
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

HPP: HTML Macro-Preprocessing to Support
Dynamic Document
Caching

Fred Douglis and Michael Rabinovich
AT&T Labs – Research

Antonio Haro
College of Computing, Georgia Institute of Technology

HPP: HTML Macro-Preprocessing to Support Dynamic Document
Caching�

Fred Douglisy

AT&T Labs – Research

Antonio Haroz

College of Computing, Georgia Institute of Technology

Michael Rabinovichx

AT&T Labs – Research

To appear,USENIX Symposium on Internetworking Technologies and Systems
December 1997

Abstract

A number of techniques are available for reducing
latency and bandwidth requirements for resources on
the World Wide Web, including caching, compression,
and delta-encoding [12]. These approaches are limited:
much data on the Web is dynamic, for which traditional
caching is of limited use, and delta-encoding requires
both a common version base against which to apply a
delta and the complete generation of the resource prior to
encoding it. In contrast to these approaches, we take an
application-specific view, in which we separate the static
and dynamic portions of a resource. The static portions
(called thetemplate) can then be cached, with (presum-
ably small) dynamic portions obtained oneach access.
Our HTML extension, which we refer to as HPP (for
HTML Pre-Processing) supports resources that contain
variable number of static and dynamic elements, such as
query responses.

Results with macro-encoding of query response re-
sources from local CGI scripts and two popular search
engines indicate that our approach promises a substan-

�Copyright to this work is retained by the authors. Permission is
granted for the noncommercial reproduction of the complete work for
educational or research purposes.

yEmail: douglis@research.att.com.
zThis work was done while the author was visiting AT&T Labs–

Research. Email: haro@cc.gatech.edu.
xEmail: misha@research.att.com.

tial reduction of network traffic, server load, and access
latency for dynamic documents. The size of network
transfers using HPP are comparable to delta-encoding
(factors of 2–8 smaller than the original resource), while
the data generated by content providers is simpler, and
the load on the end-servers is slightly lower.

1 Introduction

Caching plays a crucial role in a wide-area dis-
tributed system such as the World Wide Web. It signif-
icantly reduces response time foraccessing cached re-
sources by eliminating long-haul transmission delays. It
also reduces backbone traffic and the load on content-
providers.

The importance of caching will increase dramati-
cally once ISDN lines and cable modems replace slow
modems as the “last link” to the user. Indeed, a slow
link to the user currently serves as a “floodgate” that lim-
its the rate of requests from this user. With an order-of-
magnitude increase in bandwidth provided by ISDN and
cable modems, these floodgates will open, shifting the
bottleneck further to the backbone and content servers.

However, a significant portion of Web resources are
not cacheable, either because the resource is modified
upon everyaccess, or because the content provider ex-
plicitly prohibitscaching [4]. Thus, increasingly sophis-
ticated caching techniques are applied to a decreasing

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 2

portion of resources on the Web.
Some proposals have been made to transmit encod-

ings of the changes between subsequent versions of a
resource, in order to reduce bandwidth requirements and
improve end-to-end performance [1, 8, 12, 14]. With
delta-encoding, one might cache a resource even if it is
considered uncacheable, but not present the cached data
without first obtaining the changes to present its current
version. One advantage of these proposals is that they
apply uniformly to all uncacheable resources regardless
of the reason why they are uncacheable. Another ad-
vantage is that they can be implemented transparently,
via proxies, so that content providers need not be modi-
fied. However, the delta-encoding proposals have disad-
vantages as well. If the content provider must compute
the delta-encodings on the fly, it suffers overhead and
must store a potentially large number of past versions; if
the delta computation is performed by an intermediary,
then the entire resource must be sent from the content
provider to the intermediary, and the encoding must still
be performed on the “critical path.”

We have observed that with a common class of re-
sources, such as those provided by search engines, a sig-
nificant part of the resource is essentially static. Por-
tions of the resource vary to different extents from one
response to another (the difference between two pages in
response to a single query is usually smaller than the dif-
ference between pages from different queries). Also, the
location of the dynamic portions relative to the rest of
the resource does not change. Consider, for example, a
document generated in response to a stock quote query.
It contains the banner identifying the content provider,
headers, information specifying formatting and fonts,
and, finally, the name and the stock price of the re-
quested company. The banner, headers, and formatting
stay the same, and the dynamic portion (the name and
the stock price) go in the same place within the resource.

We therefore have extended HTML to allow the ex-
plicit separation of static and dynamic portions of a re-
source. The static portion contains macro-instructions
for inserting dynamic information. The static portion
together with these instructions (thetemplate) can be
cached freely. Thedynamic portion contains the bind-
ings of macro-variables to strings specific to the given
access. The bindings are obtained for every access, and
the template is expanded by the client prior to rendering
the document. In other words, a macro-preprocessing
phase at the client permitspartial caching ofdynamic

resources.
We designed our macro-encoding language, which

we refer to as HPP (forHTML Pre-Processing), to min-
imize the size of the bindings. We motivate our proposal
by examples from several popular resources, all of which
show a remarkable difference in size between the orig-
inal resource and the bindings: factors of 4–8 without
compression, or 2–4 when comparing compressed bind-
ings to the compressed original resource.

