CPU-Phi
will be solely guided by it. Figure 3 illustrates the e�ect of
the blocking factor on the performance. It is obvious that a
small �	 will reduce the cost of the panel factorization phase
1, but it decreases the e�ciency of the Level 3 BLAS kernel
of phase 2 and phase 3, thus resulting in a bad performance.
On the contrary, a large �	 will dramatically a�ect the
panel factorization phase 1 which becomes slow and thus
the CPU-Phi computation cannot be overlapped, providing
a deterioration in the performance as shown in Figure 3. As
a consequence, the challenging problem is the following: on
the one hand, the blocking size �	 needs to be large enough
to extract high performance from Level 3 BLAS phase 3
and, on the other hand, it has to be small enough to extract
e�ciency (thanks to the cache speedup) from the Level 2
BLAS phase 1 and overlap CPU-Phi computation. Figure 3
shows the performance obtained for di�erent blocking sizes
andwe can see a trade-o� between small and large �	’s. Either
�	 = 480 or �	 = 960 can be considered as a good choice
because MKL Phi BLAS is optimized for multiples of 240.
Moreover, to extract the maximum performance and allow
the maximum overlap between both the CPU and the Xeon
Phi coprocessor, we developed a new variant that can use a
variable �	 during the steps of the algorithm.�e �exibility of
our implementation allows an e�cient task execution overlap
between the CPUhost and the Phi coprocessor which enables
the implementation to scale almost linearly with the number
of cores on the Phi coprocessor, as we can see (below) from
the very good performance that is close to the practical peak
obtained on such a system from matrix-matrix multiply and
related dense linear algebra operations, which achieve over
70% of the theoretical peak performance. Our tuned variable
implementation is represented by the red curve of Figure 3
where we can easily observe its advantages over the other
variants.

�e Phi-speci�c techniques had to be employed in order
to reap the bene�ts of the above design in the presence
of particular constraints and opportunities present on the
Intel hardware. One opportunity is to choose the best one
out of a number of interfaces for transferring data between
the CPU and the coprocessor; refer to Table 1 for details.
�e Phi implementation of MAGMA seeks to minimize the
latency and maximize the bandwidth of the PCIe transfers
while maintaining a good computational load of both the
host and the device. If the proper API for the right size of
data transfer is chosen, the DMA hardware can take over and
o�oad the transfer logistics so that the compute components
can remain busy computing on matrix elements and not
polluting their cache hierarchy with spuriousmessaging data.
In particular, SCIF o�ers the lowest latency but the large
data transfers create complexity burden of dealing with many
smaller transfer requests. Higher level mechanisms, such
as COI and virtual shared memory regions, carry a larger
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Figure 3: E�ect of the blocking factor on performance of MAGMA
MIC factorizations.

overhead but allow the handling of large volumes of data
in a much more automated fashion. �e switching between
these interfaces occurs seamlessly behind the familiar MIC
MAGMA functions.

6.5. Task-Based Runtime Model. �e scheduling of tasks for
execution can be static or dynamic. In either case, the small
and not easy to parallelize tasks from the critical path (e.g.,
panel factorizations) are executed on CPUs and the large and
highly parallel task (like the matrix updates) mostly on the
MICs.

�e use of multiple coprocessors complicates the devel-
opment using static scheduling. Instead, the use of a light-
weight runtime system is preferred as it can keep scheduling
overhead low, while enabling the expression of parallelism
through sequential-like code.�e runtime system relieves the
developer from keeping track of the computational activities
that, in the case of heterogeneous systems, are further
exacerbated by the separation between the address spaces of
the main memory of the CPU and the MICs. Our runtime
model is built on the QUARK [29] superscalar execution
environment that has been originally used with great success
for linear algebra so
ware on just multicore platforms [30].
�e conceptual work though could be replicated within other
models such as StarPU [8], OmpSS [20], Cilk [18], and Jade
[17], to just mention a few.

Dynamic runtime scheduling plays an important role in
translating dependences annotated at the source code level
and discovered at runtime when the execution traverses the
Direct Acyclic Graph of computational tasks. For example,
one of the symbolic dependences of tasks in Algorithm 1
could be

PanelFactorizeCPU (��) "→ TrailingMatrixUpdateMIC (��+1) .
(4)
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At runtime, this dependence formula is repeatedly applied to
form a sequence of tasks:

PanelFactorizeCPU (�1) "→ TrailingMatrixUpdateMIC (�2)
PanelFactorizeCPU (�2) "→ TrailingMatrixUpdateMIC (�3)

...
(5)

�e runtime environment for scheduling maintains the cur-
rent set of tasks and the future set of tasks. �e completed
tasks enable execution of their dependent tasks and are
discarded from the system.

