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HPV-related anal cancer is
associated with changes in the
anorectal microbiome during
cancer development
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Background: Squamous cell carcinoma of the anus (SCCA) is a rare

gastrointestinal cancer. Factors associated with progression of HPV infection

to anal dysplasia and cancer are unclear and screening guidelines and

approaches for anal dysplasia are less clear than for cervical dysplasia. One

potential contributing factor is the anorectal microbiome. In this study, we aimed

to identify differences in anal microbiome composition in the settings of HPV

infection, anal dysplasia, and anal cancer in this rare disease.

Methods: Patients were enrolled in two prospective studies. Patients with anal

dysplasia were part of a cross-sectional cohort that enrolled women with high-

grade lower genital tract dysplasia. Anorectal tumor swabs were prospectively

collected from patients with biopsy-confirmed locally advanced SCCA prior to

receiving standard-of-care chemoradiotherapy (CRT). Patients with high-grade

lower genital tract dysplasia without anal dysplasia were considered high-risk (HR

Normal). 16S V4 rRNA Microbiome sequencing was performed for anal swabs.

Alpha and Beta Diversity and composition were compared for HR Normal, anal

dysplasia, and anal cancer.
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Results: 60 patients with high-grade lower genital tract dysplasia were initially

enrolled. Seven patients had concurrent anal dysplasia and 44 patients were

considered HR Normal. Anorectal swabs from 21 patients with localized SCCA

were included, sequenced, and analyzed in the study. Analysis of weighted and

unweighted UniFrac distances demonstrated significant differences in microbial

community composition between anal cancer and HR normal (p=0.018). LEfSe

identified that all three groups exhibited differential enrichment of specific taxa.

Peptoniphilus (p=0.028), Fusobacteria (p=0.0295), Porphyromonas (p=0.034),

and Prevotella (p=0.029) were enriched in anal cancer specimens when

compared to HR normal.

Conclusion: Although alpha diversity was similar between HR Normal, dysplasia

and cancer patients, composition differed significantly between the three groups.

Increased anorectal Peptoniphilus, Fusobacteria, Porphyromonas, and Prevotella

abundance were associated with anal cancer. These organisms have been

reported in various gastrointestinal cancers with roles in facilitating the

proinflammatory microenvironment and neoplasia progression. Future work

should investigate a potential role of microbiome analysis in screening for anal

dysplasia and investigation into potential mechanisms of how these microbial

imbalances influence the immune system and anal carcinogenesis.
KEYWORDS

anal cancer, anorectal microbiome, HPV-related cancer, anal dysplasia, cancer biology
1 Introduction

Squamous cell carcinoma of the anus (SCCA) is a rare

gastrointestinal cancer, affecting 8,000-9,000 patients annually in

the US (1). It is linked to prior human papillomavirus (HPV)

infections in approximately 90% of cases (2), but factors associated

with the cancer development, such as the progression of HPV

infection to dysplasia and anal cancer, are unclear. The standard-of-

care treatment for patients with localized SCCA is chemoradiotherapy

(CRT), which leads to 5-year survival rates of 75-90% (3). However,

30-40% of patients with advanced SCCA experience local recurrence

or treatment-related toxicity (4, 5). Despite the use of HPV vaccines,

the incidence and morbidity of SCCA continue to rise (6). Anal

dysplasia is poorly understood and has been more difficult to detect

than lower genital tract dysplasia. Women with HPV-related high-

grade dysplasia or cancer of the cervix, vagina, or vulva are at

increased risk for the development of anal dysplasia and SCCA (7–

9). Prior observational studies have identified anal dysplasia in fewer

than 15% of such high-risk women when assessed by high-resolution

anoscopy (HRA), which is consistent with epidemiologic data

showing that the incidence of anal cancer among women in the

United States is much lower than the combined incidence of cervical,

vaginal, or vulvar cancer (7, 10). Although some risk factors, such as

tobacco use, are shared between both HPV-related diseases, the rarity

of anal dysplasia and cancer suggests that additional external factors

may modulate this risk. The identification of correlates between host

genetics, environmental exposures, and the risk of anal dysplasia or
02
cancer among high-risk patients would have important implications

for cancer prevention efforts.