In addition to gains in performance, HPP should
make authoring dynamic resources easier. Instead of
writing programs that generate the full HTML docu-
ment, the bulk of the document can be generated using
an HTML authoring tool similar to the ones available
now, and only the dynamic portions will have to be pro-
duced as a program output. In fact, similar techniques
are already used to simplify programming (the “shtml”
server-side include feature of many HTTP servers). Our
proposal allows a systematic and more general way of
doing this, and also exploits this separation to enable
caching. Macro-preprocessing is almost a client-side
equivalent to server-side inclusion, but with a slightly
more sophisticated language that supports, for instance,
looping constructs.

The rest of the paper is organized as follows. We
discuss the extension to HTML for client-side macro-
preprocessing in Section 2. Section 3 outlines the imple-
mentation path of our approach within the HTTP proto-
col and HTML language. Section 4 evaluates the perfor-
mance of our approach using several existing dynamic
resources including two well-known search engines. A
more detailed comparison with related work is given in
Section 5. We conclude in Section 6 with a summary of
main results.

2 HTML Extension

Our proposal for macro-preprocessing within HTML
is similar to source code preprocessing (e.g.,cpp). In our
case, the template is first expanded into the actual HTML
document, which is then rendered on the browser screen.
The HTML extension contains the following new tags:
VAR, LOOP, IF, SET VAR, andDYNAMICS.VAR,
LOOP, IF, andSET VAR are used in the template to
compose instructions regarding the location of dynamic
content.DYNAMICS is used to delineate the dynamic
part of the document. It contains bindings of the macro-
variables to dynamic text strings specific to the current

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 3

document access.

2.1 Overview

The syntax of the new tags conforms with the SGML
specification [6]. We describe these tags informally
using a series of examples, without spending time on
straightforward details.

TheVAR tag is used to include a macro-expression
in the text. The operations defined in the macro-
expression are concatenation, basic arithmetic opera-
tions (which obviously make sense only if the operands
evaluate to numbers), etc.

In many cases, a macro-expression contains a single
variable and is used in the template as a placeholder, to
be replaced by a text segmentdynamically bound to this
variable. An example of this approach appears in Fig-
ure 1 with “time” and “count” variables.

As a more complicated example, consider the re-
sponse from Lycos1 [11] to the query “cachingdynamic
objects.” At the end of the pageful of results, the re-
sponse provides links to the next ten pages of the results.
These links are generated by the HTML fragment in Fig-
ure 2. This fragment is rendered in the browser window
as1:2:3:4:5:6:7:8:9:10, where each number is associated
with a query URL. The URL contains the keywords and
the number of the first result of interest. This fragment
could be encoded in our extended HTML as the template
and bindings shown in Figure 3, which illustrates the use
of a more complexVAR expression, as well as the sim-
ple use of aLOOP tag. All variables in theDYNAM-

ICS portion of the resource can be specified explicitly,
separated by commas, or as a numeric range similar to a
FOR loop with range and increment.

To arrive at the actual fragment, the pre-processor
would expand the template fragment within the loop as
many times as the number of bindings to thesubcount

macro-variable specified in the loop fragment of theDY-

NAMICS section. Each time the expansion is done with
the new binding for thesubcount variable. However,
the same binding for thequery variable is used in each
expansion because the binding is specified outside the
LOOP. Notice that the amount of dynamic information
that changes with each access is significantly smaller in
our encoding.

1All fragments of Lycos output are Copyrightc
1994-1997
Carnegie Mellon University. All rights reserved. Lycos is a trademark
of Carnegie Mellon University. Used by permission.

The next example concerns conditional macro-
expansion. Consider, again, the fragment of Lycos out-
put showing the numbers of ten pages of results. The
number of the currently viewed page is included as plain
text, while other page numbers are part of the anchors
referring to corresponding URLs as shown in Figure 2.
For example, if the current page is 4, the fragment would
be rendered as1:2:3:4:5:6:7:8:9:10. This fragment could
be macro-encoded by splitting the loop of Figure 3 into
two, with the first loop generating page numbers pre-
ceding the current page, followed by the current page
number in a VAR expression, followed by the second
loop generating the remaining page numbers. Another
complication is that there are ten numbers in the frag-
ment but only nine dots in-between. So, without extra
functionality, one would have to encode the first num-
ber separately outside the loops, sinceeach loop iter-
ation adds a dot and a number. Figure 4 illustrates a
more convenient way of macro-encoding the same frag-
ment using conditional statements and assignments to
macro-variables. We have not fully implemented con-
ditional statements and assignments yet. Consequently,
we hard-coded the first page number in the template as
in Figure 2, assuming that separate templates are pre-
pared for the second, third, etc pagefuls of results. Note
that our shortcut caused negligible decrease in the size
of the template and bindings compared to the encoding
with conditionals and assignments (0.85% decrease for
the template and 0.35% decrease for the bindings), so it
does not affect our performance conclusions.

