QUEEN'’S

UNIVERSITY
BELFAST

E5TR1845

HpMC: An Energy- Aware Management System for Multi-Level
Memory Architectures

Su, C,, Leon, E., Loh, G. H., Roberts, D., Cameron, K. W., Nikolopoulos, D. S., & de Supiniski, B. R. (2015).
HpMC: An Energy- Aware Management System for Multi-Level Memory Architectures. In Proceedings of the
First ACM International Symposium on Memory Systems (pp. 167-178). ACM.
https://doi.org/10.1145/2818950.2818974

Published in:
Proceedings of the First ACM International Symposium on Memory Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights

©2015 ACM

This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in MEMSYS '15 Proceedings of the 2015 International Symposium on Memory Systems Oct 2015 pp 167-178
http://doi.acm.org/10.1145/2818950.2818974

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:09. Aug. 2022

https://doi.org/10.1145/2818950.2818974
https://pure.qub.ac.uk/en/publications/15c8e2ef-2a51-4abe-b760-ec8dc92cd923

HpMC: An Energy-aware Management System of
Multi-level Memory Architectures

ChunYi Sut
David Robertst

Edgar A. Lednt
Kirk W. Cameront

Gabriel H. Loht
Dimitrios S. Nikolopoulost

Bronis R. de Supinskit

tVirginia Tech
sonicat@vt.edu
cameron@vt.edu

¢Lawrence Livermore
National Laboratory

leon@lInl.gov

iAdvanc_:ed Micro Devices, Inc.
gabriel.loh@amd.com
david.roberts@amd.com

bronis@IInl.gov

hQueen’s University of Belfast

d.nikolopoulos@qub.ac.uk

ABSTRACT

DRAM technology faces density and power challenges to in-
crease capacity because of limitations of physical cell design.
To overcome these limitations, system designers are explor-
ing alternative solutions that combine DRAM and emerg-
ing NVRAM technologies. Previous work on heterogeneous
memories focuses, mainly, on two system designs: PCache,
a hierarchical, inclusive memory system, and HRank, a flat,
non-inclusive memory system. We demonstrate that neither
of these designs can universally achieve high performance
and energy efficiency across a suite of HPC workloads. In
this work, we investigate the impact of a number of multi-
level memory designs on the performance, power, and energy
consumption of applications. To achieve this goal and over-
come the limited number of available tools to study heteroge-
neous memories, we created HMsim, an infrastructure that
enables n-level, heterogeneous memory studies by leverag-
ing existing memory simulators. We, then, propose HpMC,
a new memory controller design that combines the best as-
pects of existing management policies to improve perfor-
mance and energy. Our energy-aware memory management,
system dynamically switches between PCache and HRank
based on the temporal locality of applications. Our results
show that HpMC reduces energy consumption from 13% to
45% compared to PCache and HRank, while providing the
same bandwidth and higher capacity than a conventional
DRAM system.

CCS Concepts

eHardware — Emerging architectures; Platform power
issues; Memory and dense storage; eSoftware and its en-
gineering — Main memory;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MEMSYS’15 October 5-8, 2015, Washington, DC, USA

© 2015 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475,/123_4

Keywords

Energy efficiency; multi-level memories; phase change mem-
ory.

1. INTRODUCTION

While memory bandwidth has increased over the years,
new challenges have emerged as system designers attempt
to increase DRAM capacity to meet the demand of applica-
tions within a reasonable power budget. With large-scale,
in-memory data analytics now driving the demand for mem-
ory capacity, bandwidth, and latency, traditional DRAM
technologies are insufficient because of high static power con-
sumption, limited capacitor downscaling and limited band-
width scaling from single-level designs [23].

Earlier research to overcome DRAM’s power limitations [4,
13, 17, 18, 27] proposed heterogeneous memory systems
that combine DRAM, for performance, with non-volatile
RAM (NVRAM) memory, for power-conscious capacity scal-
ing. NVRAM technologies include phase change memory
(PCM) [25] and STT-RAM [2]. These heterogeneous de-
signs include new memory management policies to improve
performance and reduce energy consumption, using two fun-
damental memory organizations (see Figure 1).

Processor Processor
| 2LM | | 1LM I 2LM
(a) PCache (b)HRank

Figure 1: Heterogeneous main memory organiza-
tions: (a) PCache, a hierarchical, inclusive system,
and (b) HRank, a flat, exclusive system.

Figure 1(a) shows a hierarchical, inclusive system. The
first level of main memory, I1LM, is used as a cache for the
second level, 2LM. This is similar to existing cache hierar-

chies in current systems but for main memory. The 1LM
memory is not visible to the operating system (OS) and is
managed by the memory controller (MC). Memory manage-
ment policies for this design [10, 17] treat 1ILM as an as-
sociative cache and use LRU replacement to migrate pages.
In this paper, we refer to these class of policies as PCache
or Page Cache for main memory. Note that PCache is dif-
ferent from the page cache term used in kernel file systems
referring to a memory cache to store recent data from disk.

Figure 1(b) shows a flat, exclusive system. In this de-
sign, 1LM and 2LM are exclusive physical memory spaces.
The OS manages both memory spaces while the MC su-
pervises page migrations between them. Several policies to
migrate pages in this flat design have appeared recently [18,
27]. These policies use the following principles: (1) Place
performance-critical pages in 1LM and non-performance-
critical pages in 2LM, to achieve a combination of overall
high performance and low power dissipation; (2) Rank pages
based on history of the number of references and access re-
cency. (3) Periodically migrate pages between 1LM and 2LM
based on their ranking history. In this paper, we refer to this
type of policies as HRank or Historical Ranking.

Although these two memory policies have exhibited promis-
ing results, we show that neither policy sustains high per-
formance and, at the same time, low energy consumption
across a range of high-performance computing (HPC) work-
loads. Table 1 shows the memory bandwidth and energy
consumption of two HPC applications using these policies
(we describe these experiments in Section 4). For pF3D,
PCache is better than HRank from an energy consumption
point of view. However, for LULESH, HRank is better be-
cause it provides almost the same performance as PCache
while using less energy. As we will demonstrate later, the
performance and energy characteristics of these policies are
application dependent. For example, when data reuse is
low, PCache may result in excessive data migrations, while
HRank can save energy by delaying such migrations and di-
rectly accessing the 2LM. These observations motivate our
investigation toward more effective management policies of
heterogeneous memory systems.

Table 1: Performance and energy of pF3D and
LULESH under two memory policies.
Application | Policy Bandwidth | Energy
pF3D PCache | 7.43 GB/sec | 167.6 J
HRank | 11.49 GB/sec | 218.0J
PCache | 7.91 GB/sec | 192.6 J
LULESH HRank 7.99 GB/sec | 157.3J

We faced two significant challenges in this work. First,
the number of tools available to study multi-level memories
is insufficent to analyze and compare memory management
policies for application simulations. And, second, the lim-
ited guidance and insights into the impact of heterogenous
memories on the performance, power, and energy consump-
tion of applications.

In the first part of this paper, we present a trace-based
simulator called HMsim to simulate multi-level, heteroge-
neous memory systems. It leverages well-known simulation
components: the AMD SimNow™™ simulator! for proces-

"http://developer.amd.com /tools-and-sdks/
cpu-development /simnow-simulator/

sor simulation and the University of Maryland’s DRAM-
Sim [20] for the simulation of each level of memory. We
execute an application on the AMD SimNow simulator to
generate memory traces for each level of memory and, then,
these traces are fed to different instances of DRAMSim to
obtain memory performance and energy characteristics. For
the second memory level, we re-architected DRAMSim to
simulate an emerging PCM memory.

