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ABSTRACT Accurate segmentation of fine-grained information is an important step in medical image

analysis applications. With the development of the encoder-decoder-based networks, various network

structures and algorithms have made significant progress in semantic segmentation tasks. This work aims to

present a novel high-resolution encoder-decoder network (HRED-Net) for fine-grained image segmentation

that is highly accurate for small-scale targets. We design a multiscale context connection module to extract

feature information without reducing the resolution, and propose a multiresolution fusion model to fine-tune

the final results. In addition, thesemodules are trained together with a detail-oriented loss function to enhance

the model’s perception of fine-grained parts. Through experiments on the DRIVE dataset, we found a

balance between these modules, and our comparison results show that in addition to the extraction multiscale

features, the fusion ofmultiresolution prediction information is also beneficial for fine-grained segmentation.

Our method yielded significant improvements in the accuracy and sensitivity in retinal vessel and lung

segmentation tasks.

INDEX TERMS Fine-grained, multiscale, multiresolution, retinal vessel, semantic segmentation.

I. INTRODUCTION

Focusing on the details of image segmentation is an

ongoing challenge, and accurate segmentation of medical

images, including shapes, locations, and sizes, provides sci-

entific assistance to doctors for making accurate diagnoses.

Convolutional neural networks (CNN) based algorithms

have made important contributions to the field of med-

ical imaging, involving various aspects such as retinal

blood vessel segmentation [1]–[4], pathological slice seg-

mentation [5]–[7], organ segmentation [8]–[10], and tumor

segmentation [11]–[13].

Due to the limitations of the standardization of clinical data

collection programs and some manual interventions in the

data collection process [14], fine-grained segmentation [15]

of medical images is challenging. The first limitation is low

tissue contrast: fine-grained targets tend to be similar to back-

ground pixel values, causing inconsistencies or disappearance

at the extended end. The second limitation is noise inter-

ference: due to the similar physical properties at organiza-

tional junctions, and flowing tissue fluid, medical images are

often accompanied by impurities and uncertainty shadows.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jon Atli Benediktsson .

The third limitation is that the ratio between foreground

and background is unbalanced: fine-grained targets, such

as tumors, blood vessels, and nerves, are more worthy of

attention in medical images, and they are insignificant in

images. For easy understanding, we select the retinal vessel

segmentation task as an example, although similar situations

exist in other tasks, such as organ and tumor segmentation.

In Fig. 1, the left panel shows the collected retinal vessel

images and the right panel shows the corresponding ground

truth. We confirm the previous view in three aspects: 1) the

selected parts of the box have low contrast and blurred blood

vessel contours, and the targets are interrupted at the position

indicated by the arrows, 2) irregular shadows are distributed

throughout the image, and 3) the foreground occupies the

image at a ratio of less 0.1.

To address this problem, many supervised and unsuper-

vised segmentation methods have been proposed [16]–[21],

including threshold processing, level-set, maximum entropy

partition, and manual marking method. These methods,

however, have a large dependence on the pixels in the

region, and it is difficult to distinguish some fuzzy regions.

Recently, many researchers have made various attempts

with deep learning methods, and they have proposed new

ideas for image segmentation. These studies can be grouped
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FIGURE 1. Illustration of the adjacent pixels in the foreground and
background within retinal vessel images. First column: original
images; second column: partially enlarged images; third column: ground
truth of the identification area.

into three categories: 1) those proposing encoder-decoder

feature extraction structures [5], [16] and implicitly using

multiresolution features, 2) those proposing multiple reso-

lution [22] combinations and explicit combinations of mul-

tiresolution information, and 3) those proposing multimodal

feature extraction methods, including expanding the network

width [23], increasing the network depth [24], and increasing

the receptive fields of convolution [25].

We extract different scales of information at a resolution

to extend the existing encoder network; additionally, we add

an explicit fusion of multiresolution information to fine-tune

the final results. During training, we also use a detail-oriented

loss function to improve the sensitivity. We summarize the

main contributions in the following five points:
1) Through careful analysis and experimental verification,

an encoder module with residuals is used to extract

semantic depth information and improve the seman-

tic segmentation capability of the encoder-decoder

structure.

