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HResNetAM: Hierarchical Residual Network With

Attention Mechanism for Hyperspectral

Image Classification
Zhixiang Xue , Xuchu Yu, Bing Liu , Xiong Tan, and Xiangpo Wei

Abstract—This article proposes a novel hierarchical residual net-
work with attention mechanism (HResNetAM) for hyperspectral
image (HSI) spectral-spatial classification to improve the perfor-
mance of conventional deep learning networks. The straightfor-
ward convolutional neural network-based models have limitations
in exploiting the multiscale spatial and spectral features, and this
is the key factor in dealing with the high-dimensional nonlinear
characteristics present in HSIs. The proposed hierarchical resid-
ual network can extract multiscale spatial and spectral features
at a granular level, so the receptive fields range of this network
will be increased, which can enhance the feature representation
ability of the model. Besides, we utilize the attention mechanism to
set adaptive weights for spatial and spectral features of different
scales, and this can further improve the discriminative ability of
extracted features. Furthermore, the double branch structure is
also exploited to extract spectral and spatial features with corre-
sponding convolution kernels in parallel, and the extracted spatial
and spectral features of multiple scales are fused for hyperspec-
tral image classification. Four benchmark hyperspectral datasets
collected by different sensors and at different acquisition time are
employed for classification experiments, and comparative results
reveal that the proposed method has competitive advantages in
terms of classification performance when compared with other
state-of-the-art deep learning models.

Index Terms—Attention mechanism, double branch structure,
hierarchical residual network (HResNet), hyperspectral image
(HSI), spectral-spatial classification.

I. INTRODUCTION

R
EMOTE sensing technology is one of the most important

components in the field of earth observation (EO), which

can perceive and recognize the observed scenes using their dif-

ferent reflection characteristics without making physical contact

with the objects. The imaging spectroradiometer can observe the

continuous spectrum from visible to short-wave infrared, thus

acquired hyperspectral images (HSIs) have hundreds of narrow

and approximately continuous spectral bands, and this unique

characteristic offers both opportunities and challenges for sub-

sequent information extraction and geoscience applications [1].
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According to the unique spectral and spatial characteristics,

HSI classification aims to determine the ground category of

each pixel, which has been widely used in, e.g., environmental

monitoring, resource management, urban planning, military, and

security applications over the past decade [2].

The intrinsic specificities of HSIs bring several challenges for

the classification task, basically, there are three tough problems

that need to be solved. 1) The high-dimensional nonlinear char-

acteristic in spectral domain will cause the Hughes phenomenon

and affect classification accuracy seriously. 2) The number of

annotated samples is often insufficient because labelling samples

is expensive and time consuming. 3) Effectively integrating

spatial information for spectral-spatial classification to improve

pixel-wise classification performance. Aiming to effectively

solve above typical problems, lots of classic machine learning

models have been exploited for HSI classification [3]. Contain-

ing multiple processing layers, deep learning models can learn

abstract, intricate, and discriminative features from raw data

using backpropagation algorithm, which have brought about

striking breakthroughs in many scientific research fields [4].

Deep learning techniques also revolutionize the ways of remote

sensing image processing, especially in the HSIs classification

field [5]–[8]. According to the feature types employed for clas-

sification, HSI classification methods based on deep learning

can be generally divided into three categories: Spectral-feature

based, spatial-feature based, and spectral-spatial-feature based

networks. Due to the fact that both spatial information and

spectral information make contributions to HSI classification,

the spatial-feature and spectral-spatial-feature-based networks

have witnessed more interest in recent years [9].

Because 3D convolutional neural networks (3D-CNNs) can

learn spectral–spatial features simultaneously without com-

pressing spectral and spatial information, it is now commonly

accepted that 3D-CNNs can be directly utilized for spectral-

spatial-feature-based classification without any preprocessing

or postprocessing process [10]–[12]. Combining the recurrent

network with 3D convolution operators, the recurrent 3D CNN

(R-3D-CNN) can exploit both spatial and spectral information

for classification [13]. Due to the fact that deeper learning

networks can learn more high-level discriminative features,

deeper learning models have shown more superiorities in image

recognition and classification [14], [15]. But the major problem

of very deep networks is the vanishing gradient in the training
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process. By introducing identity mapping to the main path of

network structure, the residual network (ResNet) framework

can ease this training problem in which the underlying error

can be propagated through the shortcut [16]. In the contextual

deep CNN (CDCNN) initial spectral and spatial information are

extracted by multiscale convolutional filter bank, and these joint

spatial-spectral features are fed into two residual blocks and fully

convolutional network to predict corresponding class label [17].