Our final example illustrates a more complex use of
a LOOP construct. Considering the same query to Lycos
as before, Figure 5 shows the fragment of the response
that generates a list of ten results (only the first and the
last of the results are shown). The fragment can be ob-
tained from the template and bindings shown in Figure 6.

2.2 Scoping

The scope of macro-variables is similar to scope in
block-structured languages. Variables whose binding is
specified within a loop in theDYNAMICS section have
the scope limited to that loop. Variables that are bound
outside any loop in theDYNAMICS section have global
scope. They are shadowed by loop variables with the
same name. Only a single binding can be specified to
each global variable, and this binding is used everywhere
this variable is encountered in the template. The order in

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 4

<HEAD>
<TITLE>Michael Rabinovich</TITLE>
<BODY>
...
The time is<VAR time>.
This page has been accessed<VAR count> times.
</BODY>

(a) The template for a simple query.

<HTML>
<TEMPLATE HREF=”query.hpp”>
<DYNAMICS>
time = 1:15pm;
count = 10;
</DYNAMICS>
</HTML>

(b) The bindings for a particular instan-
tiation.

Figure 1: Example of HTML preprocessing encoding scheme.

1
 .
2
 .
3
<...>

Figure 2: Output from the sample Lycos query, with links to additional pages of results.

which loop and global variables appear in the template
loop is immaterial.

Loop variables have a list of values in their binding
specifications. In an iteration, each variable isbound to
the next value in its list, and the loop fragment of the
template is expanded using these bindings. When the
list is exhausted for some variable, the expansion stops,
and the rest of all other lists is ignored.

TheLOOP construct can be nested. This could be
used to macro-encode a resource that contains a variable
number of sections, each containing a variable number
of similar entries. Consider, for example, a hypothetical
service that gives restaurant information. A query could
be: “Give me Chinese restaurants under $10 in Union
County”. The response lists results by a town. Foreach
town, the resource provides general information (e.g.,
links to current events in the town or other categories
of restaurants), and a list of Chinese restaurants. Thus,
the resource contains a number of town entries, whose
number varies with a query, with a variable number of
restaurant entries within each town entry, again, depend-
ing on the query. One can easily provide examples of
deeper loop nesting.

When a template and the corresponding bindings

contain multiple loops, some of which are nested, the
correspondence between the loops in both parts is es-
tablished structurally. For the top-level loops, the first
loop in the template corresponds to the first loop in the
bindings, etc. Within each top-level loop, the correspon-
dence is established similarly for the next-level nested
loops, and so on. It is an error to have non-matching
loop structures of the template and bindings of the same
resource.

One could provide further features of general macro-
languages, like nested macros, where the binding to a
variable contains aVAR-expression, or specifying full-
blown macro-definitions, including macro-parameters,
in the bindings. For example, when different re-
source representations are generated for different types
of browsers (e.g., with or without support for frames)
a single template can be cached at the proxy and condi-
tionally expanded by different browsers without contact-
ing the content provider.

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 5

1
<loop> .
<A HREF=”/cgi-bin/pursuit?first=
<var 10*(subcount - 1)+1>&part=&cat=lycos&
query=<var +query>”><var subcount>
</loop>

(a) The template.

query = caching+dynamic+objects
<loop>
subcount = 2 to 10,1;
</loop>

(b) The bindings.

Figure 3: Example of HTML preprocessing for the fragment of the Lycos query output shown in Figure 2. The
example demonstrates aLOOP construct. The template corresponds to the first portion of the query results - see
Figure 4 for the template that applies universally to all portions.

<setvar loopstart=1>
<loop>
<if loop start = 0>

 .
</if>
<setvar loopstart=0>
<if subcount = active>
<var subcount>

<else>
<A HREF=”/cgi-bin/pursuit?first=
<var 10*(subcount - 1)+1>&part=&cat=lycos&
query=<var query>”><var subcount>

</if>
</loop>

(a) The template.

query = caching+dynamic+objects;
active = 4;
<loop>
subcount = 1 to 10,1;
</loop>

(b) The bindings.

Figure 4: Example of conditional macro-expansion (the current page is 4).

3 HTTP and HTML Macro-expansion Im-
plementation

While the previous section presented an overview of
HTML macro-expansion, this section discusses issues
involving HTTP and caching.