2) A multiscale detail enhancement module is proposed

to extract deep semantic information without reduc-

ing the resolution, and put it in the correct location

through careful analysis and experiments to separate

fine-grained targets.

3) We provide a shortcut between the low-resolution pre-

diction maps to the final prediction and uses them to

fine-tune the final results.

4) We propose a detail-oriented loss function that com-

bines the weighted cross-entropy loss function and the

Dice loss function to focus on the fine-grained parts.

5) We compare of the U-Net, SegNet, and context encoder

network (CE-Net) with our proposed network under the

same DRIVE dataset inputs, and implement extensive

comparisons on other retinal vessel and lung segmen-

tation tasks with the state-of-the-art methods.

II. RELATED WORKS

With the development of deep learning, CNNs have facil-

itated medical image segmentation tasks. To optimize the

details of the segmentation targets, two strategies are often

used in the literature: 1) improving the feature recognition and

semantic reasoning capabilities of the network and inferring

the attribution of pixel points by learning local and global

information, and 2) improving the prediction ability of the

network with multiresolution features and effectively inte-

grating local and global context information.

To improve the logical reasoning and expression ability

of the network, researchers have explored the use of patch-

based CNNs in end-to-end learning to show the dawn in

engineering applications. As a representative contribution,

Long andDarrell. [26] made amajor breakthroughwhen fully

convolutional networks (FCNs) were introduced to address

pixelwise prediction problems. FCNs define a skip layer

that concatenates a deep, coarse layer with a global con-

text and a shallow, fine layer with high-frequency details,

leading to sharper boundaries between different classifica-

tions. Then, Ronneberger et al. [5] proposed U-Net with a

13-layer Visual Geometry Group (VGG13) framework, and

Badrinarayanan et al. [27] proposed SegNet, which is

topologically identical to the VGG16 framework; they both

collected information on different resolutions for pixelwise

segmentation, and these methods work well in medical

segmentation tasks in small datasets. The skip connection

provides a bridge for direct delivery of different resolution

information between the encoder and decoder paths.

The deep convolution algorithm also has good perfor-

mance in the medical field. To take full advantage of the

different network levels of prediction results in one net-

work, Guo et al. [28] and Liskowski and Krawiec [1]

predicted the same resolution at different stages of the short-

connection network. This short-connection approach passes

low-level semantic information to a higher level to refine the

high-level prediction and passes structural information to the

lower-level to reduce the noise at the lower-level.

Gu et al.[29] combined an inception module and dilated

convolutions to form a context extraction module that links

the encoder and decoder parts and captures more high-level

information through the field of a different branch.

To improve the segmentation details, multiresolution

fusion is widely used as an effective means of medical

semantic segmentation. In reference [30], multiple U-Nets

were connected into a chain, in which different resolution

prediction maps were reused to improve the final accuracy.

Feng et al. [31] proposed a more complicated method for

connecting prediction graphs at different stages, in which

the prediction in the primary path and the two branch paths

are cross-connected, exhibiting strong robustness in image

segmentation tasks.
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Typically, better results can be obtained via hybrid

approaches. In reference [9], a high-resolution pathway block

was used as a skip-connection to fine-tune the final prediction

map, and low-resolution prediction maps were also used

to improve the top resolution. Both the dilated convolution

kernels and low-resolution information were combined to

obtain feature information with high recognition accuracy.

To solve the problem of fuzzy boundary detection, Xie [32]

proposed holistically-nested edge detection (HED), gradually

reducing the resolution of the predicted images by FCNs,

and then fusing them with weights. Lin et al. [22] exploited

a multiscale pyramidal model and defined one pyramid

for each feature map; the top-down convolutional pathway

produces strong semantic information, and the bottom-up

convolutional pathway yields accurate activation of the local

information. These edge detection methods are important

references for semantic segmentation.

In fine-grained segmentation tasks, Mavroudi et al. [33]

used a temporal conditional random field module for fine-

grained action segmentation. Zhao et al. [34] extracted

fine-grained information with an improved pyramid neural

network. To further improve the temporal convolutional

encoder-decoder network, Nie and Shen [35] proposed

a semantic-guided method to acquire accurate boundary

information. In addition, many researchers have enhanced

semantic segmentation by means of large receptive fields,

Vo and Verma [36] combined two deep convolutions

with multiple filter sizes for identifying fine-grained fea-

tures. Zhou et al. [37] integrated fine-grained information

from multiple scales with parallel multiresolution modules.