The spectral-spatial residual network (SSRN) employs spectral

and spatial residual blocks to facilitate back propagation of

gradients and alleviate the declining-accuracy phenomenon, in

which batch normalization is also used to regularize learning

process [18]. Aiming to explore the intrinsic complexity of HSI,

the deep pyramidal residual networks use pyramidal bottleneck

residual blocks to learn high-level spectral–spatial features [19].

To solve the small samples classification of HSI, deep few-

shot learning and multiview learning are proposed in the deep

residual learning framework recently [20], [21]. Dense network

(DenseNet) connects each layer to every other layer in a feed-

forward way, which can also alleviate the vanishing-gradient

problem [22]. Using densely connected structure in network

architecture, the end-to-end fast dense spectral-spatial convo-

lution network (FDSSC) can extract spectral–spatial features

for classification, which can lead to extremely accurate classifi-

cation [23]. Deep and Dense convolutional network introduces

two dense blocks to construct deep network and integrate various

spectral–spatial features for classification [24].

Visual patterns appear at multiscales in natural scenes. Dif-

ferent objects have different sizes in the same image, and

context information of an object may occupy different areas

in different images. Therefore, in order to accurately under-

stand objects in image, it is essential to perceive information

from different scales. Recently, some CNN-based models try

to learn spectral–spatial features of multiple scales for HSI

classification. The multilayer fusion dense network (MFDN)

uses PCA and 2D dense network to extract spatial features,

and the spectral features are extracted by 3D dense blocks, then

these features are fused for classification [25]. The CNNs with

multiscale convolutions (MS-CNNs) use convolution kernels of

different sizes to extract features of different scales, and three

types of classification network structures are proposed [26]. The

multiscale deep middle-level feature fusion network (MMFN)

uses two stages to fuse complementary and related informa-

tion, the first stage extracts middle-level spectral and spatial

features by corresponding scale model, and these middle-scale

features are fused using residual blocks in the second stage [27].

The hierarchical multiscale CNN with the auxiliary classifier

(HMCNN-AC) extracts multiscale features from image patches

of different sizes, and bidirectional long-short-term memory

(LSTM) considers these features as sequential data to capture

dependence and correlation [28]. In [29], the multiscale resid-

ual network (MSRN) utilizes depthwise separable convolution

(DSC) to construct multiscale residual block (MRB), and two

MRBs are connected by high-level shortcut to aggregate features

of different levels.

Inspired by visual perception of the human visual system, the

attention mechanism has been employed for HSI classification.

In [30], recurrent neural network (RNN) with attention learns

the continuous spectrum features, and CNN with attention is

designed to extract robust spatial features. Then, the multilayer

network uses spectral and spatial features to extract conjoint

characteristics. The double-branch multiattention mechanism

network (DBMA) and double-branch dual-attention mechanism

network (DBDA) use spectral and spatial dense blocks to ex-

tract spectral and spatial features, respectively, and the atten-

tion modules are utilized to set different weights for extracted

features [31], [32]. Aiming to solve the problem that CNNs

set the same weight for all spectral bands, the spectral atten-

tion module-based convolutional network recalibrates spectral

bands so as to strengthen important bands and suppress less

useful ones [33]. The end-to-end spectral-spatial squeeze-and-

excitation residual bag-of-feature (S3EResBof) model combines

the residual block and squeeze-and-excitation block to boost

the classification performance, in which batch normalization

is also used to regularize the network [34]. In order to sup-

press the influence of interfering pixels, the spectral-spatial

attention network (SSAN) introduces two attention modules

to learn more discriminative spectral–spatial features [35]. A

series of attention blocks are used in the end-to-end residual

spectral–spatial attention network (RSSAN), the first group of

attention modules adaptively select spectral bands and spatial

pixels, then the second group of attention modules refine the

spectral–spatial features, and the residual blocks embedded

with attention modules are utilized to optimize the training

process [36].

To obtain multiscale representations of objects, feature extrac-

tors need to employ different receptive fields to describe objects

at different scales [37]. However, the existing CNNs based

multiscale extractors can only extract features of fixed receptive

fields, which can not extract global and local features at the same

time. Current hierarchical features are extracted using the layer

wise method, but this method may cause the gradient vanishing

phenomenon and need many labeled samples for training. In

addition, existing attention-based HSI classification methods

only employ single-scale features, which can not make full use

of the complex spectral and spatial features of multiple scales.

All these factors will affect the HSI classification accuracy to

some extent.

Drawing intuition from the success achieved by using the

hierarchical residual network (HResNet) to extract multiscale

features, the hierarchical residual network with attention mech-

anism (HResNetAM) is proposed, which not only extracts differ-

ent scale spectral and spatial features but also employs attention

mechanism to promote the discriminative ability of features for

HSI classification. Besides, using the residual-like style and

batch normalization in the module, the proposed method can also

avoid the gradient vanishing problem. Our main contributions

in this article can be summarized as follows.