3.1 Methodology

The goal of HPP is to cache static content while per-
mitting dynamic content to be transferred when needed.
The browser would have to use anAccept-encoding
request header to inform the server that an HPP en-

coding would be understood. In the steady state, a
browser would have many commonly used templates
in its cache, and receive a response header such as
Content-encoding: x-hpp to describe dynamic data
that has a reference to a template.

The question is, how should HPP handle a template
that isnotalready cached? In the worst case, eachx-hpp

resource would refer to a template that is not already
cached, and require a second round-trip to the content
provider to obtain the template. Even with techniques
such as theKeep-alive request header of HTTP 1.1 [5],
which would use a single TCP connection to request
both resources, the extra round-trip could dramatically

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 6

1)
 Dynamic Documents

Dynamic Documents: Extensibility and Adaptability in the WWW
M. Frans Kaashoek, Tom Pinckney, and Joshua A. Tauber
MIT Laboratory for Computer Science...

http://amsterdam.lcs.mit.edu/papers/www94.html
[100%, 3 of 3 terms]<p>

<...>

10)

SunWorld Online distributed object glossary

[Table of contents][Sun's homepage][Next story][Sidebar][Back to story]
Glossary of Object-Oriented Terminology for Business Compiled by Mike Aube an...

http://fbp.icm.edu.pl/sunworldonline/swol-04-1996/swol-04-oobook.glossary.html
[28%, 2 of 3 terms]<p>

Figure 5: Responses from the sample Lycos query.

increase the end-to-end latency to receive the original
resource.

An alternative is to send the template along with the
dynamic data as a MIME multipart document [7] when
it is not cached already. This would require a mecha-
nism for deciding when to send the template. One way
to do this is to establish a one-to-one correspondence
between a resource URL and an identifier (e.g., URL) of
its template. This would let the client determinea pri-
ori if it has the template for a given URL in its cache,
and then pass this information in an HTTP header, to-
gether with a version identifier of the cached template.
(A version identifier, like alast-modi�ed timestamp or
anetag[5] is needed to ensure that the cached template
is still current.) The downside of this approach is that it
would reduce the flexibility of HPP. For instance, mul-
tiple resources might share a single template in the ab-
sence of this restriction. More importantly, some con-
tent providers generate significantly different output for
the same URL, e.g., depending on the type of request-
ing browser. Thus, a URL may correspond to multiple
templates.

The simplest way to address the above problems, and
the one we take initially, is to include explicit template

URL in bindings. The server first returns the bindings
with the proper template URL, which is then fetched by
the client unless cached. This approach assumes that
templates will commonly be cached and that the added
cost of a second request when a template is not already
cached will be amortized over the benefits that otherwise
accrue. A recentlypublished study of Web accesses in-
directly supports this assumption, showing an 85-87%
rate of repeated access todynamic resources (see [12],
Sections 5.1 and 5.2). If HPP reaches a wide enough
distribution to gather meaningful statistics of real usage,
it will be possible to determine how valid this assump-
tion is in practice.

3.2 Comparison with other Techniques

HPP serves two purposes: to allow the dynamic por-
tions of similar resources to be transferred without send-
ing the static portions, and to allow a compact represen-
tation of repetition within a resource (through the use
of the LOOP construct). In fact, both of these goals
can be achieved through other means: the former via
delta-encoding [1, 8, 12, 14] and the latter via compres-
sion [12, 13]. A fundamental issue with delta-encoding
is the management of past versions, since a server and

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 7

<loop>
<var counter>)
<a href=”<var queryurl>”> <var querysubj>

<var querysum>

<var queryurl>
[<var percent>%,<var nummatch> of <var numterms> terms]<p>

</loop>

(a) The template corresponding to the fragment of Lycos response shown in Figure 5.

<loop>
counter = 1 to 10, 1;
queryurl=

”http://amsterdam.lcs.mit.edu/papers/www94.html”,
<...>
”http://fbp.icm.edu.pl/sunworldonline/swol-04-1996/swol-04-oobook.glossary.html”;

querysubj=
”Dynamic Documents”,
<...>
”SunWorld Online distributed object glossary”;

querysum=
”Dynamic Documents: Extensibility and Adaptability in the WWW
M. Frans Kaashoek, Tom Pinckney, and Joshua A. Tauber
MIT Laboratory for Computer Science...”,
<...>
”[Table of contents][Sun's homepage][Next story] [Sidebar][Back to story]
Glossary of Object-Oriented Terminology for Business Compiled by Mike Aube an...”;

percent= 100,<...>, 28;
nummatch= 3,<...>, 2;
</loop>

(b) The bindings.

Figure 6: Example of a more complicatedLOOP construct, with multiple explicit values per variable.

client must agree on a base version against which to
apply a delta. The server may generate thousands of
versions of a single dynamic resource and cannot eas-
ily store every past version that an arbitrary client might

have stored. HPP addresses this problem by permitting
a single cached template that all clients may cache, and
providing additional dynamic data in the context of that
template. A delta-encoding system could similarly no-

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 8

tify clients that they should store a particular instance of
a resource, against which future deltas would be com-
puted [8]. Finally, delta-encoding does not help with
repetition unless the encoding itself is compressed [12].