In the second part of the paper, we propose HpMC (Hy-
brid Policies Memory Controller), a new memory controller
design that selectively employs the PCache and HRank poli-
cies to deliver better performance and lower energy con-
sumption. HpMC implements a policy switching engine and
several new components that extend a single-level MC to fa-
cilitate switching policies and migrating pages between 1LM
and 2LM. In addition, HpMC implements an energy-aware
scheme that periodically analyzes temporal locality based on
reuse distance and uses the result as a guide to switch be-
tween PCache and HRank for energy optimization. HpMC
is a co-designed hardware-software mechanism that manages
memory at a page granularity. In the HMsim system, HpMC
is implemented in the AMD SimNow simulator to interface
the two memory levels simulated by DRAMSim.

We use pF3D and LULESH, two HPC applications of in-
terest to the U.S. Department of Energy, to understand how
PCache and HRank impact performance and energy. We
also analyze the spatial and temporal locality of numerous,
diverse memory access patterns collected from the CORAL
benchmarks® and lmbench [11]. These experiments guide
the design of HpMC, our energy-aware memory controller.
HpMC reduces energy consumption from 13% to 45% on
our suite of applications compared to well-know two-level
management policies, while providing almost the same band-
width and larger capacity than a DRAM-only system.

The contributions of this work are as follows:

e A heterogeneous memory simulator designed to ana-
lyze memory performance and energy in a two-level
memory system. It couples fast processor simulation
with detailed memory simulation. We validate this in-
frastructure against two real compute systems.

e A memory controller design to enable switching be-
tween memory policies to deliver high performance and
energy efficiency. Our empirical findings suggest that
no single policy delivers the best performance and en-
ergy consumption for a range of HPC workloads.

e A new energy-aware scheme that dynamically switches
between memory management policies to optimize for
energy-efficiency based on the temporal locality of ap-
plications.

e Temporal locality of applications is an effective metric
to guide a two-level memory management system for
performance and energy considerations.

2. HPMC DESIGN

Figure 2 shows a block diagram of the major components
of our hybrid policies memory controller, HpMC. HpMC is
designed to process read and write requests from the last-
level cache (LLC) and route requests to specific memory

https://asc.linl.gov/CORAL-benchmarks/

layers according to the active management policy. HpMC
implements the PCache and HRank baseline policies and
a Policy Switching Engine (PSE) to switch between them.
PSE manages frames and notifies the OS when physical
pages are migrated between the two memories. We begin
describing the main implementation details of HRank and
PCache. Later in this section, we describe new components
that facilitate dynamic switching between these two.

Processor (SimNow)

Core Core Core Core IPC Timing Calibration System

| Core

LLC Controller |

HpMC (HMController +DRAMSim
CMD Queue Load Queue | Store Queue

| PCM PCM
PHY Chips
Routing ==
Energy-aware | Arbiter & Contraller | & 110 [FCIERS g g
Contral &
Locality Engine

Hybric-Polic Migrati Clocking

ybrid-Palicies igration Network

Switch Engine Engine pdl | BTV DRAM
(HpSE) PHY Chips

Remap/ Irterk <
Migration rteriace [
Table PCache || HRank Datapath

Figure 2: HpMC design.

\ 4

2.1 Heterogeneous Memories Policies

2.1.1 PCache

PCache manages memory in a hierarchical, inclusive mem-
ory system. Our implementation, which is based on that of
Qureshi et al. [17], uses DRAM as a cache for PCM. The OS
manages the PCM space while the MC manages the DRAM
without OS involvement. The DRAM is implemented as an
associative cache with an LRU replacement policy. On a
DRAM miss, the PCM frame that contains the cache line
is fetched into DRAM. The MC uses an inclusion bit to
indicate whether a frame holds a copy in PCM and eight
bits to track dirty sub-blocks of a frame. PCache adopts
a lazy write-back strategy to reduce PCM write operations.
With this strategy, when a frame is evicted from DRAM, the
write-back operation only happens when the inclusion bit is
set to zero or some dirty bit is set to one. PCache leverages a
Remap/Migration Table in the MC to track the mapping be-
tween PCM frame IDs and DRAM frame IDs. When a mem-
ory request arrives, the MC checks the Remap/Migration
Table to see if the requested frame is cached in DRAM. It
also supports the line-level writes technique, where the MC
only writes dirty sub-blocks back to PCM to reduce traffic.

2.1.2 HRank

Our HRank implementation manages a flat, exclusive mem-
ory system based on hot-cold frames [27, 18]. Unlike pre-
vious work that tracks recent and adjacent accesses with a
multiple-queue (MQ) ranking system [28], we rank frames
according to their number of references. The policy selects
the top-N hottest frames from the ranking list every 10 ms
epoch and moves them to DRAM, while keeping the other
frames in PCM. It maintains hot and cold lists to track hot
and cold frames. HRank compares the new and previous
ranking results (in the hot and cold lists) to determine if
migrations to DRAM are necessary. If no frames are moved,
the MC uses the old hot and cold lists for the new epoch.
Otherwise, it schedules the migration of frames in the Mi-
gration Engine queue. The HRank algorithm is simple but

effective. It simplifies the design of the memory controller
because it only ranks and migrates frames every 10 ms. In
contrast, MQ-based algorithms update the entire MQ rank-
ing system possibly migrating pages on every memory ref-
erence. With HRank, the MC periodically updates the mi-
gration history in the OS’ Remap/Migration Table to keep
the system consistent.

2.2 Policy Switching Engine

HRank and PCache are fundamentally different: PCache
is an inclusive system, while HRank is an exclusive sys-
tem. When the PSE switches from one policy to another,
it must ensure that the OS is aware and consistent with
changes from inclusive to exclusive and vice versa. When
these changes occur, the goal of the memory controller is to
reduce data (frame) migrations as much as possible.

Several steps are performed to switch from PCache to
HRank. The general idea is to keep the data residing in
DRAM in DRAM and mark the associated frames in PCM
free. 1) The PSE interrupts the CPU and notifies the OS
to update the page table entries (PTEs). 2) The OS re-
places the old PCM frame IDs with new DRAM frame IDs
in PTEs and flushes the corresponding TLB entries accord-
ing to the Remap/Migration Table. 3) The PSE frees the
PCM frames stored in the Remap/Migration Table, because
HRank does not maintain duplicates in the PCM space. 4)
The PSE cleans up the information in the Remap/Migration
Table and begins to track the migration history.

Similarly, the following steps are taken to switch from
HRank to PCache. 1) The PSE notifies the Migration En-
gine to cancel any scheduled migrations and cleans up the
Remap/Migration Table. 2) To restore the inclusion prop-
erty the PSE checks the hot list for DRAM frame IDs and
allocates unused frames in the PCM to restore the <DRAM,
PCM> mapping in the Remap/Migration Table. If PCM
does not have enough unused space to restore the inclu-
sion property, the PSE must vacate the least frequently used
PCM frames. The PSE then moves the vacated frames to
a removal list. 3) The PSE notifies the OS to replace old
DRAM frames with new PCM frames in the PTEs based on
the new Remap/Migration Table. When the PSE sends the
removal list information to the OS, the OS invalidates the
corresponding PTEs in the page table, flushes TLB entries,
and programs the DMA engine to write dirty frames to a
system-reserved buffer in the PCM memory to avoid spilling
to storage. Thus, switching policies does not trigger accesses
to secondary storage avoiding significant performance penal-
ties.