One potential contributing factor is the anal microbiome, which

has been implicated in the progression of HPV infection to cancer

in other HPV-related carcinogenesis (11). Knowledge about the

pervasive influence of commensal bacteria led to the hypothesis that

bacterial species found in the cervix and vagina contribute to the

development of lower genital tract HPV infection, dysplasia, and

cancer (11). Subsequent work using bacterial metagenomic

sequencing methods has confirmed these observations by

demonstrating a correlation between HPV-related cervical disease

and lower levels of Lactobacillus species along with an increased

abundance of anaerobic bacteria such as Gardnerella vaginalis,

Finegoldia magna, Atopobium vaginae, Dialister invisus, Prevotella

buccalis, P. timonensis, and Fusobacterium (12–15). Although the

link between the microbiota and cervical carcinogenesis is well

established, it is not yet known whether commensal bacteria play a

role in the development of HPV-related disease at the anus.

Our previous work demonstrated a role for the anal

microbiome in anal cancer response to therapy and toxicity (5).

The ability to study the anal microbiome and carcinogenesis is

limited by the rarity of the disease and limited patient samples. In

this study, we combine anal microbiome samples collected from

two prospectively enrolled cohorts, providing a unique opportunity

to address this issue. The purpose of this study was to identify

differences in anal microbiome composition in the settings of

known HPV infection, anal dysplasia, and anal cancer.
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https://doi.org/10.3389/fimmu.2023.1051431
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Elnaggar et al. 10.3389/fimmu.2023.1051431
2 Materials and methods

2.1 Study population and
clinical assessments

We performed a retrospective analysis of anorectal microbiome

composition using anorectal swab samples obtained from two

prospective studies (Figure 1A). In the first study, we obtained

anorectal swab samples from study participants enrolled between

September 2016 and January 2017 in a cross-sectional study

examining the prevalence of anal dysplasia among women with

cervical, vaginal, and vulvar dysplasia at the University of Texas MD

Anderson Cancer Center and Lyndon B. Johnson General Hospital

(NCT02140021). Female patients were eligible for enrollment if they

were over the age of 18 and had histologically confirmed cervical,
Frontiers in Immunology 03
vaginal, or vulvar high-grade dysplasia or invasive squamous cell

carcinoma, invasive adenocarcinoma, or adenocarcinoma-in-situ.

Pregnant women were excluded, as were any patients with

previously documented perianal squamous cell dysplasia or invasive

squamous cell carcinoma of the anus. We performed rigorous

screening in order to minimize potential GI associated diseases that

could alter the microbiome, such as excluding patients with previous

abdominal or pelvic radiation therapy. This study was approved by the

institutional review board at both the University of Texas MD

Anderson Cancer Center (protocol PA2014-0021) and Lyndon B.

Johnson General Hospital (eProtocol #14-05-0822).

In the second study, anorectal tumor swabs were prospectively

collected from patients with biopsy-confirmed nonmetastatic SCCA

receiving standard-of-care treatment as part of an institutional

review board–approved study (protocol #2014-0543) at the
A

B D

E F

C

FIGURE 1

(A) Study overview depicting cohorts used and sample sizes. (B–F) Alpha diversity metrics between the three groups. (B) Richness of species was
significantly decreased between HR Normal and Anal Dysplasia groups, (C) Shannon diversity richness index was lower in Anal Dysplasia, (D) Pielou’s
Evenness index and (E) Simpson diversity index was greater in Anal Cancer compared to Anal Dysplasia, and (F) Chao1 was greater in HR Normal
compared to both Anal Dysplasia and Anal Cancer. Statistical tests were performed using one way ANOVA. *P < 0.05, **P < 0.01. SCCA, Squamous
cell carcinoma of the anus; HR Normal, High Risk Normal; H/LGAIN, high-grade or low-grade anal intraepithelial neoplasia.
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University of Texas M.D. Anderson Cancer Center from April 2017

to July 2019 as described previously (5, 16). Patients with a previous

history of abdominal or pelvic radiation were excluded from the

study. Anal Pap smear and high resolution anoscopy were

performed on all participants. Anorectal microbial specimens

were collected in both studies using a swab biopsy technique.

Following the provision of written, informed consent, clinical

and demographic data were collected at enrollment including age,

menopausal status, self-reported ethnicity, HPV vaccination status,

and human immunodeficiency virus (HIV) status. Information

about prior diagnoses of cervical, vaginal, and vulvar dysplasia or

cancer was also collected, along with the results of previous cervical

or vaginal cytology and HPV testing. Information regarding the use

of concurrent systemic antibiotics at the time of enrollment and

tobacco use was obtained from the medical record.