Simple compression of responses would eliminate
redundancy from loops in a manner similar to HPP. In
fact, compression could potentially achieve a better re-
duction in data size because it would compress all text,
not just the obvious repetition from loops. However, as
shown below, HPP templates and dynamic data can be
compressed as well, getting the benefits of both com-
pression and caching of the static portions.

Part of the rationale behind HPP is that it provides
servers with the opportunity to generatejust the dynamic
data, rather than generating an entire HTML resource
only to compute a delta-encoding or compressed ver-
sion of it. The expected data transfer size in either case
is comparable, but the server overhead should be less.
Section 4 discusses performance issues.

3.3 Compatibility

HPP requires extra functionality from the client
(to perform macro-preprocessing of templates) and the
server (to recognize thex-hpp header from clients will-
ing to accept the HPP encoding). Extra functionality can
be added to clients without modifying existing browsers
by co-locating a proxy with the browser [2]. CGI scripts
on servers will have to understand how to generate HPP
dynamic data, but that process can be automated via li-
braries or other tools.

HPP could also be implemented with no modifica-
tion of client software using Java applets or as a plug-
in. In the Java approach, when a client requests a dy-
namic resource, a page is returned containing the URL
of a Java applet that implements HPP expansion and, as
the parameters to the applet, the URL of the template
and the bindings of the resource. The client would then
fetch the applet (presumably, it would be cached in most
cases since it is the same for all resources) and pass it the
bindings and the template. The applet would then fetch
the template and perform the expansion.

4 Performance Evaluation

To quantify the potential benefits of HPP, we have
used it to encode dynamic resources in several contexts.
Most of our experiments have been performed using a

modified version of an internal Web-based “recruiting
database.” We chose this application for two reasons.
First, it typifies the style of response that is well-suited to
HPP: a query returns just a list of names that are hyper-
links to CGI invocations with the name of the candidate
specified, or else returns a full display of all information
about one or more candidates in a canonical form. Sec-
ond, unlike search engines and other services both on
the external Internet and elsewhere within the AT&T In-
tranet, we have full access to the CGI scripts, which we
have modified to use HPP. In addition, to show broader
applicability of HPP, we have encoded by hand some
other dynamic resources, as described in Section 4.2.

4.1 Metrics

Useful metrics for evaluating HPP include user re-
quest latency, network bandwidth demands, and the load
placed on content providers. We anticipate that tem-
plates will be generated as part of application devel-
opment, using authoring tools similar to the ones used
today for creating static documents. We assume that
templates will be cached aggressively by clients; there-
fore, our evaluation focuses on the dynamic aspects of
a query. On the server, we consider the overhead of
generating the dynamic portion of a resource, compared
to generating the entire resource as in traditional sys-
tems and then optionally computing a delta-encoded or
compressed form. On the network, the total number of
bytes transferred is an issue, though for small resources
the round-trip time will dominate any bandwidth issues
(i.e., reducing a 500-byte resource to a 200-byte resource
will have minimal effect, but reducing a 5-Kbyte re-
source to a 2-Kbyte resource will be more noticeable).
On the client side, reconstructing the original resource
from HPP, a delta-encoded response, or a compressed
response will add overhead in comparison to simply dis-
playing an unencoded resource.

Mogul et al. [12] measured the performance of delta-
encoding and compression on both the client and server,
and found that a library-based encoding and decoding
system (one that could be linked into an HTTP client or
server, rather than invoked as a separate process) is sig-
nificantly faster than a T1 line (193 KBytes/sec). For
HPP, the combination of overhead and reduced band-
width needs to be competitive with these other encod-
ings for it to be practical. Our thesis is that by permit-
ting an application to generate the dynamic data with-

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 9

out dealing with the portions of the HTML resource that
do not change between invocations, HPP encoding can
be more efficient than generating the resource and then
delta-encoding or compressing it. Also, the templates
and bindings can themselves be compressed efficiently,
for further size reductions.

Our experiments were conducted using Apache Web
server running on a 200MHz Sun Ultra 1 workstation
with 128 Mbytes of memory. For comparison with com-
pression and delta-encoding, we usedvdelta, the fastest
known system for compression and delta-encoding [9].

4.2 Sample Data

In our preliminary experimental evaluation of HPP,
we consider five HTML resources:

A The output of a query to the modified recruiting
database (mentioned at the start of this section),
listing 10 candidates by name only.

B The same query, listing candidates with full informa-
tion.

C The same query asB but listing only one candidate.

D, E Queries to AltaVista [3] and Lycos [11] using the
query string “cachingdynamic objects.”