Yang et al. [38] proposed a multiscale recurrent neural net-

work to refine the details of boundary shapes.

The above literature has contributed to the semantic seg-

mentation of medical images, and we can learn from these

studies to further improve the segmentation performance.

In the next sections, we describe a method to solve the

problem and show the effectiveness of the proposed method

through experimental comparisons.

III. METHOD

In this section, we describe our high-resolution encoder-

decoder network (HRED-Net) in detail, and the entire process

is shown in Fig. 2. The proposed network consists of four

strategies, each of which is introduced in a separate section.

First, an enhanced feature extraction module similar to U-Net

is constructed, in which the feature information of different

resolutions is fully extracted. Next, and most importantly,

a multiscale pathway is used to improve the extraction of

image details. Then, we elaborate on the multiresolution

fusionmodule, sufficiently in the refined network for accurate

segmentation targets. Finally, we force the network to focus

more on the medical image features and design a hybrid loss

function for fine-grained parts.

A. ENHANCED FEATURE EXTRACTION MODULE

Our feature extraction module learns from the efficient

encoder-decoder structure [5], which provides local and

global context information by extracting features at multiple

resolutions.

To extract higher-resolution features, we use deeper con-

volution layers than U-Net. As shown in Fig. 2, each encoder

module in our method is a three-layer convolution with a

residual structure. The residual structure is easy to opti-

mize [24]. Each convolution kernel uses batch normaliza-

tion [39] and a rectified linear activation unit before the

weight layer [40]. After that, max pooling is performed to

achieve translation invariance at a low resolution.

B. MULTISCALE PATHWAY

Our second block is a multiscale pathway that connects the

encoder and decoder. This module is designed to obtain high-

resolution feature information and improve the perception of

fine-grained parts.

Although the pooling operation has the characteristic of

translation invariance, the resolution of the image is gradually

reduced, which makes small targets disappear and hard to

identify in the underlying layers. The current solution is the

skip connection pathway which combines the coarse layers

with the corresponding fine layers. However, regarding fine-

grained segmentation targets, the deep layers cannot generate

semantic information for the disappearing parts, which causes

negative effects on the continuity of the segmentation target.

To overcome this limitation, we propose a multiscale module.

As shown in Fig. 1, we first perform a 1 × 1 convolution,

a 3 × 3 convolution, a 7 × 7 convolution and 3 × 3 max

pooling in a parallel, and in this way, we extract features

of different scales at the same resolution. Then, we apply a

1×1 convolution to increase the depth of the network in every

branch. Finally, we superimpose the features of all branches

and use a 3 × 3 convolution for dimensionality reduction.

Since our goal is to increase the sensitivity of the network

to small isolated parts, no larger convolutions such as 7 × 7

convolutions or 9 × 9 convolutions, are used here.

Our module draws on the advantages of the Inception

module [23], [41]. This operation has three advantages: 1) it

expands the depth of the network and increases the nonlinear-

ity of the network, 2) it increases the width of the network and

improves the adaptability of the network to different scales,

and 3) it operates at the same resolution with large receptive

fields, to obtain a wider range of information without losing

details.

C. MULTIRESOLUTION FUSION MODULE

Our third block is a weighted multiresolution fusion module

for fine-tuning the final results. The multiresolution fusion

module is designed to effectively fuse high-level global fea-

tures and low-level local features to refine high-resolution

output maps.

Fig. 4(a) and Fig. 4(b) represent two multiresolution net-

work strategies; the difference between them is whether they

explicitly utilize multiresolution prediction maps. By com-

bining these two structures, we propose a multiresolution

fusion module, which is shown in Fig. 4(c).

38212 VOLUME 8, 2020



C. Lyu et al.: HRED-Net: High-Resolution Encoder-Decoder Network for Fine-Grained Image Segmentation

FIGURE 2. The proposed high-resolution encoder-decoder network (HRED -Net); our network consists of four modules: 1) an encoder module with
residual E, 2) a multiscale feature extraction module, 3) a decoder module D, and 4) a multiresolution fusion module.