Upon enrollment, in addition to standard of care treatment for

genital tract disease, all anal dysplasia participants had anal cytology

and anal HPV test samples collected, as well as an anorectal swab

(Isohelix) prior to treatment for microbiome analysis. High-resolution

anoscopy (HRA) was then performed as part of the study protocol.

Biopsies were collected of abnormal areas identified by HRA as per

standard of care practices. Participants were referred to a colorectal

surgeon for anal high-grade anal squamous intraepithelial lesion

(HSIL) anal cytology test result (regardless of HRA findings) or if

biopsy of abnormal areas revealed high-grade or low-grade anal

intraepithelial neoplasia (HGAIN, LGAIN, or AIN2-3). For the

present analysis, patients were considered to have “anal dysplasia” if

they had either high-grade or low-grade anal intraepithelial neoplasia

(AIN1-3) on anal biopsy, or if their anal cytology showed HSIL

regardless of HRA findings. Based on the clinical assessments, anal

swab specimens were grouped as High-Risk (HR) Normal, Anal

Dysplasia, or Anal Cancer (Figure 1A).
2.2 Assessment of rectal microbiome using
16S ribosomal RNA V4 region sequencing

Isohelix DNA Swabs (Isohelix, SK-2S) were used to collect tissue

and fecal material from anal dysplasia and SCCA patients prior to

standard of care treatment. Swab specimens were stabilized using

BuccalFix DNA Stabilization Solution (Isohelix, BFX-25) within 1

hour of collection and stored at –80°C until DNA isolation.

Amplicon sequencing of the 4th hypervariable (V4) region of the

bacterial 16S ribosomal RNA (rRNA) gene was performed on

anorectal swabs by the Alkek Center for Metagenomics and

Microbiome Research at Baylor College of Medicine, as previously

described (16, 17). Bacterial genomic DNA was extracted from

anorectal swabs using the MoBIO PowerSoil Kit (QIAGEN, 12855-

50). The 16S rRNA gene sequencing methods were adapted from the

Human Microbiome Project and Earth Microbiome Project (18). The

bacterial 16S ribosomal RNA V4 genomic region was PCR amplified

and sequenced using 250 bp paired-end reads on a MiSeq sequencer

(Illumina, San Diego, CA). The primers used for amplification (515F-

806R) contain adapters for MiSeq sequencing and single-index

molecular barcodes so that the PCR products may be pooled and

sequenced directly.
Frontiers in Immunology 04
2.3 Sequencing read processing and
taxonomic assignment

Sequencing data were processed and analyzed using QIIME2

v2022.2 (19). A QIIME2 provenance diagram is shown in Figure

S1A. Sequencing quality control, amplicon sequence variant counts

for feature table construction, and representative sequences used for

phylogeny tree construction and taxonomic classification were

performed using denoising via DADA2 (20) with the pseudo-

pooling parameter and identical trim and truncation parameters

of 0 and 188, respectively, across all samples. The trim and

truncation settings were chosen based on quality scores generated

by the QIIME2 platform. A rarefaction sampling depth of 11500

sequences per sample was used when necessary for downstream

comparative analysis (Figure S1B). Nonrarefied data tables were

used for linear discriminant analysis effect size. A naive Bayes

classifier trained on 515/806R V4 ribosomal RNA regions from

the SILVA release 132 database was used to assign taxonomy (21).

Feature tables constructed using amplicon sequence variant counts

were used for downstream comparative diversity analysis.

Phylogenetic reference tree construction was performed using a

SILVA 128 SATé-enabled phylogenetic placement database (22).
2.4 Microbial diversity metrics and
microbiome composition

We analyzed the HR Normal, Anal Dysplasia, and Anal Cancer

sequencing data using several different alpha diversity metrics (23).

Observed Features (richness) provides a count of all identified

putative species. Pielou’s evenness index calculates the

proportions of individual species in a sample population. The

Shannon diversity index accounts for the richness and evenness

of taxa within a sample. The Simpson’s diversity index measures the

diversity of species in a community. Faith’s phylogenetic diversity

(PD) accounts for the phylogenetic differences between species in a

sample. The inverse Simpson diversity index measures the relative

counts of species that make up the richness, and finally, the Chao1

index estimates richness emphasizing rare species (23).