4.3 Bandwidth Demands

Figure 7 shows the size of each resource using sev-
eral formats: the unencoded resource, compressed us-
ing vdelta, delta-encoded usingvdelta, and using HPP
with and withoutvdelta compression. For the delta-
encoding, we considered several possible base versions:
a substantially similar resource, such as the first page
of the response to a search engine query compared with
the second page; a somewhat different response from the
same search engine (searching for a different set of key-
words); and the HPP template, which has much of the
text that appears in the final resource. Here we present
delta-encodings against the template, under the assump-
tion that the template is similar to what a system like
WebExpress [8] might do in designating a base version.
Finally, in the case of HPP, the bars are broken into two
components, with the lower bar indicating the dynamic
resource and the higher one the template, which would
presumably frequently be cached.

Purely from the standpoint of network bandwidth,
when templates are cached, the size of the compressed
HPP dynamic data is comparable to an efficient delta-
encoding. The uncompressed dynamic data, though
larger, is still significantly smaller than even the com-
pressed original resource.

4.4 End-To-End Latency

Figure 8 shows end-to-end request latency using
each type of encoding. For resourcesA through C,
the figure reports actual latencies measured over 28.8K
modem and averaged over 100 requests. Since we did
not have a good implementation of the Web server that
would incorporate compression and delta-encoding, the
experiments with these encodings were conducted using
pre-computed compressed and delta-encoded resources,
so that the server would output the generated resource
to /dev/null and read the appropriately pre-computed re-
source from a file to return to the client. Given that
the overhead for encoding and decoding resources with
vdelta is negligible (this overhead, shown later in Ta-
ble 2, is always below 0.5% of the latency), it is omit-
ted. We do include the HPP expansion overhead on the
client, which ranges from 3 to 14% of the latency in our
experiments.

For resourcesD andE, Figure 8 includes estimated
transfer costs, based on the size of each resource, as well
as measured HPP expansion costs from Table 2, using
the following rationale. The transfer costs are estimated
by using a fixed cost of 700ms for a connection set-up
and a variable cost assuming the resource is transferred
at 22Kbps. These parameters closely approximate mea-
sured latency for resourcesA andB. The measured la-
tency for resourceC was unexpectedly high; we are still
investigating the reason for that. Again, these graphs do
not include encoding and decoding costs forvdelta, be-
cause they would not be discernible. We also omit the
overhead for generating the original resource and HPP
dynamics because, first, measurements with the recruit-
ing database scripts show that generating just the dy-
namic data is consistently slightly faster than generating
the entire HTML resource, and second, AltaVista and
Lycos are generated by extremely powerful machines so
the latency should be dominated by a transmission over
slow link. Also, withoutaccess to the Lycos and Al-
taVista CGI applications, we can only generate the dy-
namic data for these resources by hand.

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 10

A B C D E
Benchmark

0

5000

10000

15000

20000

Si
ze

 (
by

te
s)

Original resource
Original compressed
Delta-encoding
HPP template (uncomp) HPP dynamics (uncomp)
HPP template (comp) HPP dynamics (comp)

Figure 7: Sizes of the original and encoded resources for each query studied.

Our measurements indicate that over a slow link,
both delta-encoding and HPP can substantially reduce
the end-to-end latency and overall network load. Com-
pared to fetching uncompressed original resource, send-
ing uncompressed HPP reduces the latency by between
26% for resourceC and 72% for resourceD, includ-
ing the unoptimized macro-expansion on the client. For
compressed resources, the latency reduction ranges from
12% to 44%, again including the expansion.

Comparing HPP and delta-encoding, they show es-
sentially the same overall latency when taking into ac-
count HPP expansion on the client. If this expansion
could be optimized to the level ofvdeltaoverhead, HPP
would result in between 4 and 9% less latency.

4.5 Server Load

Table 1 compares the time to generate the entire re-
source and just HPP dynamics. We could not include
AltaVista and Lycos for resource and HPP generation

Resource Full HML HPP Dynamics

A 923.6ms 841.2ms
B 938.6ms 901.5ms
C 884.9ms 878.5ms

Table 1: Resource generation times (in ms) at the server.

withoutaccess to these applications. The results are av-
eraged over 1000 invocations.

Table 2 gives the overhead for compressing origi-
nal resources, computingvdelta with the template as
the base version, and the HPP expansion time on the
client. We timedvdeltaand HPP encoding and decod-
ing as the average of 100 loops within a single process
that performed the operation; this method amortizes pro-
cess startup costs and produces overhead comparable to
a library implementation of an encoding and decoding
system [12]. In addition, we have implemented the HPP
expansion code as a “coprocess,” again in order to amor-

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 11

A B C D E
Benchmark

0

2000

4000

6000

8000

T
im

e
(m

s)

Original resource
Original compressed
Delta-encoding
HPP uncomp (get bindings) HPP (expand)HPP compressed (get bindings)

Figure 8: Measured or estimated end-to-end latency of the original and encoded resources for each query studied.