FIGURE 3. Illustration of the multiscale pathway block, which contains
four branches with different receptive fields, and the input and output
have the same number of channels.

In U-Net, the encoder provides a channel for extract-

ing semantic information from different scales, the decoder

implements a refinement process, and the skip connections

combine coarse, deep features with fine shallow features [42].

In this manner, U-Net allows the depth semantic features to

guide the subsequent fusion but does not explicitly produce

multiresolution predictions. Comparatively, HED explicitly

produces predictions for each level of features, and then a

weighted fusion layer automatically combines outputs from

multiple scales.

FIGURE 4. Illustration of the different multiresolution fusion structures:
(a) holistically-nested network, (b) encoder-decoder feature extraction,
and (c) our proposed multiresolution fine-tuning network.

To inherit the advantages of the two networks, we followed

the main outlines of the U-Net architecture and then fine-

tuned the baseline with a multiresolution structure. Deep

layers are helpful for instance detection. In U-Net, the transfer

of deep features to the top is a long process, and the infor-

mation is constantly adjusted during communication with the

upper layers. Furthermore, semantic segmentation is a pro-

cess of feature aggregation, which is assigned heuristically,

and information discarded at other levels may contribute to

the final prediction. Therefore, a shortcut is needed for the

deep features to yield the final prediction.

Inspired by the structure of HED and the pyramid scene

parsing networks [43], we provide a multiresolution fusion

model for the deep layers. The difference from HED is

the weight distribution for each resolution; we distinguish

the top layer from the other layers; the top prediction map
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is dominant, and the other prediction maps are secondary.

As shown in Fig. 2, we add a 1 × 1 convolution before

each prediction map, which not only automatically selects the

scale, but also changes the number of channels. We convolve

the number of channels from low-resolutions to a quarter of

the original resolution [44] and superimpose them onto the

original resolution prediction map; in this way, a shortcut to

the final result is provided for results of different resolutions.

D. DETAIL-ORIENTED LOSS FUNCTION

As an end-to-end segmentation framework, our target is

to train the proposed network to predict where each pixel

belongs; i.e., this is a pixel-level classification problem. As a

two-class task, the pixel values near the boundary are usually

very similar, making the model easy to misclassify. There-

fore, modeling the task as a regression problem is more

accurate than a modeling it as a classification problem, which

estimates the probability of each pixel belonging to the target.

The ratio of foreground to background is often unbalanced

in medical images. Li et al. [45] showed that not all pixels are

equal and that more power is given to the interesting pixels;

to balance the pixel frequency between the region of interest

and the background, we choose the weighted cross-entropy

loss.

Lwce (p, y) = −

∑
iǫ�

(αyilogpi + (1−yi)log(1−pi)) (1)

Here, � is the total number of pixels; pi and yi are the pre-

dicted probability of positive samples and the sample value

of pixel i, and α denotes the weight of the positive pixels.

However, the Dice coefficient loss makes sense for clinical

application, as more focus should be on the overlap between

the prediction and fact in medical images. It is defined as

follows:

Ldice(p, y) = 1−
2

∑
i∈� pi.yi∑

i∈� p
2
i +

∑
i∈� y

2
i

(2)

Then, we define the joint morphological segmentation as

follows:

Lseg(p, y) = λLwce(p, y) + Ldice(p, y) (3)

Here, λ is the balanced weight. In our experiments, we set

λ = 1.5 to obtain preferable results according to experience.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed method through

experimental comparisons. First, we describe in detail the

processing of the raw data, the implementation details, and

the evaluation metrics. Then, we evaluate the modules we

have proposed using the DRIVE dataset. Finally, we demon-

strate the effectiveness by comparing our method with the

state-of-the-art methods.

A. DATASET AND IMAGE PREPROCESSING

There are many publicly available benchmark datasets for

image segmentation. We evaluate the proposed algorithm

on three datasets: DRIVE [46], STARE [47], and LUNA.