2.3 Remapping / Migration Table

The Remapping/Migration Table is used in both PCache
and HRank. Each entry in the table has two columns to
record frame IDs and several bits. In PCache policy, the
two columns track the mapping between DRAM frame IDs
and PCM frame IDs. In HRank, the two columns track the
migration history. The first column records the source frame
IDs and the second column records the destination frame
IDs. The MC periodically updates the migration history in
the OS to keep the system consistent.

Each entry has an inclusion bit and 8 dirty bits used in the
PCache policy as described before. In addition, we leverage
the idea from Ramos et. al. [18] that uses two additional
bits in the Remapping/Migration table for the communica-

tion between the MC and the OS. When the first one, the
Migrating bit, is set, the frame is currently in migration sta-
tus. The OS sets the second, the Replacing bit, when the
OS is replacing the content of the frame. The OS controls
the update of Replacing bit, and the MC controls the up-
date of Migrating bit. To maintain the system robustness,
the Replacing and Migrating bits are exclusive and cannot
be set at the same time. The OS and the MC check whether
the other bit is set before they update the one that they
control. Since the Remap/Migration Table is maintained
by both the MC and the OS, they use a memory-mapped
register in the MC as an atomic operation token.

2.4 Migration Engine

The Migration engine uses a queue to record the scheduled
migrations. It processes migrations sequentially. In each
migration, it reads the source frame into a buffer and sets
the Migrating bit to 1. Once the Migrating bit is set, it
writes the content of the buffer to the new destination and
resets the Migrating bit when the migration finishes. When
a memory request arrives, it checks the Migrating bit to see
if the frame is undergoing transfer. During the migration,
if the memory request is a READ, it reads the data from
the source frame; if the request is a WRITE, the Migration
Engine cancels the migration, finishes the write operation,
and inserts the migration in to the queue again. The MC
uses a counter to monitor the frequency of the cancellation.
If cancellation were to occur too often, the MC halts the
migration engine and resumes it in the next epoch.

2.5 Energy-aware Controller

The Energy-aware Controller (EaC) periodically uses a lo-
cality engine to track the reuse distance distribution among
memory references and calculate a degree of temporal locality
denoted as My, which we define in Section 4. The locality
engine uses 16 64-bit counters to track the distribution and
estimate M;. Each counter 7 stores the number of mem-
ory references with reuse distance between 2% to 27!, EaC
switches between PCache and HRank policies to optimize
energy based on M;. We shall demonstrate later that the
energy consumption of both policies has a strong correlation
to M;. Reuse distance analysis is a favorable tool for pre-
dicting locality and performance. However, prior research [7]
has shown that reuse distance analysis incurs a high perfor-
mance penalty in cache systems. We argue that the overhead
of reuse distance in main memory is negligible and feasible
for online estimation for the following two reasons: 1) The
traffic in main memory is 40-100x smaller than in the cache
system. Thus, the estimation overhead can be drastically
reduced. 2) Several stochastic models have been proposed
to approximate the reuse distance online with small com-
putation cost. Shen et al. [21] proposed a small hardware
analysis device with a stochastic model that maps cheaper
time distance to a more expensive reuse distance with a 1%
prediction error and negligible computing overhead (3-8 us).

2.6 Storage Overhead

A key challenge for enabling high-performance heteroge-
neous memories is to design a cost-effective metadata system
(e.g., Remapping/Migration table) at a fine granularity. Ta-
ble 2 shows the storage overhead incurred by the HpMC on
a heterogeneous memory system with 1 GB DRAM + 8 GB
PCM capacity. HRank needs 9 MB in total to maintain

Table 2: Storage overhead of HpMC.

Component | Storage overhead
9 MB

HRank 16 bits ref. counter * (256 K hot list
+ 2 M cold list + 2.25 M ranking list)

PCache 0MB

Remap / Mi- | 1.72 MB

gration Table | 55 bits tags * 256 K entries

Migration 1.5 MB

Engine 44 bits * 256 K entries

Locality 128 bytes

Engine 16 counters * 64 bits

| Total Size | 12.23 MB |

the hot, cold and ranking lists. Because PCache only uses
the Remapping/Migration Table for page migration without
any additional components, PCache is set to 0 in Table 2 to
avoid counting the Remapping/Migration Table space twice.
In addition, each entry in the Remapping/Migration table re-
quires 55 bits for storing tags (22x2 bits, 2 column frame
IDs, 1 inclusion bit, 8 dirty bits, 1 migrating bit, 1 replac-
ing bit) and 256 K entries. The total size of the Remap-
ping/Migration table is 1.72 MB. The total queue size of
the Migration Engine is 1.5 MB (44bits for source and des-
tination frame IDs x 256K queue size). Lastly, the locality
engine needs 128 bytes (16 counters x 64 bits) to track the
reuse distance distribution in our implementation. The total
storage overhead for a typical 1 GB DRAM + 8 GB PCM
two-level memory is 12.23 MB. For fast access, we assume
that the storage in all the components in the MC is made
of SRAM. The choice of SRAM is a simplification for our
study. Recent work proposes new designs using die-stacked
DRAM to improve metadata systems performance [10].

2.7 Switching Overhead

The PSE switching overhead of the HpMC includes a TLB
flush, updating the Remap/Migration Table, and updating
PTEs in the OS. The TLB flush and Remap/Migration Table
update are done by hardware. However, the PTEs update is
expensive in a commodity OS. The overhead is significantly
smaller, however, in lightweight kernels commonly used in
HPC [19, 5]. In these systems, the OS does not use multi-
level page tables and keeps the virtual and physical address
mapping simple. Although we do not explicitly model the
switching latency overhead for the PTEs updates, we sum-
marize the switching rate of the applications and bench-
marks used in this work in Table 3. The average switching
percentage across all the benchmarks is low at 5.6%, i.e.,
when the system checks to determine if a policy switch is
necessary, only 5.6% of the times, in average, there is an
actual switch. Thus, even though the switching overhead
can be significant, the frequency of this operation is low. In
addition, the memory controller can mitigate the switching
overhead by lengthening the interval of checking whether a
policy switch is necessary.

3. SIMULATION APPARATUS

We built a trace-based simulation apparatus, HMsim, to
evaluate our hybrid memory controller on a two-level mem-
ory system with DRAM and PCM memories. HMsim uses
the AMD SimNow simulator for processor simulation and

Table 3: PSE switching percentage over the com-
plete execution of a benchmark.

Program % | Program %
CNS.STENCIL 1.3 | UMTmk 1.5
Graph500 1 | MILCmk 0
MEM.BW 1.2 | LULESH 26.5
MEM.LAT 1.1 | AMGmk 1.1
pF3D 175

Table 4: PCM and DRAM Characteristics.

Performance PCM DRAM | Ratio | Range
READ latency 55 ns 15 ns 3.7 3-6
WRITE latency 90 ns 15 ns 6.0 5-30
READ energy 3.56 pJ/bit | 1.04 pJ/bit 3.4 2-8
WRITE energy 12.35 pJ/bit | 0.35 pJ/bit 35.5 10-100

DRAMsim for memory simulation. Both simulators are
needed because the former is a functional simulator and
does not provide a memory performance model. Coupling
DRAMsim with the AMD SimNow simulator allows us to
obtain cycle-accurate memory simulations from the mem-
ory traces obtained by running an application on the AMD
SimNow simulator. We use two instances of DRAMsim, one
for DRAM and one for PCM.