Resource Compress Deltas HPP expand

A 3.8 3.7 24.0
B 4.6 4.6 87.3
C 3.6 3.7 19.2
D 6.6 6.5 137.4
E 8.6 8.2 189.9

Table 2: Overheads for compression, delta-encoding,
and HPP expansion (in ms).

tize startup costs but to run in the context of Perl, with
similar performance.

Table 1 shows that generating just the dynamic data
is slightly but consistently faster than generating the
entire resource. Computing and applyingvdelta is al-
ways negligible compared to resource generation. The
overhead for decoding compressed or delta-encoded re-
sources on the client (not shown) were even slightly
lower than the encoding costs. However, HPP decod-

ing on the client is discernible and is an order of mag-
nitude higher thanvdelta overhead. One should note
that HPP expansion is implemented as unoptimized Perl
script. In a real implementation, HPP expansion over-
head should be comparable to applying a delta-encoded
resource against a previous version. Even if it is more
expensive computationally than applying a delta, HPP
would have the benefit of shifting load from servers to
clients.

The lower time to generate HPP dynamics, com-
pared to the entire resource, translates into increased
server capacity, as shown in Figure 9. This figure com-
pares throughput of the server using full HTML and
HPP. In this experiment, client machines run multiple
processes, with each process repeatedly sending a re-
quest to the server, waiting for the response, and im-
mediately sending the next request. Client machines
are connected to the server via 10Mbps Ethernet. The
reported datapoints include one client machine running
one process, two machines running one processeach,

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 12

1 2 9

Number of clients

50

100

150

T
hr

ou
gh

pu
t

(r
eq

/m
in

)

Resource A, orig
Resource A, HPP

Resource B, orig

Resource B, HPP

Figure 9: Measured server throughput.

and three machines with three processes per machine.
The throughput is measured as the number of processed
requests per minute in a five-minute experiment.

The results show that HPP consistently increases
server throughput, by up to 15%. While scripts for
the recruiting database are implemented with an unop-
timized Perl library so it is difficult to generalize these
results, they indicate that HPP may provide a sizable im-
provement in server capacity.

5 Related Work

There are several existing approaches that could
be used to improve performance of access todynamic
pages. In theoptimistic deltasapproach of [1], a proxy
cache optimistically transfers to the client a document
that may be out-of-date, while obtaining the current ver-
sion from the content provider. Upon obtaining the cur-
rent version, the proxy sends to the client a (possibly
empty) delta from the old version to the new version. If
the client already has some stale version, it can include
its version ID (e.g, an etag [5]) with its request, and if the
proxy also has this version, it can send the delta only.

The optimisticdeltas target mostly static pages when
they expire in caches or are modified by the authors. Ap-
plying this mechanism to dynamic pages that are differ-
ent for every access would require the content provider
(or the proxy) to keep a large version pool, which would
be used to compute the delta against the requesting

client's version. We view optimistic deltas as compli-
mentary to our approach: deltas could be used to im-
prove access to templates when they are modified or ex-
pire.

The WebExpress system [8] allows the content
provider to specify a base version of a dynamic doc-
ument and then send delta-encodings against this ver-
sion. It thus avoids the need for a version pool, since the
end server always computes the delta-encoding against
the base version. The advantage of WebExpress over
HPP is that is does not require any changes to HTML.
HPP, however, offers equivalent or better performance
by avoiding the computation of the full HTML resource
before computing a delta-encoding.

The W3C consortium has proposed an extension for
HTML that would allow embedding arbitrary resources
into the HTML resource [10]. A similar extension has
been proposed by Netscape as well. A new OBJECT tag
is introduced, which can be used to specify the URL of
resources to be inserted as well as the URL of the code
to interpret these resources. The code specification may
be implicit based on the resource type. This mechanism
could in principle be used to insert dynamic elements of
the resource into a static template, as in HPP. However,
eachdynamic element must be treated separately -each
must be requested, and the executable must be invoked
each time to insert the next element into the resource.
In addition, this method does not supports loops. The
whole loop fragment has to be treated as a dynamic el-
ement. These loop elements constitute a large portion
of typical resources, especially those returned by search
engines. Thus, much of the benefits of HPP would not
be realized.

6 Conclusion

We have proposed using macro-preprocessing at the
client to supportcaching ofdynamic HTML documents.
In our approach, called HPP, HTML is extended to al-
low separation of the static and dynamic portions of a
resource. The static portions (called thetemplate) can
then be cached, and onlydynamic portions must be ob-
tained on every access.