6.6. Improving O�-Load Mode Communication. It is well
known that the o�-load transfermode copies only continuous
chunks of data from and to the coprocessors. However most
of the scienti�c application algorithms require exchanging
data with 2D or 3D storage and thus this may create an issue
when using the o�-load transfer mode. In particular, the one-
sided factorizations (Cholesky, LU, and QR) require sending
the panel to the CPU and then receiving it later a
er being
factorized by the CPU. A simple implementation loops over
one direction and calls the o�-load section to send and receive
a contiguous vector. Such an implementation behaves poorly
and as a result the communicationwill become expensive and
will slow down the algorithm. Indeed, another alternative is
to copy the 2D panel to a contiguous temporary space on the
MIC and then to send it and vice versa. Hence, there are two
points that need to be taken into consideration. Firstly, the
copy needs to be implemented as a multithreaded operation
in order to hide its cost. For that, we implemented a parallel
copy that uses all of the 240 hardware threads of the MIC
to perform the copy. �is might be against the common
wisdom that multithreading is of little help for bandwidth-
limited operations such as a memory copy. �is is not the
experience on the MIC, where the clock frequency of the
compute cores is twice as low as that of the memory, the
exact opposite of which is the case in Intel x86 multicore
processors. In addition to the low frequency, the currentMIC
hardware is to a large degree an in-order architecture with
dual-pipeline execution and single-issue fetch/decode units
[11] which poses constraints on the amount of bandwidth
that can be utilized by a single core. �ese can be overcome
in multiple ways, including the use of streaming loads and
having the multiple threads request data. Secondly, when
the MIC copies data to or from the temporary space, it
should be the only kernel running; otherwise, it will run
simultaneously with another executing kernel and this may
slow down both of the kernels. To that end, we represented
the copy kernel as a task with high priority and the scheduler
is responsible for executing it as soon as possible andhandling
the dependencies so that no other kernel will be running
at the same time. Xeon Phi requires multiple cores driving
a single FPU, which is similar to Hyperthreading in the
recent Intel x86 processors. In fact, the core-to-FPU ratio
must be two-to-one to satisfy the data rate that a single
FPU can sustain. If the ratio is lower, the FPU goes largely

underutilized because the data request rate from memory is
too low.

Experiments showed that when using these optimizations
the performance of the o�-load communication mode is
comparable to both the SCIF and the COI mode with a
variance of less than 5%.

6.7. Trading Extra Computation for Higher Execution Rate.
�e optimization discussed here is MIC-speci�c but is o
en
valid for any hardware architecture with multilayered mem-
ory hierarchy. �e dlarfb routine used by the QR decom-
position consists of two dgemms and one dtrmm. Since
coprocessors are better at handling compute-bound tasks, for
computational e�ciency, we replace the dtrmm by dgemm,
yielding 5–10% performance improvement. For the Cholesky
factorization, the trailing matrix update requires a dsyrk.
Due to uneven storage, the multidevice dsyrk cannot be
assembled purely from regular dsyrk calls on each device.
Instead, each block column must be processed individually.
�e diagonal blocks require special attention. One can use
a dsyrk to update each diagonal block and a dgemm to
update the remainder of each block column below the diago-
nal block. �e small dsyrk operations have little parallelism
and therefore their execution is ine�cient on MICs. �is
can be improved to some degree by using pragma to run
several dsyrks simultaneously.Nevertheless, becausewe have
copied the data to the device, we can consider the space above
the diagonal to be a scratch workspace. �us, we update the
entire block column, including the diagonal block, writing
extra data into the upper triangle of the diagonal block,
which is subsequently ignored. We do extra computation for
the diagonal block but gain e�ciency overall by launching
fewer BLAS kernels on the device and using the more
e�cient dgemm kernels, instead of small dsyrk kernels.

�e per-kernel improvement in performance exceeds
20% and for the entire factorization 5–10% improvement
levels may be observed.

7. Performance Results

�is section presents the performance results obtained by our
hybrid CPU-Xeon Phi implementation in the context of the
development of the state-of-the-art numerical linear algebra
libraries.

7.1. Experimental Environment. Our experiments were per-
formed on a system equipped with Intel Xeon Phi for-
merly known as Knights Corner. It is representative of a
vast class of servers and workstations commonly used for
computationally intensive workloads. We benchmarked all
implementations on an Intel multicore system with dual-
socket, 8-core Intel Xeon E5-2670 (Sandy Bridge) processors,
each running at 2.6GHz. Each socket has a 24MB shared
L3 cache, and each core has a private 256KB L2 and 64KB
L1. �e system is equipped with 52Gbytes of memory. �e
theoretical peak for this architecture in double precision is
20.8G�op/s per core, giving 332G�ops in total. �e system
is also equipped with Intel Xeon Phi cards with 7.7Gbytes
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(a) Cholesky factorization (magma zpotrf mic)
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Figure 4: Comparison of the performance versus the optimized CPU version of the MKL libraries for the three one-sided factorizations.

per card running at 1.09GHz and giving a double precision
theoretical peak of 1046G�ops.