We developed a heterogenous memory controller, HMCon-
troller, within the AMD SimNow simulator to simulate and
manage access to a two-level memory system. The HMCon-
troller consists of the controller blocks discussed in the pre-
vious section as part of the HpMC. The simulation has two
steps. In the first step, HMsim uses the HMController to col-
lect memory traces of DRAM and PCM memories based on
a specific memory policy. In the second step, HMsim feeds
the memory traces to DRAMsim to obtain performance and
energy results.

HMsim uses two instances of DRAMsim, one to simulate
the DRAM and another the PCM. For the latter, we de-
veloped a DRAMsim configuration that simulates a PCM
architecture, which adopts the buffer reorganization [8] and
data-comparison write (DCW) [26] techniques that improve
PCM write latency and energy. In addition, we assumed
that future PCM systems will support a PreSET-like mech-
anism [15] in which the write latency is effectively the faster
RESET latency instead of the slower SET latency®.

‘We summarize the performance characteristics of our PCM
and DRAM systems in Table 4 and also compare the per-
formance numbers with recent literature [12, 8]. The Ratio
column shows the ratio of PCM to DRAM performance in
terms of latency and energy. The Range column shows the
range of the ratio based on a literature survey. Our PCM to
DRAM rations fall within those presented in the literature.

The main architectural characteristics of the simulated
system are listed in Table 5. HMsim uses these characteris-
tics to build the performance and energy models. The details
of the models can be found in a Micron technical report [1].
In this work, HMsim simulates a four-core, out-of-order pro-
cessor equipped with an 8 MB, 2-way instruction and data
cache. Unless specified otherwise, the memory system con-
figuration consists of a two-level, heterogeneous memory of
1 GB DRAM and 8 GB PCM. It has four DRAM channels

3Removing this assumption would result in the SET opera-
tion being up to 8X the read operation.

and four PCM channels; each channel has two DIMM ranks.
In all simulations, the simulator assumes no cold page faults
and that all data is placed initially in 2LM.

Table 5: Characteristics of the Simulated System.

Feature [Value/Configuration
Processor
Processors (800MHz, x86-ISA) | 4-way out-of-order processor
1/D Cache 2-way, 128M lines, 64 bytes

TLB 128-entries
Cache block size/ page size 64 bytes/4KB
Memory Systems
1333MHz, 4 channels,
8KB row size, close page

Memory Controller

Memory Devices
(8x width, 1.5V) DRAM PCM
tRCD 15ns 55ns
Delay tRAS 36ns 71 ns
tRC 51ns 126 ns
tRP 15ns 90 ns
1ddo0 130mA 240mA
Current Idd 2N 40mA 40mA
Idd 3N 62mA 62mA
Refresh 240mA OmA

Before we can use HMsim for performance evaluation, we
need a mechanism to calibrate the timing system in the
AMD SimNow simulator, an x86 dynamically-translating,
instruction-level platform simulator. To enable fast simula-
tion, the simulator abstracts away the timing accurate fea-
ture of the entire computer system. Although HMsim can
leverage fast simulation in the AMD SimNow simulator to
explore applications at scale, timing accuracy remains the
major challenge. The basic timing unit of the simulator is
an instruction; all instructions are assumed to execute in
the same amount of time and are one clock cycle in length.
This assumption may overlook the performance impact of
long latency events such as cache, memory accesses, and
page faults if they are not overlapped with other instruc-
tions. Fortunately, the AMD SimNow simulator provides
an interface to set the IPC (number of instructions per cy-
cle) for each application. In the next section, we discuss our
IPC calibration model to improve the accuracy of the timing
system and then validate the calibrated simulation against
real hardware using two modern compute systems.

3.1 IPC Calibration Model

We propose an IPC calibration model to calibrate the
AMD SimNow simulator timing mechanism. The goal of
the model is to predict a proper IPC value for each appli-
cation, so as to generate the same demand for bandwidth
from the simulated LLC controller and the native systems.
The model predicts the IPC of an application by using input
from native execution. The input includes the native mea-
sured IPC and a set of hardware event rates (e1, ez, ..., epn).
We select events that are critical to system performance,
including the memory controller reads and writes, L1, L2,
L3 hits, floating point instructions, branch instructions, and
TLB misses. All selected events can be found in most con-
temporary processors. Fach event rate, e;, is the number of
occurrences of event i divided by the number of elapsed pro-
cessor cycles during the execution. We model the simulator
IPC as a linear function of the native IPC and event rates:

Sim IPC = (Native IPC) % ag + Y (o % ei) (1)

=1

We trained the model in Equation 1 with event coefficients
ai,i = 0,...,n by using multivariate regression. We first
collected the IPC, event rates, and bandwidth from bench-
marks as training samples from native machines. We then
ran the same benchmark on the HMsim using a single-level
memory, DRAM, and manually selected the AMD SimNow
simulator’s IPC value that generates the same amount of
bandwidth from the LLC Controller as the bandwidth col-
lected in native machines to be the prediction target.

3.2 Validation Against Native Systems

We validate the performance and power obtained with
HMsim by applying the IPC calibration model against two
real computing systems. The first system is a single-socket,
8-way Intel Westmere processor with an integrated mem-
ory controller that supports 3 memory channels of DDR3
DIMM; each DIMM has 2 GB memory capacity. The second
system is an 8-way Intel Haswell processor with dual-channel
DDR3 memory and 8 GB capacity.

Since these existing systems have only one level of mem-
ory (DRAM), we configure HMsim as a single-level mem-
ory, DRAM system and validate it using three benchmarks:
MEM.BW and MEM.LAT from Imbench and AMGmk from
the CORAL benchmark suite. We compare the bandwidth,
latency, and power of the simulated system with the corre-
sponding measurements in the two real systems. We validate
the memory bandwidth and latency against the Westmere
machine. But since we do not have access to the power
measurement infrastructure on the Westmere, we use the
newer Haswell system for the memory power validation us-
ing RAPL [3]. The results are discussed below.

3.2.1 Bandwidth

We ran MEM.BW to compare the relative bandwidth
changes in eight operation modes: rd, wr, cp, frd, fwr, fcp,
bzero, beopy, rdwr. We used the LIKWID tool [22] to mea-
sure memory bandwidth on the Westmere platform. The
top left graph in Figure 3 shows the normalized bandwidth
from HMsim and the Westmere system. The Westmere and
HMsim results are normalized to their respective bandwidth
obtained with MEM.BW.RD. The results show a small rel-
ative difference between real and simulated system with an
average error of 6.1%.

3.2.2 Latency

We used the MEM.LAT benchmark from lmbench and
varied stride sizes from 64 to 4096 to validate the latency.
The top right graph in Figure 3 shows the simulated and
native measured latencies. We normalized all simulated and
native results to their respective stride 64 (MEM.LAT.64).
In both simulation and native results, we observe that la-
tency is reduced when the stride size increases. This is be-
cause when the MEM.LAT benchmark traverses the same
amount of data, larger strides access the memory system
less frequently than smaller strides and alleviate the wait-
ing time in the transaction queue of the MC. Although the
degree of degradation is slightly different, we can see that
HMsim can accurately capture the trend of degradation.