We generated stacked bar plots of genus level relative counts in

ATIMA v3.1.2 (developed by the Center for Metagenomics and

Microbiome Research at the Baylor College of Medicine) to observe

taxa distribution across groups. Samples in these plots were ordered by

relative counts of a specific taxon, e.g., Bacteroides. We also conducted

compositional analysis using unweighted and weighted UniFrac and

Bray Curtis to generate coordinates for each sample. Principal

Coordinates Analysis (PCoA) and biplots were created in ATIMA to

visualize group coordinates. Permutational multivariate analysis of

variance (PERMANOVA) was used to assess differences in mean

and variance between groups. Permutational multivariate analysis of

dispersion (PERMDISP) was used to assess differences in dispersion

between groups. Linear Discriminant Effect Size (LEfSe) (24) was

performed in Miniconda v4.12 (25) was used to identify abundance

changes of specific taxa that were enriched between all three groups.

The LDA score cutoff was set at 3.5, and the alpha value for the

Kruskal-Wallis test among classes was set at 0.05. Cladograms of the
frontiersin.org
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LEfSe results were generated to visualize and inspect the nestedness of

the differentially enriched taxonomic groupings. Additionally, LEfSe

was used with similar parameters to assess pairwise differences between

groups. As a confirmatory test, DESeq2 was performed using pairwise

comparisons across the groups using the contrast parameter (26), and

volcano plots were made using the EnhancedVolcano package (Figure

S8) (27). Heatmaps were made using the LEfSe results and colored by

the group in which they were enriched. Taxonomic counts were log

normalized and plotted using ComplexHeatmap (28). Stacked bar plots

based on relative counts were also generated in ATIMA based on

overall abundance and the LEfSe results.
2.5 Statistical analysis

For clinical and demographic variables, statistical comparisons

were performed in RStudio (v2022.7.0.548) (29) using R v4.2.1 (30).

A t-test was used for continuous variables. A Chi-squared test was

used to compare categorical variables between HR Normal and

Anal Cancer and Wilcoxon signed rank test was used for

comparisons between Anal Dysplasia due to its smaller sample

size. To compare alpha diversity, statistical tests were performed

using pairwise one-way ANOVA to compare between the three

groups HR Normal, Anal Dysplasia, and Anal Cancer; adjusted

P<0.05 was considered statistically significant. Comparisons

between differential abundance of specific taxa was performed on

specific taxa using relative counts and compared using a similar

one-way ANOVA. GraphPad Prism (GraphPad Software, v9.0) was

used to generate graphs for data visualization.
3 Results

3.1 Patient characteristics

60 patients with high-grade lower genital tract dysplasia were

initially enrolled. After excluding patients taking concurrent

antibiotics and applying quality filters, anorectal swabs from 51

patients with high-grade lower genital tract dysplasia were

sequenced. Of those, 7 patients had concurrent anal dysplasia, 4

HGAIN and 2 LGAIN on anal biopsy and 1 HGAIN on anal Pap.

Additionally, this study included anorectal swabs from 21 patients

with localized SCCA. In total, 71 swabs (44 HR Normal, 7 Anal

Dysplasia, and 21 Anal Cancer) were included, sequenced, and

analyzed in the study (Figure 1A). Since this study combines two

cohorts and three stages of disease, there are noteworthy differences

in patient demographics that are outlined in Table 1. These are

grouped by sample type. The age in the HR Normal group

(mean=46.1 years) was statically lower than the Anal Cancer

group (mean=57 years, P<0.001). However, there was no

difference between the Anal Dysplasia group (mean=54 years). Of

the participants in the Anal Cancer group, 3 (16.67%) were males.