�ere are a number of so
ware packages available. On
the CPU side we used the MKL (Math Kernel Library) [2]
which is a commercial so
ware package from Intel that is a
highly optimized numerical library. On the Intel Xeon side,
we used the MPSS 2.1.5889-16 as the so
ware stack, icc 13.1.1
20130313, which comeswith the composer xe 2013.3.163 suite
as the compiler and Level 3 BLAS routine GEMM fromMKL
11.00.03.

7.2. Experimental Results. Figure 4 reports the performance
of the three linear algebra factorization operations, the
Cholesky, QR, and LU factorizations, with our hybrid imple-
mentation and compares it to the performance of the CPU
implementation of the MKL libraries. For our implementa-
tion, the blocking factor has been chosen to be �exible in
order to achieve the best performance. A detailed description

of how to choose this factor is included in Section 6.4 and in
the results presented in this section we choose the factor to be
in the range between 480 and 960. As a general rule, we use
smaller blocking factors for smaller matrices and larger ones
for the larger matrices. �e graphs show the performance
measured using all the cores available on the system (i.e.,
60 for the Intel Phi and 16 for the CPU) with respect to
the problem size. In order to re�ect the time to completion,
for each algorithm the operation count is assumed to be the

same as that of the LAPACK algorithm, that is, (1/3)�3,
(2/3)�3, and (4/3)�3 for the Cholesky factorization, the LU
factorization, and the QR decomposition, respectively.

Figures 4(a), 4(b), and 4(c) provide the common type of
information that is characteristic of dense linear algebra com-
putations. Clearly, our algorithms from the MIC MAGMA
library, which employ hybrid techniques, deliver higher
execution rates than their CPU counterparts optimized by
the vendor. �is is in correspondence with the di�erence
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of the peak performance rates between the two hardware
components. It should be obvious from the graphs that the
combination of a CPU and a Phi coprocessor with a tuned
implementation provides substantial performance bene�ts as
opposed to a CPU-only implementation. �e �gures show
that the MIC MAGMA hybrid algorithms are capable of
completing any of the three factorization algorithms as much
as twice as fast as the CPU optimized version for a matrix
of size larger than 10000 and more than three times faster
when the matrix size is large enough (larger than 20000).�e
actual curves of Figure 4 illustrate the e�ciency of our hybrid
techniques where we note that the performance obtained by
our implementation achieves a very close level to the practical
peak of the Intel Xeon Phi coprocessor computed by running
the GEMM routine (which is around 850G�op/s). �is gain
is mostly obtained by two improvements. First, the nature
of the operations involved on the Phi side which are mostly
BLAS Level 3 operations was redesigned and implemented as
a combination of vendor’s DGEMM calls. For more details
we denote below the routines executed on the Xeon Phi
coprocessor:

(i) the DSYRK operations for the Cholesky factorization
where the DSYRK has been redesigned as a combina-
tion of DGEMM’s routines,

(ii) the DGEMM for the LU factorization,

(iii) the DLARFB for the QR decomposition where also its
has been redesigned as a combination of DGEMMs.

Second, all of the Level 2 BLAS routines that are memory
bound and that represent a limit for the performance (i.e.,
DPOTF2, DGETF2, and DGEQR2 for Cholesky, LU, and QR
factorization, resp.) are executed on the CPU side while being
overlapped with the Phi coprocessor execution as described
in Section 6.4.

An important remark has to be made here for the
Cholesky factorization: the le-looking algorithm as imple-
mented in LAPACK is considered as well optimized for
memory reuse but at the price of less parallelism and thus is
not suitable for massively multicore machines. �is variant
delivers poor performance when compared to the right-
looking variant that allows more parallelism and thus runs at
higher speed.

8. Conclusions and Future Work

In this paper, we have shown how to extend our hybridization
methodology from existing systems to a new hardware
platform. �e challenge of the porting e�ort stemmed from
the fact that the new coprocessor from Intel, the Xeon
Phi, featured programming models and relative execution
overheads that were markedly di�erent from what we have
been targeting on GPU-based accelerators. Nevertheless, we
believe that the techniques used in this paper adequately
adapt our hybrid algorithm to best take advantage of the
new heterogeneous hardware.We have derived an implemen-
tation schema of the dense linear algebra kernels that also
can be applied either to the two-sided factorization used for
solving the eigenproblem and the SVD or to the sparse linear

algebra algorithms.We plan to further study the implementa-
tion ofmulti-Xeon Phi algorithms in a distributed computing
environment. We think that the techniques presented will
become more popular and will be integrated into dynamic
runtime system technologies. �e ultimate goal is that this
integration will help to tremendously decrease development
time while retaining high performance.

In addition, we see an opportunity in fully automating
the tuning process of various algorithmic parameters of our
implementation including the blocking factor nb and the
number of threads used in various computational kernels.
�is will become even more important as the number of
linear algebra operations included in MIC MAGMA grows.
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