3.2.3 Power

The bottom graph in Figure 3 shows the normalized power
using MEM.BW, MEM.LAT, and AMGmk. Results are nor-
malized to the power consumed by MEM.LAT stride 64.

We ran AMGmk with three input sizes: 50, 100, and 200.
We measured the native DRAM power using RAPL on the
Haswell machine. It is worth mentioning that the Haswell
processor uses an FIVR (fully integrated voltage regulator)
to control voltage and frequency on a per-core basis and
the uncore DRAM. RAPL can read FIVR voltage directly
and get power values via MSRs (model-specific registers).
The Haswell architecture no longer uses the modeling ap-
proach used in earlier processor generations. DRAMSim, on
the other hand, uses elapsed cycles and currents of different
CAS commands to model memory power. Although the two
systems use different approaches to derive power, the power
values in HMsim still capture the same trend as measured
in the Haswell system.

To summarize, our validation experiments show that, al-
though HMsim does not simulate the identical cycle-by-cycle
behavior to that of a native system, it remains sufficiently
accurate for evaluating our HpMC memory controller. In
particular, we are interested in the relative performance and
power tradeoffs introduced by different management policies
and, as we demonstrated in this section, HMsim captures
the same trends in performance and power as those in real
systems.

4. PCACHE AND HRANK PERFORMANCE
AND LOCALITY ANALYSIS

In this section, we analyze the effective processor band-
width and energy consumption of the HpMC using PCache
and HRank. Our analysis include how spatial and temporal
localities affect energy consumption of both policies and use
these results to build the switching governor for the EaC
to optimize energy consumption. We focus our analysis on
pF3D and LULESH.

4.1 Metrics

We first define metrics to quantify performance and local-
ity of the workloads studied in this section.

4.1.1 Effective Processor Bandwidth

The memory bandwidth we estimate from DRAM and
PCM includes the migration traffic between them. From the
processor’s point of view, migration traffic is off the critical
path. Thus, we need to exclude migration traffic to get
the effective processor bandwidth. We define the effective
processor bandwidth of PCache in Equation 2.

Effective BWpcache = BWpram — BWpen (2)

BWpram and BWpcear are the bandwidth we measured
from DRAM and PCM systems respectively. Because the
processor only accesses the DRAM system and BWpranm
includes migration traffic, the effective processor bandwidth
of the PCache policy is BWpram subtracted by BWpcm
(i.e. BWpcu is all used for migration).

In HRank, because the processor can access both DRAM
and PCM, we need to sum up the bandwidth of both mem-
ories. We also need to exclude the bandwidth due to mi-
grations. The adjusted effective processor bandwidth of the
HRank policy is defined in Equation 3. Apranm and Apcy
represent the total data traffic between the processor and
the two memory levels and Aarigration represents the total

T

14 || Westmere B3 HMSim
c Z3 HMSim 1.0 A—A Westmere [
£ 12f % ? >
3 S osf |
2 1.0 ’ £
8 ’ &
- 0.8 ’ T 06f 4
g ’ ’ 8
N s
o g g M |
S04 ’ ’ 2

0.2 ’ ’ o2r]

0.0

0 W N\ o e W 20 of A 290 Y o b o2°
o A O o N3 o ol e \ X < X% . S S

Ve e Wt et @S n® \1\@'\9“ o wet Wt T e VT @ e

14 ;

12 =0 Haswell

{22 HMSim

Normalized Power

& o ® 5
<0 o @ g\xi o
@\.?»N wet W oo o o o @

20

Figure 3: Comparing HMsim memory bandwidth, power, and latency against two native systems.

migration traffic between DRAM and PCM.
Ef fective BWhRrank =

(BWpram + BWpcum) * ADRAM + Arcum

ADRAM + APcM + AMigration

®3)

4.1.2 Spatial and Temporal Locality

We use metrics proposed by Weinberg et al. [24] to quan-
tify the spatial and temporal locality of an application. The
spatial locality estimates strides between pages, not cache
blocks, and is defined in Equation 4. stride; denotes the
fraction of total memory accesses that are of page stride
length ¢ — 1. An application that has all stride-0 references
receives a score of 1; an application whose memory references
have half page stride 0 and half page stride 1 is evaluated
.75, and so forth.

>, stride;
M, =3~ (4)
i=1

In addition, we quantify the temporal locality using the met-
ric in equation 5. The metric is based on the notion of
the distance of data reuse. The reuse distance of memory
references to an address A is the number of memory refer-
ences between two references to A. In equation 5, N denotes
the longest reuse distance we traced (N= 2'¢ in our study);
reuse; is the temporal reuse function and represents the frac-
tions of memory references with reuse distance less than or
equal to 1.

log(N)—1

M o ((reusegi+1 — reusey:) * logaN — 1)
=

logaN

()

The M; and M, scores range between [0,1]. Higher scores
mean better locality than lower scores.

42 pF3D

Figure 4 shows the pF3D DRAM and PCM bandwidth
during execution using PCache and HRank policies. In
PCache, the average bandwidth of the DRAM and PCM
is 8.17GB/sec and 0.76GB/sec. These values include the
migration traffic between the DRAM and PCM. Based on
the Equation 2, the effective processor bandwidth is 7.43
GB/sec for pF3D (i.e., 8.17-0.76).

HRank Bandwidth
T

T
avg DRAM 8.60 GByte/Sec
avg PCM 3.12 GByte/Sec i
avg Migration 0.39 GByte/Sec

25

—
20 H =
—

151 B

10 b

GBytes/sec

25

PCache Bandwidth

T
avg DRAM 8.17 GByte/Sec
avg PCM 0.76 GByte/Sec i
avg Migration 0.72 GByte/Sec

20H

151 B

10 B

GBytes/sec

0 A A A A A A A A !
0 50 100 150
Elapsed Epoch

200

Figure 4: pF3D DRAM and PCM bandwidth using
HRank and PCache policies in the HpMC

On the other hand, in HRank policy, the average band-
width of the DRAM and PCM is 8.6GB/sec and 3.12GB/sec,
respectively. The effective processor bandwidth is 11.49
GB/sec calculated using Equation 3 and data traffic in Ta-

: 71.92+19.91
ble 6 (ie. (8.6 +3.12) * riigyirastiisy). In the pF3D

case, HRank provides more bandwidth than PCache because
HRank allows the processor to access the PCM directly.

Table 6: Total data traffic of pF3D and LULESH
using the PCache and HRank policies.

Policy | Apranv | Apoum AMigration
F3D PCache | 91.87GB | 0GB 2.83GB
p HRank | 71.92GB | 19.91GB | 1.53GB
PCache | 38.17GB | 0GB 24.49GB
LULESH HRank 18.23GB | 20.18GB | 2.26GB

From an energy perspective, our simulation estimates that
PCache consumes 167.6J energy during the execution and
HRank consumes 218J (see Table 1). PCache use 24% less
energy than HRank. When analyzing the data traffic of the
two policies in Table 6, we found that, in PCache, the proces-
sor accessed 91.81GB of data from DRAM and only 2.83 GB
of data are migrated from PCM due to cache misses. The
results show that pF3D has a high hit rate with PCache.
In contrast, the processor accessed 71.92 GB of data from
DRAM and 19.91GB of data from PCM when using the
HRank policy. Compared to PCache, HRank causes 7.1x
more data accesses in the PCM. Thus, the energy consump-
tion of HRank is more than the PCache in the pF3D case.