The rest of the participants in the study were females. Additionally,

there were differences in other categories including site of

recruitment, menopausal status, and ethnicity. Also, one Anal
Frontiers in Immunology 05
Cancer patient reported a positive HIV diagnosis. Additional

clinical and demographic information can be found in Table S1.
3.2 Alpha diversity

In general, the Alpha diversity metrics (Figures 1B–F) displayed a

similar pattern of changes among the 3 groups, namely, the greatest

was HR Normal, the lowest being Anal Dysplasia, and the

intermediate value was Anal Cancer. Specific comparisons revealed

that the number of observed features was increased in the HRNormal

(mean=119.2) specimens when compared to Anal Dysplasia

(mean=142.4, P=0.017, Figure 1B). The Shannon diversity index

for Anal Dysplasia (mean=4.169) was significantly lower when

compared to both HR Normal (mean= 5.11, P=0.042) and Anal

Cancer specimens (mean=5.34, P=0.015, Figure 1C). Additionally,

Anal Dysplasia was lower than Anal Cancer for Pielou’s Evenness

(Anal Dysplasia mean=0.585, Anal Cancer mean= 0.7255 P=0.019,

Figure 1D) and Simpson Diversity indexes (Anal Dysplasia

mean=0.8224; Anal Cancer mean=0.9427, P=0.019, Figure 1E). By

Chao1 (Figure 1F), HR Normal (mean=213.7) was significantly

higher than both Anal Dysplasia (mean=156.7, P=0.026) and Anal

Cancer (mean=177.8, P=0.032). Other metrics include Faith PD and

Inverse Simpson (Figure S2), and all per sample diversity values and P

values can be found in Table S1.
3.3 Beta diversity

There is a large proportion of the genus Bacteroides among all

three groups (blue, Figures 2A, S3A), as well as Prevotella (red, Figure

S3B) and the class Clostridia (orange, Figure S3G). Analysis of

weighted UniFrac distances demonstrated a significant dispersion

in microbial community composition between the three groups

(Figure 2B, PERMANOVA P=0.063, PERMDISP P=0.037).

Unweighted UniFrac and weighted Bray Curtis comparisons

revealed significant differences amongst all three groups

(PERMANOVA P=0.001, P=0.020; PERMDISP P=0.557, P=0.902;

Figures S4B, C). There was also a significant difference between HR

Normal and Anal Cancer (Figure 2C PERMANOVA P=0.018,

PERMDISP P=0.019). All PCoA metric comparisons can be

observed in Table S1 with corresponding figures in Figure S4. A

weighted UniFrac biplot of the three group comparisons (Figure 2B)

displayed a pull from the family Enterobacteriaceae (comprising the

genera Escherichia and Shigella). There was also a split in the larger

cluster between Bacteroides and Prevotella. These findings are also

replicated in the pairwise biplot between HR Normal and Anal

Cancer (Figure 2C). Additional comparisons using additional

metrics and alternative taxonomic levels can be observed in Figure S4.
3.4 Microbial composition and abundances

LEfSe identified that all three groups exhibited differential

enrichment of specific taxa (Figure 3A, S5A; Table S1), including

increased abundance of Peptoniphilus (p=0.025), Firmicutes
frontiersin.org
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(p=0.037345458), Anaerococcus (p=0.016), Oscillospiraceae

(p=0.043) and Clostridia (p=0.013) among Anal Cancer,

Bifidobacterium (p=0.048) among Anal Dysplasia, and Roseburia

(p=0.035) and Blautia (p=0.021) among HR Normal. Pairwise
Frontiers in Immunology 06
comparison between Anal Cancer and HR Normal (Figures 4A,

B) showed a similar increased abundance of Peptoniphilus

(p=0.025) and Anaerococcus (p=0.023) and additional organisms

including Porphyromonas (p=0.027), Prevotella (p=0.023), and
TABLE 1 Patient Characteristics.

HR Normal Anal Dysplasia Anal Cancer P value

N=44 N=7 N=21

Age < 0.001a

mean 46.09a 53.71 57.38a

median 44.5 58 60

min 24 32 39

max 72 67 77

Gender

F 44b 7 18b

M 0 0 3

Race

White 40 5 16

Black 3 1 3

Asian 1 1 1

Other 0 0 1

Menopausal Status 0.010b

Post-Menopausal 22b 5 16b

Pre-Menopausal 22 2 2

NA 0 0 3

Ethnicity 0.016b

Hispanic or Latino 16b 1 1b

Not Hispanic or Latino 28 6 20

Study Center 0.023b

LBJ 12b 1 0b

MDACC 32 6 21

Current Tobacco Use

No 40 6 21

Yes 4 1 0

Current ABX

No 39b 6 20b

Yes 5 1 0

Missing 0 0 1

HIV Status

Positive 0 0 1

Negative 43 7 16

Missing 1 0 4
P value determined by (a) test or (b) Chi-squared test. All statistical tests were two-sided. HR Normal, High-Risk Normal; F, female; M, male; LBJ, Lyndon B. Johnson; MDACC, MD Anderson
Cancer Center; ABX, antibiotic usage.
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Fusobacterium (p=0.028). Anal Cancer also displayed an increased

abundance of Clostridia, Firmicutes, Peptoniphilus, Anaerococcus,

and Oscillospiraceae when compared to Anal Dysplasia (Figure S5).