The DRIVE database contains 20 RGB training images and

20 testing images with the size of 565×584 (the retinal vessel

occupies a radius of 540 pixels). We cropped the original

images to 544 × 544 pixels with a reference mark, and then

training and testing are performed for all of the images of this

size. The STARE dataset contains 20 retinal fundus images

with labels. We automatically generated marks based on the

images. The original image size is 700 × 605 pixels, and

we cropped the images to 656 × 544 pixels, and trained and

tested images of this size. The LUNA dataset contains 534 2D

samples with corresponding labels, and all images have a

resolution of 512×512. The first two datasets are blood vessel

segmentation datasets in which the segmentation targets are

fine-grained and scattered, and the last dataset is an organ

segmentation task, which is used to verify the generalization

ability of our proposed network.

Due to the limitations in the number of training images,

we augmented the dataset to enhance the expressive power

of the training data. First, we adjusted the orientation of the

images, including vertical flipping and horizontal flipping.

Next, image preprocessing, which mainly involved random

rotation, random shear, width shift and height shift, was

implemented. Finally, we randomly processed the training

images, including scaling from 0.9 to 1.1 and channel trans-

formation. We also adopted noise reduction strategies on

all the training and testing images. All the images under-

went normalization, and then contrast-limited adaptive his-

togram equalization (CLAHE) and gamma correction were

performed. The effect of noise reduction on the image is

shown in Fig. 5. The segmentation targets become clearer,

and the difference in the brightness decreases from the top

row to the bottom row.

B. IMPLEMENTATION DETAILS

The dataset we use has the same standard training set and test

set. All the pictures are subjected to the same image prepro-

cessing and cropping processes. On this basis, the training

data are subjected to additional amplification processing to

compensate for the lack of data. We randomly divided the

expanded training data into 80% for training and 20% for

verification. All training ends with the early stop method.

We also adopt the adaptivemomentum (Adam) optimizer [48]

with a learning rate of 0.0001, and step size hyperparameters

β1 = 0.9 and β2 = 0.999. All the experiments are run on an

NVIDIA Titan XP GPU.

C. EVALUATION METRICS

Subtle differences determine the quality of fine-grained seg-

mentation, and how to select an evaluation indicator is

very important to evaluate the segmentation results effec-

tively. In this respect, we draw on the experience of other

researchers. Many researchers have provided us with refer-

ences for fine-grained segmentation, Angelova and Zhu [49]

and Zhao et al. [50] used the accuracy as the metric of fine-

grained segmentation, Zhang et al. [51] chose the precision

and recall as metrics. We choose the accurate (Acc) as an
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FIGURE 5. Image preprocessing details. Each line represents a different
operation: 1) original images, 2) normalized images, 3) CLAHE corrected
images, and 4) gamma corrected images.

indicator to evaluate fine-grained segmentation and use the

sensitivity (Sen) and specificity (Spe) instead of the precision

and recall for the medical images.

The accuracy is widely used to measure the percentage of

correctly predicted pixels and is defined as:

Acc =
TP+ TN

TP+ TN + FP+ FN
(4)

Here, TP, TN, FP, and FN represent the numbers of true

positives, true negatives, false positives, and false negatives,

respectively.

The sensitivity and specificity often appear in pairs and are

important metrics for binary segmentation. They are used to

evaluate the correct prediction of foreground and background

ratios; and are defined as:

Sen =
TP

TP+ FN
(5)

Spe =
TN

TN + FP
(6)

In terms of model evaluation, we use the area under the

curve (AUC) as a metric. The AUC is widely used as an

essential indicator to confirm the effectiveness of machine

learning algorithms and is obtained by integrating the area

under the receiver operating characteristic (ROC) curve. The

ROC curve, is the ratio of the true positive rate (TPR) to the

false-positive rate (FPR).

AUC =
1

2

∑m−1

i=0
(xi+1 − xi)(yi+yi+1) (7)

TABLE 1. Results comparison between U-Net and the multiscale pathway
module in different locations.

Here, x is the FPR and y is the TPR. We calculated the

AUC by using the implementation provided in the scikit-learn

Python library.

D. ABLATION ANALYSIS OF THE PROPOSED MODULE

To evaluate the performance of the proposed module,

we designed a series of experiments for training and testing

them on the DRIVE dataset. We first evaluate the effec-

tiveness of the proposed modules and the loss function to

determine the optimal combination, and then further confirm

the performance with some classic networks under the same

conditions.