43 LULESH

Figure 5 shows the bandwidth of LULESH using two poli-
cies. Based on equations 2 and 3 and Table 6, HRank pro-
vides 7.99GB /sec effective processor bandwidth while PCache
delivers 7.91GB/sec. Both policies support almost the same
effective processor bandwidth in the LULESH case. How-
ever, from an energy perspective, HRank consumes 20% less
energy than PCache (157.3J vs. 192.6J). To understand why
HRank consumes less energy, we analyze the total data traf-
fic of the two policies. PCache needs to migrate 24.49 GB
of data between the DRAM and PCM to meet application
demand (i.e. 38.17GB). We observed that LULESH has a
low hit rate when using PCache. The total data traffic in
the memory system is 38.17+24.49 GB, but only 38.17GB of
data is used by the processor. Thus, up to 39% (%)
of the total memory traffic is due to data migration between
DRAM and PCM. On the other hand, in the pF3D case,
PCache only needs to transfer 2.83GB of data between the
DRAM and PCM to meet the total 91.81GB processor de-
mand. The effective data traffic in this case is 97%.

In conclusion, we find that PCache minimizes energy in
workloads with a high DRAM hit rate and HRank mini-
mizes energy in workloads with a low DRAM hit rate. When
the DRAM hit rate is low, PCache with LRU replacement
becomes too aggressive in migrating data between DRAM
and PCM and wastes energy due to excessive migrations. In
contrast, HRank delays migrations and migrates frames only
periodically. The periodic migration strategy in HRank con-
serves more energy when the DRAM hit rate becomes low.
We also find that HRank provides extra bandwidth due to
direct access to PCM, but this could potentially consume
more energy. Our observations generalize to other work-
loads in the paper.

4.4 Locality Analysis for Energy Optimization

Based on the above observation, we can leverage the lo-
cality properties of an application to intelligently select the

HRank Bandwidth

T T T
=== avg DRAM 4.09 GByte/Sec
20} == avg PCM 4.26 GByte/Sec i
=== 3vg Migration 0.63 GByte/Sec

GBytes/sec

—
20H === avg PCM 4.84 GByte/Sec
=== avg Migration 6.80 GByte/Sec

151

10

GBytes/sec

0] I I I I I h I
0 20 40 60 80 100 120 140 160 180

Elapsed Epoch

Figure 5: LULESH DRAM and PCM bandwidth
using HRank and PCache policies in the HpMC

policy that delivers the lowest energy consumption. The
hit rate is decided by two factors: access adjacency (spatial
locality) and recency (temporal locality).

To investigate the correlation of locality and energy con-
sumption of two policies, we built a 2D (M,M,) locality
map for each benchmark listed in Table 7. Due to space
limitations, we only show the results of pF3D, LULESH,
AMGmk, MILCmk, Graph500 and UMTmk in Figure 6.
The x-axis of each map represents M; and the y-axis repre-
sents M. A circle at position (x,y) on the map represents
a small period (10 ms epoch) of execution in an application
with My = x and My = y estimated from memory traces of
the period. We also estimated the energy consumption of
the epoch using PCache and HRank policies and chose the
lowest energy policy as the winning policy. If the PCache
wins in an epoch with locality scores My = z and M = v,
the map plots a green circle at position (x,y) on the map;
if HRank wins, the map plots a blue circle. The size of the
circle is used to represent the ratio of energy consumption
of the losing policy to the winning policy. The bigger the
circle, the more energy is saved by the winning policy over
the losing one. We analyzed diverse memory patterns from
over 3,000 epochs from the aforementioned benchmarks. In
Figure 6, we see PCache wins for most epochs in pF3D,
MILCmk and UMTmk. Because the circles in the MILCmk
and UMTmk are small, there is not much energy difference
between the two policies. We also observed that blue cir-
cles dominate (i.e. HRank is better) in the LULESH case,
even though some green circles are clustered on the top-right
(high My, M, values).

In addition, the two rightmost charts show statistical his-
tograms of occurrences of My and M, values from the win-
ning policy for all epochs, in all applications. In the M his-
togram, we observe that both policies span the range from
0.1 to 1 with an irregular distribution. This result indicates
that M, is not a good indicator for selecting the winning
policy. This is due to the fact that spatial locality might be
broken by the multi-core, out-of-order, parallel execution.
In contrast, the M; histogram shows that the PCache pol-
icy prefers higher M, (greater than 0.65) while the HRank

Table 7: Our suite of applications and benchmarks.

Program Description Source
CNS.STENCIL | Simple stencil-based code for computing the hyperbolic components ExaCT Co-Design Center?
UMTmk Microkernel performing 3D, nonlinear, radiation transport calculation | CORAL Benchmark
Graph500 Scalable data generator and a BFS search kernel CORAL Benchmark
MILCmk Microkernel for the MIMD Lattice Computation (MILC) CORAL Benchmark
AMGmk Microkernel for a parallel algebraic multigrid solver for linear systems | CORAL Benchmark
LULESH Proxy-app for shock hydrodynamics CORAL Benchmark
pF3D Kernels for simulating laser-plasma interactions LLNL NIF
MEM.BW Benchmark from Imbench to measure memory bandwidth Imbench [11]
MEM.LAT Benchmark from Imbench to measure memory latency Imbench
o pF3D) LULESH 5 AMGmk % Ms Histogram
’ ' ' ' ' @ rrank ! ' E HRank ! !
@@ PCache 70 @l PCache
’VTOB’ 4| ’VTOB’ GDB’ :’ ool
“ [} (=]
%‘ 0.6 ‘* o g %‘ 0.6 ’ %‘0.6— L] ee sor
£ A £ £
8 & 8 . & 8 .4 or
EOA— goa— goa— ol
0.0 0.0 00 0 “lj . Vi
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Temporal locality(Mt) Temporal locality(Mt) Temporal locality(Mt) Spatial locality (Ms)
o MILCmk) PageRank 5 UMTmk 250 Mt Histogram
’ ' ' ' ' ' ' Wl HRank ! ! ! !
@l PCache
300
AOB’ AOB’ ADB’ P . R
0 0) @ L] 250
;‘g“* goa— EM, .7 150
0.0 0.0 0.0

0.2 0.4 0.4 0.8

oz o o6 0 6 .
Temporal locality(Mt)

Temporal locality(Mt) :

Figure 6: The correlation

system prefers lower M; (less than 0.65). The observation
also aligns with the nature of the PCache and HRank system
designs. When the M; is high, the data in a page is to be
reused again soon, and the page has a higher chance to stay
in DRAM without being evicted. In contrast, when M; be-
comes low, the reuse of a page in DRAM becomes low, and
the page has a higher chance to be evicted in the PCache
policy, resulting in more energy consumed by migration. In
this case, HRank can reduce energy consumption by less
frequent data migrations and by letting the processor access
the PCM directly.

5. ENERGY-AWARE HYBRID POLICY

We now show the energy consumption of the EaC mode
in the HpMC. EaC controls the dynamic switching between
PCache and HRank policies. The EaC periodically checks
the temporal locality, M;, and decides if it needs to switch
to a different policy. EaC sets the switching period to be
10ms and uses the locality engine to calculate M;. Based on

“http://exactcodesign.org

o .
060 062 064 0.66 0.68 070 072 0.74 0.76
Temporal locality (Mt)

oz 0a o6 05
Temporal locality(Mt)

1.0

between locality and energy consumption of HRank and PCache policies

the M; histograms obtained from our benchmarks, we build
a switching rule as follows: if M; > 0.65, EaC switches to
PCache. If M; < 0.65, the EaC switches to HRank.