Using the LEfSe to guide further analyses, we compared

taxonomic abundances between the three groups. Heatmaps can

be observed comparing the three groups and (Figure 3B) and

comparing HR Normal to Anal Cancer (Figure 4B). The groups

are colored horizontally based on the group in which they were

found to be enriched from LEfSe (Figures 3A, 4A). A stacked bar

plot using the genus level enrichments from LEfSe can be observed

in Figure 4C, and family level in Figure S6.

When comparing relative counts of specific organisms, there was a

significant increase in Porphyromonas between HR Normal

(mean=0.0169) and Anal Cancer (mean=0.0629, P=0.015, Figure 3C)

which can also be visually observed (green, Figure 4C). There was also
Frontiers in Immunology 07
significant decrease in Clostridia between Anal Dysplasia

(mean=0.1741) and both HR Normal (mean=0.3679, P=0.019,

Figure 3D) and Anal Cancer (mean=0.3774, P=0.022). And finally,

there was a significant increase in Peptoniphilus in Anal Cancer

(mean=0.0423) compared to HR Normal (mean=0.0171, P=0.006)

and Anal Dysplasia (mean=0.0077, P=0.027, Figure 3E). Similar

comparisons were performed for Anaerococcus, Fusobacterium,

Lachnospiraceae, Oscillospirales, Oscillospiraceae, and Prevotella but

were not significantly different between groups (Figure S7; Table S1).
4 Discussion

Although the microbiome has been well characterized in some

HPV-driven cancers, establishing an association between anal
A

B

C

FIGURE 2

Microbial composition and beta diversity across groups. (A) Stacked bar plot of relative counts for all samples in the study. (B) Comparing all three
groups and (C) HR Normal vs Anal Cancer by Weighted UniFrac Principal Coordinate Analysis and biplot showing taxa that pulled samples in a
specific direction. Centroids display converging points for each group. The size of the circle represents the abundance of that taxa across all samples
displayed, and specific taxa were displayed based on abundance. Statistical tests used *PERMANOVA and ^PERMDISP. HR Normal, High Risk Normal;
PC, principal component.
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cancer and the anorectal microbiome remains difficult due to the

rarity of disease and limited patient specimens. We observed

primarily compositional and beta diversity differences between

our HR Normal, Anal Dysplasia, and Anal Cancer samples with

some differences in richness and evenness. We also noted significant

enrichment of specific taxa among the Anal Cancer group in
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comparison to HR Normal, including Peptoniphilus, Prevotella,

Porphyromonas, and Fusobacterium (Figures 3, 4).

In patients with anal cancer, we observed an increase in the

abundance of the genera Peptoniphilus (a member of the Clostridia

class), Prevotella, Porphyromonas, and Fusobacterium, which are all

linked to a range of pro-inflammatory and immune modulating
A

B

D EC

FIGURE 3

Taxa-specific changes across three groups. (A) Linear discriminant analysis (LDA) effect size (LEfSe) derived bar graph of enriched taxa between HR
Normal, Anal Dysplasia, and Anal Cancer. An LDA of 3.5 or greater was used as a cutoff and an alpha of 0.05 for the Wilcoxon rank-sum test.
(B) Heatmap colored horizontally based on the group each taxon was enriched from LEfSe. Values were log normalized. (C–E) Comparison of relative
counts between the three groups for specific taxa. Statistical tests were performed using one way ANOVA. *P < 0.05. **P < 0.01. Abv. HR Normal: High
Risk Normal.
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functions. Peptoniphilus is a gram-positive anaerobic commensal

that colonizes mucosal surfaces, such as the mouth, gastrointestinal

tract, and genitourinary tract. There are reports of a higher

abundance of Peptoniphilus in colorectal cancer (CRC) (31), and
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it is a highly opportunistic pathogenic bacteria that produces