1) EVALUATING THE MULTISCALE PATHWAY MODULE

To compare the effects of the multiscale pathway on different

locations of the skip connection, we designed a comparative

experiment. The experiment uses U-Net as a reference object,

and the multiscale pathway module is placed in the four skip

connections of the network, called SED-Net 1, SED-Net 2,

SED-Net 3, and SED-Net 4. The difference between them is

the number of channels convolved, which is the same as the

number of channels in the corresponding encoder module.

We trained and tested all the networks under the same

conditions as described in section A, and the test results

are shown in Table 1. The table lists the parameters of the

network and the corresponding AUC score, accuracy, and

sensitivity for each network. From the experimental results,

we can conclude that 1) our network outperform U-Net, and

2) the module performs best at the second encoder. There are

three reasons for this phenomenon. The first reason is the

resolution: in SED-Net 3 and SED-Net 4, the reduction in

the image resolution affects the identification of fine-grained

parts. The second reason is the receptive fields: operating at

the same resolution with large receptive fields, our method

obtains a wide range of information without losing details.

The third reason is the width and depth: expanding the depth

of the network increases the nonlinearity of the network,

increases the width of the network and improves the adapt-

ability of the network to different scales.

For a more intuitive understanding of the effects of the pro-

posedmodule, we compared the predictionmaps between our

proposed networks and U-Net in detail (see Fig. 6). We show

the images predicted by the two algorithms as well as the

original image, comparing the segmentation effects on the

fine-grained target. In those selected samples, our prediction
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FIGURE 6. Examples of prediction maps showing the difference between
our proposed network, U-Net and the ground truth. Each row shows a
part of a prediction image, and the marked parts highlight the differences.

TABLE 2. Results comparison HRED-Net and SED-Net 2.

map performance was as follows: 1) high sensitivity to fine-

grained parts (see the marked parts). We recognized the fine-

grained contours and maintained the integrity. 2) Our method

is better for low-contrast pasts than U-Net, referring to the

parts marked by ellipses, where the contrast is low between

the foreground and background, we segmented the blood

vessel contours accurately.

2) EVALUATING THE MULTIRESOLUTION FUSION MODULE

To verify the performance of our multiresolution fusion mod-

ule, we added a fusion part to the SED-Net 2 networks and

called this network HRED-Net. We trained and tested the two

networks under the same conditions as described in section

A, and the results are shown in Table 2. The table lists the

parameters of the network and the corresponding AUC score,

accuracy, and sensitivity for each network.

From Table 2, we conclude that the fusionmodule 1) yields

an approximate 0.5% improvement in the sensitivity with

a 0.014 M parameter increase, and 2) increases both the

TABLE 3. Comparison of the different loss function on the drive dataset.

TABLE 4. Comparison of the segmentation results from different
algorithms with the same inputs.

AUC score and accuracy by 0.1%. This result proves the

effectiveness of the multiresolution fusion module, indicating

that there is a slight fine-tuning effect on the final prediction

results by directly connecting the multiresolution prediction

results.

3) EVALUATION OF THE DETAIL-ORIENTED LOSS FUNCTION

To evaluate the effectiveness of the detail-oriented loss func-

tion on the proposed network, we designed and tested a

comparative experiment with different loss functions. From

the numerical results shown in Table 3, all four metrics

(sensitivity, specificity, accuracy, and AUC) showed a bright

contrast in the DRIVE dataset, and the Dice coefficient loss

performed better than the weighted cross-entropy loss. The

detail-oriented loss function achieved the best segmentation

scores. The sensitivity improved the most (0.4%), the speci-

ficity and accuracy improved by more than 0.2%, and the

AUC score improved by 0.1%.

4) COMPARISON WITH THE STATE-OF-THE-ART METHODS

To further validate the effectiveness of our proposed module,

we compare the proposed HRED-Net with the state-of-the-

art algorithms on the same processed images described in

section A. We run the code provided by the authors on the

preprocessed images, and the results are shown in Table 4.