Figure 7 illustrates the energy consumption of PCache,
HRank, and the EaC of pF3D and LULESH. The results in-
dicate that the hybrid approach using EaC intelligently se-
lects the low energy system over time with negligible predic-
tion error. It improves energy consumption by 23% (19%37)
in pF3D and 20% (135:47) in LULESH, compared with the
worst case scenarios and has almost the same energy con-
sumption in both pF3D (169.3 J vs. 167.6 J) and LULESH
(155.1 J vs. 157.3 J), compared with the best case scenarios.

5.1 Performance Evaluation

We evaluate the performance of the HpMC using the fol-
lowing policies: PCache, HRank, and EaC. We compare
HpMC performance with a DRAM-only system and a PCM-
only system. The DRAM system uses 64GB, single-level,
4-channel, DDR3-1333 memory. The PCM system also uses
a single-level with 64GB capacity. We select 64GB for the
DRAM and PCM systems as the base memory capacity be-

pF3D Energy

2500

2000

1500

m

1000

500 R

100
Lulesh Energy

2000

1500

m,

1000

500

L L L L L
0 20 40 60 80 100 120 140 160 180
Elapsed Epoch

Figure 7: Energy consumption of pF3D and
LULESH with PCache, HRank, and EaC.

cause this represents a common setting for state-of-art HPC
systems [9]. Qureshi et al. [17] suggested that 1:32 capac-
ity ratio of DRAM to PCM can achieve near DRAM-only
performance while conserving more energy. In this study,
we select a higher 1:8, DRAM to PCM ratio and use 8GB
of DRAM and 64GB of PCM in the HpMC configuration.
We use the benchmarks listed in Table 7 to evaluate perfor-
mance and the results are illustrated in Figure 8. MEM.LAT
is not shown because its results are similar to MEM.BW. We
sorted the benchmarks based on DRAM system bandwidth
from left to right.

The top chart in Figure 8 shows the effective processor
bandwidth calculated using equations 2 and 3. We normal-
ized the bandwidth to the DRAM system. The MEM.BW
benchmark is used to measure the peak bandwidth of all
settings. In MEM.BW, DRAM delivers best bandwidth per-
formance, and PCM provides about 70% the bandwidth of
DRAM. In HpMC, the HRank mode can deliver roughly
the same bandwidth as PCM while PCache delivers the
least bandwidth. This is because PCache limits access only
to the 8GB of DRAM and much of DRAM bandwidth is
used for data migration. HRank instead allows the pro-
cessor to directly access the PCM and thus provides extra
bandwidth. We observe the same phenomenon in pF3D,
AMGmk, Graph500 and UMTmk. In UMTmk and Graph500,
we find that HRank bandwidth is even better than DRAM.
This is due to more bank conflicts in DRAM.

The middle chart in Figure 8 reports the energy consump-
tion. We normalized the energy to DRAM. In applications
with low bandwidth requirements (i.e. applications in the
left), PCM consumes less energy than DRAM due to less
static power dissipation. When bandwidth increases (from
left to right), the energy ratio of PCM to DRAM also in-
creases from 0.59 (CNS.STENCIL) to 1.92 (MEM.BW), be-
cause PCM uses more dynamic write power than DRAM.
PCache and HRank conserve more energy than traditional
DRAM in all cases except MEM.BW. The energy saving
ranges from 13% to 45%. PCache conserves more energy
than HRank in MEM.BW, pF3D, MILCmk, UMTmk and
CNS.STENCIL while HRank conserves more in LULESH,
AMGmk and Graph500. EaC dynamically chooses the low

energy policies to optimize energy while achieving almost
the same bandwidth. However, EaC may still sacrifice per-
formance in certain workloads (e.g. MEM.BW and pF3D).

The bottom chart in Figure 8 reports the latency of all
memory systems. *.1LM and *.2LM represent the DRAM
and PCM latency of the HpMC using three modes. We
model the latency of memory systems without taking the
cost of MC migration and OS updates into consideration
becasue they are not always on the critical path of memory
accesses. In applications with low and moderate bandwidth
requirements (CNS.STENCIL to AMGmk), we observe that
the latency of the three HpMC modes is similar to that of
the DRAM system. In applications with high bandwidth
requirements (LULESH, PF3D and MEM.BW), we observe
that the PCM latency in the three modes of HpMC is higher
than DRAM. This is inevitable because the PCM is highly
utilized. However, the latency can be hidden by the high
level of concurrency in the processor.

6. RELATED WORK

Mogul et al. [13] considered combining NAND Flash and
DRAM in main memory to reduce main memory power con-
sumption. More recent works [8, 18, 27, 17] focused on us-
ing PCM to partially or completely replace DRAM due to its
more promising performance characteristics than Flash. Be-
cause page migration is the key to energy conservation and
performance for main memory systems, several works have
been proposed to address this problem. Huang et al. [6]
proposed an OS-controlled, power-aware virtual memory to
periodically migrate pages based on reference bits. Although
previous OS-based approaches can improve energy consump-
tion, OS latency is still a major concern. Several hardware-
controlled systems have been studied in the literature [4, 14].
Pandey et al. [14] used the access pattern in workloads by
clustering frequently accessed pages in a small subset of the
memory chips to improve locality and energy consumption.
Dong et al. [4] implemented an address translation mecha-
nism in the memory controller that can dynamically migrate
data between on-package and off-package memories. These
works study the performance and energy with a single het-
erogeneous memory organization and a single management
policy. Qureshi et al. [16] proposed the Dynamic Insertion
Policy (DIP), which dynamically switches between LRU and
BIP (Bimodal Insertion Policy) policies based on the small
working set analysis. This research is close to our work,
however, the proposed policy only considers a hierarchical,
inclusive system without considering the potential benefits
of a flat system design enabling direct access to the 2LM. In
our work we do not assume that a single policy or memory
organization can meet the demands of multiple applications.
Furthermore, a single policy may not provide the best per-
formance or energy efficiency within an application because
of the different computational requirements of an applica-
tion’s phase. This motivates our investigation for switching
policies dynamically based on the temporal locality of ap-
plications and how locality changes over time.

7. SUMMARY AND CONCLUSIONS

In this paper, we study different memory organizations
and management policies for emerging multi-level memory
systems. We evaluate the impact of several policies on the
performance and energy consumption of a number of codes

2.5

EEN DRAM
2.0 HEE PCM
E HpMC.HRank

I
= HpMC.PCache
3 HpMC.EaC

151

1.21

Normalized Bandwidth

T
=1 HpMC.PCache
= HpMC.EaC

EEE DRAM
o l{EEm PCM
EJ HpMC.HRank

Normalized Energy

T T T
1600 | | EEEE DRAM =3 HpMC.PCache.1LM
=3 PCM Z3 HpMC.PCache.2LM
E=3 HpMC.HRank.1LM [EEE HpMC.EaC.1LM
1200 =71 HpMC.HRank.2LM =3 HpMC.EaC.2LM

Latency (ns)

CNS.STENCIL UMTmk Graph500 MILCmk

AMGmk LULESH pF3D MEM.BW

Figure 8: Memory bandwidth, energy, and latency comparison of DRAM, PCM, and three modes in HpMC.

of interest to the U.S. Department of Energy. To perform
this evaluation we faced two challenges: a shortage of avail-
able tools to simulate the performance and power of applica-
tions in a multi-level memory system and a lack of guidelines
to help application developers use multi-level memories more
efficiently.