calprotectin (32, 33), a protein specific to neutrophil mediated

inflammation and neutrophil recruitment (34). Prevotella is an

anaerobic gram-negative that inhabits the oral cavity, vagina, and
A

B

C

FIGURE 4

Differently abundant taxa between HR Normal and Anal Cancer. (A) Linear discriminant analysis (LDA) effect size (LEfSe) derived bar graph of
enriched taxa between HR Normal and Anal Cancer. (B) Heatmap colored horizontally based on the group each taxon was enriched from LEfSe.
Values were log normalized. (C) Stacked bar plot of relative counts for HR Normal and Anal Cancer highlighting the genera enriched from LEfSe.
An LDA of 3.5 or greater was used as a cutoff and an alpha of 0.05 for the Wilcoxon rank-sum test.
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gut and is associated with chronic inflammation (35–37). Prevotella

abundance is associated with T helper type 17 (Th17) and T helper

type 1 (Th1) mediated mucosal inflammation and immune

response through activation of toll-like receptor 2 (38), in

addition to stimulating epithelial cells to produce chemokines and

cytokines (39, 40). In one study examining the microbiome of men

who have sex with men (MSM) patients with anal precancerous

lesions, Prevotella was one of the most predictive bacteria associated

with high-grade squamous intraepithelial lesions (41). Another

study showed an association of Prevotella abundance with

persistent cervicovaginal HPV infection (42). Porphyromonas also

plays a significant role in CRC (43–46) and is associated with a

significant increase in TNF-alpha and IL-6 (47). More specifically,

Porphyromonas gingivalis has been well-associated with the

occurrence and development of gastrointestinal cancers. In mice

orally administered Porphyromonas gingivalis, the mRNA levels of

IFN-gamma were elevated in the gut (48). In CRC, Fusobacterium is

associated with tumor carcinogenesis, high disease stage, poor

tumor differentiation, poor prognosis (49) and metastatic disease

(50, 51). Reported mechanisms for these associations in CRC

include 1) TLR4-induced initiation of signaling pathways that

lead to the secretion of inflammatory cytokines such as TNF-

alpha and IL-8 (52, 53), 2) expression of NF-kB, which inhibits

apoptosis and stimulates cell proliferation (54), 3) NK T-cell

inhibition (55), and 4) recruitment of myeloid-derived suppressor

cells that suppress CD4 T-cells (56, 57). We propose that

Fusobacterium, along with these other taxa, could affect immune

function in anal carcinogenesis and cancer.

This study has several strengths and limitations. A key strength

is the inclusion of a relatively homogenous group of patients with a

rare disease who share an important risk factor for anal dysplasia,

specifically the co-existence of high-grade dysplasia of the lower

genital tract. An additional strength of this study is the

minimization of ascertainment bias attained through the

performance of anal cytology tests and HPV testing as well as

HRA on all study participants, consistent with the current

diagnostic standard for the detection of anal dysplasia (58).

Several limitations exist, however, primarily due to the small

sample size given the rarity of anal cancer and anal dysplasia, and

sequencing methodology. We can make stronger comparisons

between High Risk Normal and Anal Cancer due to their larger

sample sizes, while comparisons with Anal Dysplasia are more

limited. Nevertheless, these findings are not conclusive. This study

is aimed to serve as a pilot for future research in this area. Individual

genus composition alone does not fully describe potential

interactions between these bacterial genera that could drive the

shift from HPV infection to dysplasia and cancer. Although

evaluation of co-occurrences of these species in this study is

limited by the small sample size, several of these genera are

known to interact and function in synergy. For example,

Peptoniphilus and Prevotella are found to co-occur in association

with recurrence of bacterial vaginosis (29), elevated risk for HIV

seroconversion and HIV antiviral treatment resistance (38). In

addition, Fusobacterium, Porphyromonas, and Prevotella have

been co-associated together in colorectal cancer (59, 60). Another

remaining unknown from this study is a description of the function
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of the individual bacterial species associated with anal cancer.

Performing a functional analysis would require shotgun

metagenomic sequencing rather than 16S sequencing. However

16S sequencing is superior for compositional analysis (61), which

was the primary goal of this study. Future work utilizing whole

genome sequencing will describe the functional composition and

metabolic analysis of this patient population.