In Table 4, our network still has better realization than other

methods under the same conditions with fewer parameters

and shows the best accuracy and sensitivity, reflecting the

advantages in fine-grained segmentation, mainly due to the

following two points: 1) our loss function focuses more on

the segmentation details, 2) our network handles prediction

information in a multiscale and multiresolution way, enhanc-

ing the segmentation details.

Intuitive effects can be reflected by predictive compar-

isons, as shown in Fig. 7. All networks can segment the trunk

of the blood vessel well and show differences in the small

branches. U-Net and SegNet have visible breaks and discon-

tinuities in the small parts, CE-Net’s segmentation results are

more complete than the results from the other methods but
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FIGURE 7. Examples of the prediction maps, from left to right: preprocessed images, state-of-the-art predictions obtained by U-Net, SegNet, CE-Net,
HRED-Net and the ground-truth masks; all of the networks were trained with the same inputs.

lack the necessary details, and our predictions are closer to

the label in the details than the other methods.

E. RESULTS

To further prove the validity of our proposed network,

we experimented on different datasets and compared our

results with other state-of-the-art approaches. All of the

datasets were trained and tested under the same conditions

as described in section B.

First, we compared our method with other machine learn-

ing methods on the DRIVE dataset and listed the results of

the human observer. The results of the human observer come

from people trained by an ophthalmologist [44], which can

be used to measure of the effectiveness of machine learning

methods. From Table 5, we can see that our proposed network

increases the sensitivity from 0.8309 to 0.8730 by 4.2% and

the accuracy decreases from 0.9576 to 0.9644, and we also

achieve a sensitivity of 0.9742 and an AUC of 0.9796.

Then, we evaluated the accuracy and sensitivity of our

method with the state-of-the-art algorithms on the STARE

dataset. From the comparison results shown in Table 6,

we can see that our proposed method achieves a sensitivity

TABLE 5. Comparison of segmentation results on the drive dataset.

of 0.8044, a specificity of 0.9862, an accuracy of 0.9640, and

an AUC of 0.9830.

Finally, we evaluated the performance on the LUNA

database, which contains 534 2D samples with correspond-

ing labels. All images have a resolution of 512 × 512.

Different from the previous two datasets, the segmentation

tasks are concentrated in this dataset. We compared the pro-

posed method with U-Net [5], CE-Net [29] and the recurrent

residual CNN based on U-Net (R2U-Net) [53]. From the
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FIGURE 8. Sample results on vessel detection and lung segmentation dataset. Top to bottom are: original images, our proposed
method, U-Net and ground truth.

TABLE 6. Comparison of the segmentation results on the stare dataset.

TABLE 7. Comparison of the segmentation results on the LUNA dataset.

comparisons shown in Table 7, our HRED-Net increases

the sensitivity value from 0.9832 to 0.9917, the accuracy

decreases from 0.9918 to 0.9923, and our network also

achieves an AUC of 0.9879 and a specificity of 0.9935.

Tables 5, 6, and 7 above show the scores achieved

by each model, which illustrate the effectiveness of our

proposed network. These results further demonstrate that

our proposed modules and the detail-oriented loss func-

tion are beneficial for all the target segmentation tasks.

To obtain a more intuitive understanding of these scores,

we show the same example. From the results shown in

Fig. 8, we displayed the original image, U-Net segmenta-

tion results, our segmentation results, and the ground truth.

We can conclude that our proposed algorithm achieves

clear results in retinal vessel segmentation and lung organ

segmentation.

V. CONCLUSION

Details are essential for medical image segmentation. In this

paper, we proposed a multiscale connection encoder-decoder

network that focuses on fine-grained parts. Our network

draws on the encoder-decoder structure from U-Net, and it

consists of an enhanced encoder module, a multiscale fine-

grained extraction module, a decoder module and a mul-

tiresolution fusion module. We also added a detail-oriented

loss function to the network. In the multiscale pathway,

we extracted the location information of the small targets

by increasing the width and the receptive field of the con-

volution. Through comparative experiments, we found that

the multiscale module performed best in the second branch.

Moreover, the multiresolution fusion path facilitates direct

participation in the final prediction for low-resolution images,

retaining complete semantic features. Our comparative exper-

iments show that the proposed method improves fine-grained
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part segmentation with fewer parameters, including retinal

vessel segmentation and lung CT segmentation.
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