To overcome these challenges we created HMsim, a simu-
lation infrastructure that provides detailed memory simula-
tions and enables the study of n-level, heterogeneous mem-
ories. HMsim achieves this by decoupling the memory and
processor simulation and leveraging existing cycle-accurate
memory simulators. Our validation with existing architec-
tures show that HMsim closely follows the same changes in
performance and power. In this work, we configured HMsim
with DRAM in the first level of memory and PCM in the
second level. For the latter, we developed a model based on
an existing DRAMsim model.

We proposed and evaluated HpMC, a new memory con-
troller design that dynamically selects between two well-
known, two-level memory policies to improve the energy ef-
ficiency of applications on heterogeneous memory systems.
A key observation that led to the design of HpMC is that
neither policy provides the best energy efficiency across a
number of HPC applications. Furthermore, the choice of
best policy changes as an application transitions between
different code regions. We found that temporal locality of
an application is a good indicator to determine, at run time,
the memory management policy.

The results from our suite of HPC applications and micro-
benchmarks demonstrate that HpMC reduces energy con-
sumption from 13% to 45% compared to HRank and PCache,

while providing almost the same memory bandwidth and sig-
nificantly higher capacity than a DRAM-only system. Our
hybrid system leverages the benefits of each policy by dy-
namically adapting to the characteristics of applications,
particularly temporal locality.

Acknowledgment

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344. LLNL-CONF-
662474. AMD, the AMD Arrow logo, the AMD SimNow
simulator, and combinations thereof are trademarks of Ad-
vanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may
be trademarks of their respective companies.This work has
been supported in part by the European Commission un-
der Grant Agreement 610509 (NanoStreams). This material
is based upon work supported in part by the National Sci-
ence Foundation under Grant No. 1422788, 0910784 and
0905187.

8. REFERENCES

[1] TN-41-01: Calculating memory system power for
DDR3s. Technical report, Micron Technology, Inc,
December 2009.

[2] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith,
D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts,
S. Wang, S. Wolf, A. W. Ghosh, J. Lu, S. J. Poon,
M. Stan, W. Butler, S. Gupta, C. K. A. Mewes,

T. Mewes, and P. Visscher. Advances and Future

[10]

[11]

[12]

[13]

Prospects of Spin-Transfer Torque Random Access
Memory. Magnetics, IEEE Transactions on, 46(6),
June 2010.

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le. RAPL: Memory Power Estimation and
Capping. In Proceedings of the 16th ACM/IEEE
International Symposium on Low Power Electronics
and Design, ISLPED ’10.

X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi.
Simple but Effective Heterogeneous Main Memory
with On-Chip Memory Controller Support. In High
Performance Computing, Networking, Storage and
Analysis (SC10).

M. Giampapa, T. Gooding, T. Inglett, and R. W.
Wisniewski. Experiences with a lightweight
supercomputer kernel: Lessons learned from Blue
Gene’s CNK. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC’10, New Orleans, LA, Nov. 2010.
ACM/IEEE.

H. Huang, P. Pillai, and K. G. Shin. Design and
Implementation of Power-aware Virtual Memory. In
Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’03. USENIX
Association.

Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen. Is Reuse
Distance Applicable to Data Locality Analysis on
Chip Multiprocessors? In Proceedings of the 19th
Joint European Conference on Theory and Practice of
Software, International Conference on Compiler
Construction, CC’10/ETAPS’10.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable
DRAM alternative. SIGARCH Comput. Archit. News,
37(3), June 2009.

X. Liao, L. Xiao, C. Yang, and Y. Lu. Milkyway-2
supercomputer: system and application. Frontiers of
Computer Science, 8(3), 2014.

G. H. Loh and M. D. Hill. Efficiently enabling
conventional block sizes for very large die-stacked
dram caches. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-44. ACM, 2011.

L. McVoy and C. Staelin. Lmbench: Portable Tools
for Performance Analysis. In Proceedings of the 1996
Annual Conference on USENIX Annual Technical
Conference.

J. Meza and J. Li. Evaluating row buffer locality in
future non-volatile main memories. Technical report,
Computer Architecture Lab, Carnegie Mellon
University, December 2012.

J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi.
Operating System Support for NVM+DRAM Hybrid
Main Memory. In Proceedings of the 12th Conference
on Hot Topics in Operating Systems, HotOS’09.
USENIX Association.

V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini.
DMA-Aware Memory Energy Management. In In
Proceedings of HPCA, 2006.

M. Qureshi, M. Franceschini, A. Jagmohan, and

L. Lastras. PreSET: Improving performance of phase
change memories by exploiting asymmetry in write

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

(26]

27]

28]

times. In Computer Architecture (ISCA), 2012, June.
M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high
performance caching. In Proceedings of the 34th
Annual International Symposium on Computer
Architecture, ISCA ’07, pages 381-391, New York, NY,
USA, 2007. ACM.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system using
phase-change memory technology. In Proceedings of
the 36th Annual International Symposium on
Computer Architecture, ISCA ’09. ACM.

L. E. Ramos, E. Gorbatov, and R. Bianchini. Page
Placement in Hybrid Memory Systems. In Proceedings
of the International Conference on Supercomputing,
ICS ’11. ACM.

R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson,
A. B. Maccabe, P. M. Widener, and K. Ferreira.
Designing and implementing lightweight kernels for
capability computing. Concurrency and Computation:
Practice and Ezperience, 21(6):793-817, Apr. 2009.

P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
DRAMSim2: A Cycle Accurate Memory System
Simulator. Computer Architecture Letters, 10(1),
jan.-june 2011.

X. Shen, J. Shaw, B. Meeker, and C. Ding. Locality
Approximation Using Time. In Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’07.
ACM.

J. Treibig, G. Hager, and G. Wellein. Likwid: A
lightweight performance-oriented tool suite for x86
multicore environments. In Proceedings of PSTI2010,
the First International Workshop on Parallel Software
Tools and Tool Infrastructures.

H. Vandierendonck, A. Hassan, and D. Nikolopoulos.
On The Energy-Efficiency of Byte-Addressable
Non-Volatile Memory. Computer Architecture Letters,
PP(99), 2014.

J. Weinberg, M. O. McCracken, E. Strohmaier, and
A. Snavely. Quantifying Locality In The Memory
Access Patterns of HPC Applications. In Proceedings
of the 2005 ACM/IEEE Conference on
Supercomputing. IEEE Computer Society.

H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P.
Reifenberg, B. Rajendran, M. Asheghi, and K. E.
Goodson. Phase Change Memory. Proceedings of the
IEEE, 98(12), Dec 2010.

B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee,
and B.-G. Yu. A Low Power Phase-Change Random
Access Memory using a Data-Comparison Write
Scheme. In Circuits and Systems, 2007. ISCAS 2007.
W. Zhang and T. Li. Exploring phase change memory
and 3D die-stacking for power/thermal friendly, fast
and durable memory architectures. In Parallel
Architectures and Compilation Techniques, 2009.
PACT ’09.

Y. Zhou, J. Philbin, and K. Li. The multi-queue
replacement algorithm for second level buffer caches.
In USENIX Annual Technical Conference, 2002.