There are significant differences in demographics between HR

Normal and Anal Cancer (Table 1). Anal cancer tends to develop

later than cervical cancer (62). Therefore, age, and as a result,

menopausal status can differ. The Lyndon B. Johnson General

Hospital generally cares for a more diverse population which may

explain the difference in ethnicity between the two groups.

Additionally, there was an Anal Cancer patient with HIV. There

an increased risk of HPV-associated cancers, including anal cancer,

among individuals with HIV as well as an increased risk with

immunosuppression (63). Due to the rarity of anal dysplasia and

cancer, a necessary limitation of this study is the small sample size

and imbalance between the number of subjects in each group.

However, the rate of anal dysplasia in this cohort is consistent with

prior reports of incidence in high-risk women (7). In order to

mitigate these limitations, we employed rigorous statistical

procedures for FDR control and stringent cut-offs for multiple

testing. Although this study can provide only exploratory

suggestions of correlation due to its design, these results are

important for hypothesis generation to guide further studies in

this area. Additionally, we plan to perform functional analysis and

experimental studies to test these specific hypotheses. Future

prospective studies are needed to confirm the generalizability of

the observed association between specific bacterial abundance and

anal cancer development including mechanisms by which the

anorectal microbiota may influence anal dysplasia and cancer risk.

Overall, our findings suggest an association between the

anorectal microbiome among anal cancer development. Our work

highlights potential roles in an understudied disease that needs to be

further explored. Implications of this work could include improved

diagnostic tools for this rare and difficult to detect disease, especially

among high-risk patients. This could allow us to intervene early and

prevent anal dysplasia and the progression to cancer.
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Carcinogenic human papillomavirus infection. Nat Rev Dis Primer (2016) 2:16086.
doi: 10.1038/nrdp.2016.86

3. Franklin RA, Giri S, Valasareddy P, Lands LT, Martin MG. Comparative survival of
patients with anal adenocarcinoma, squamous cell carcinoma of the anus, and rectal
adenocarcinoma. Clin Colorectal Cancer (2016) 15:47–53. doi: 10.1016/j.clcc.2015.07.007

4. Holliday EB, Morris VK, Johnson B, Eng C, Ludmir EB, Das P, et al. Definitive
intensity-modulated chemoradiation for anal squamous cell carcinoma: Outcomes and
toxicity of 428 patients treated at a single institution. Oncologist (2022) 27:40–7.
doi: 10.1093/oncolo/oyab006

5. Lin D, Alam MBE, Jaoude JA, Kouzy R, Phan JL, Elnaggar JH, et al. Microbiome
dynamics during chemoradiation therapy for anal cancer. Int J Radiat Oncol Biol Phys
(2022) 113:974–84. doi: 10.1016/j.ijrobp.2022.04.037

6. Oliveira CR, Niu YS, Einarsdottir HM, Niccolai LM, Shapiro ED. Disparities in
the epidemiology of anal cancer: A cross-sectional time series. Health Equity (2020)
4:382–5. doi: 10.1089/heq.2020.0021

7. Robison K, Cronin B, Bregar A, Luis C, DiSilvestro P, Schechter S, et al. Anal
cytology and human papillomavirus genotyping in women with a history of lower
genital tract neoplasia compared with low-risk women. Obstet Gynecol (2015)
126:1294–300. doi: 10.1097/AOG.0000000000001135

8. Park IU, Ogilvie JW, Anderson KE, Li Z, Darrah L, Madoff R, et al. Anal human
papillomavirus infection and abnormal anal cytology in women with genital neoplasia.
Gynecol Oncol (2009) 114:399–403. doi: 10.1016/j.ygyno.2009.05.008

9. Saleem AM, Paulus JK, Shapter AP, Baxter NN, Roberts PL, Ricciardi R. Risk of
anal cancer in a cohort with human papillomavirus-related gynecologic neoplasm.
Obstet Gynecol (2011) 117:643–9. doi: 10.1097/AOG.0b013e31820bfb16
10. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin (2017)
67:7–30. doi: 10.3322/caac.21387

11. Champer M, Wong A, Champer J, Brito I, Messer P, Hou J, et al. The role of the
vaginal microbiome in gynaecological cancer. BJOG Int J Obstet Gynaecol (2018)
125:309–15. doi: 10.1111/1471-0528.14631

12. Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, Téllez-Sosa J,
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