We described our HTML extension informally us-
ing real resources as examples. We also showed on the
example of two popular search engines that our macro-
encoding results in a remarkable reduction of the amount
of data that must be fetched from the server on every

Douglis, et al. USITS'97

HPP: HTML Macro-Preprocessing to Support Dynamic Document Caching 13

access. Thedynamic data is comparable in size to an
efficient delta-encoding, especially if the dynamic data
is itself compressed. Compared to the original resource,
HPP bindings reduce the size by factors of 4–8 with-
out compression, or 2–4 when comparing compressed
bindings to the compressed original resource. The load
of the server is also decreased since it does not have to
transmit the template for clients that already have it in
their caches. In fact, when data compression is used, the
server load should decrease even for requests that miss
in the client caches: templates, which constitute a large
portion of resources, can be compressed once and served
repeatedly at low cost. Given that data compression dra-
matically reduces network traffic and delays, this can be-
come an important factor in the future.

HPP requires minimal changes to Web servers and
no changes to the HTTP protocol. The changes on the
server side are concentrated in CGI scripts and other ap-
plications that generate dynamic data. The changes on
the client side can be provided in various ways, includ-
ing a custom proxy co-located with the browser, a plug-
in, a Java applet, or direct support within the browser.

Recent trace data [12] indicate thatdynamic re-
sources exhibit a rate of repeated access that is more
than twice the rate of repeated access to static re-
sources. Therefore, they promise a much higher hit ratio
if cached. Allowing caching of these resources should
result in disproportional gains in overall Webaccess per-
formance.

Acknowledgments

Gideon Glass and Balachander Krishnamurthy pro-
vided helpful comments on earlier drafts. We also thank
the anonymous referees for their comments.

References

[1] Gaurav Banga, Fred Douglis, and Michael Rabinovich.
Optimistic deltas for WWW latency reduction. InPro-
ceedings of 1997 USENIX Technical Conference, pages
289–303, Anaheim, CA, January 1997. Also avail-
able ashttp://www.research.att.com/~douglis/pa-

pers/optdel.ps.gz.

[2] Charles Brooks, Murray S. Mazer, Scott Meeks, and
Jim Miller. Application-specific proxy servers as
HTTP stream transducers. InProceedings of the
Fourth International WWW Conference, December 1995.
Also available ashttp://www.w3.org/pub/Confer-
en=-ces/WWW4/Papers/56/.

[3] Digital Equipment Corporation.
http://www.altavista.digital.com, January 1997.

[4] Fred Douglis, Anja Feldmann, Balachander Krishna-
murthy, and Jeffrey Mogul. Rate of change and other
metrics: a live study of the World Wide Web. InPro-
ceedings of the Symposium on Internetworking Systems
and Technologies. USENIX, December 1997. To appear.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-
Lee, et al. RFC 2068: Hypertext transfer protocol —
HTTP/1.1, January 1997.

[6] International Organization for Standardization. Standard
generalized markup language, 1986.

[7] N. Freed and N. Borenstein. RFC 2045: Multipurpose
Internet Mail Extensions (MIME) Part one: Format of
Internet message bodies, December 1996.

[8] Barron C. Housel and David B. Lindquist. WebExpress:
A system for optimizing Web browsing in a wireless en-
vironment. InProceedings of the Second Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 108–116, Rye, New York, November
1996. ACM. Also available ashttp://www.network-
ing.ibm.com/artour/artwewp.htm.

[9] James. J. Hunt, Kiem-Phong Vo, and Walter. F. Tichy. An
empirical study of delta algorithms. InIEEE Software
Configuration and Maintenance Workshop, 1996.

[10] Inserting objects into HTML.
http://www.w3.org/pub/WWW/TR/WD-

object.html.

[11] Lycos.http://www.lycos.com/, January 1997.

[12] Jeffrey Mogul, Fred Douglis, Anja Feldmann, and Bal-
achander Krishnamurthy. Potential benefits of delta-
encoding and data compression for HTTP. InPro-
ceedings of SIGCOMM'97, pages 181–194, Cannes,
France, September 1997. ACM. An extended ver-
sion appears as Digital Equipment Corporation West-
ern Research Lab TR 97/4, July, 1997, avail-
able ashttp://www.research.digital.com/wrl/tech-

reports/abstracts/97.4.html.

[13] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-
Smith, Eric Prud' hommeaux, Hakon Wium Lie, and
Chris Lilley. Network performance effects of HTTP/1.1,
CSS1, and PNG. InProceedings of SIGCOMM'97, pages
155–166, Cannes, France, September 1997. ACM.

[14] S. Williams, M. Abrams, C. R. Standridge, G. Ab-
dulla, and E. A. Fox. Removal policies in network
caches for World-Wide Web documents. InProceed-
ings of SIGCOMM'96, volume 26,4, pages 293–305,
New York, August 1996. ACM. Also available as
http://ei.cs.vt.edu/~succeed/96WAASF1/.

Douglis, et al. USITS'97