1) First, HResNet block is exploited to extract multiscale

spectral and spatial features, and these features can repre-

sent the global and local receptive fields of the datasets.

And this is the first time to extract spectral and spatial

features of multiple scales for HSI classification at a

granular level.
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2) Second, to take full advantage of the hierarchical spectral

and spatial features for classification, the attention mech-

anism is also employed to adaptively calibrate spectral

and spatial features of different scales, which can further

promote the discriminability of extracted features for HSI

classification.

3) Third, double branch structure for HSI classification is

also utilized. In two parallel branches, different sizes of

convolution kernels are employed to learn corresponding

spectral and spatial features. And the spatial and spectral

features of different scales are fused for spectral-spatial

classification. In addition, the residual learning and batch

normalization can also facilitate the model training.

4) The experimental results, obtained over four benchmark

HSI datasets, reveal that the proposed method exhibits

potential to learn more discriminative spectral–spatial

features, providing competitive performance advantages

compared with state-of-the-art deep learning classification

models.

The remainder of this article is organized as follows. Section II

introduces the proposed HResNet with attention mechanism

model in detail. Parameter analysis and comparative HSI clas-

sification results are presented in Section III, and Section IV

concludes this article.

II. METHODOLOGY

The proposed model makes full use of the multiscale feature

extraction ability of the HResNet and the weight calibration

capability of the attention mechanism. First, drawing intuition

from the success achieved by residual network, the hierarchical

residual block can not only extract multiscale features from raw

data but also avoid the gradient vanishing problem. Then, in

order to enhance the discriminative ability of spatial and spectral

features with different scales in HSI classification, the spectral

attention module and spatial attention module are employed.

Finally, the proposed double branch structure which extracts

spectral and spatial features separately is described, and detailed

model architecture and parameters are also introduced.

A. Residual Learning

Deeper learning models have stronger feature learning and

expression capabilities, but the vanishing gradient problem will

be exposed in the training process. With the network depth

increasing, accuracy get saturated and then degrades rapidly.

Unexpectedly, this problem is not caused by overfitting, and

adding more layers leads to higher training error. The key idea

of residual learning is to introduce identity mapping into the

backbone path of network structure. In the training process of

deep residual networks, the underlying error can be propagated

through the shortcut, which can effectively solve the notorious

gradients vanishing problem. The residual learning does not

require additional parameters, so it neither adds extra param-

eter nor increases computational complexity compared with the

original network. The deep residual network is composed of

many stacked residual units, in which a single residual unit is

illustrated in Fig. 1.

Fig. 1. Illustration of the residual unit.

This residual unit contains one convolutional layer, one batch

normalization (BN) layer and one rectified linear unit (ReLU)

layer as well as the identity mapping. And the basic form of the

residual unit is formulated as

xi+1 = F (xi) + xi (1)

in which xi and xi+1 are corresponding input and output of the

unit, and F refers to the residual function. In order to train the

model more efficiently, the batch normalization is implemented

after every convolutional layer [38]. Moreover, the rectified

linear unit layer is also utilized to extract nonlinear features.

Through this skip connection strategy, the residual networks can

build very deep network structures without worrying about the

gradients vanishing problem. The deep residual networks have

been exploited for HSI classification, which can obtain superior

classification accuracy than the CNN-based methods [18], [19],

[29], [39].

B. Hierarchical Residual Learning

It is critically essential to extract multiscale features for im-

age classification task. Most existing CNNs enhance multiscale

representation strength via layer-wise way, while the multiscale

representation ability of HResNet refers to the multiple available

receptive fields at a granular level. To achieve this goal, the

hierarchical residual block divides the input feature maps into

several groups, and each subgroup of feature maps is performed

with different layers of convolution operators. In the hierarchi-

cal residual block, different subgroups of feature maps have

different receptive fields, thus the combined feature maps can

represent multiscale features, so it can increase the receptive

fields of the network [40]. Existing convolutional networks

obtain multiscale features by stacking convolutional layers, but

these features have relatively fixed receptive fields. The hier-

archical residual learning introduces a new scale dimension as

an essential factor except existing dimensions of depth, width,

and cardinality [41]. In HResNet, the scale dimension means

the number of feature groups in a hierarchical residual unit.

Fig. 2 shows the hierarchical residual unit with 3 scales, in which

⊖ and ⊕ mean split operation and concatenation operation,

respectively.

We denote input and output of the hierarchical residual unit

with x and y. First, we split the input feature map x into s
feature subsets, and every subset is represented as xi, where

i ∈ {1, 2, . . . , s}. The subset xi has the same spatial size with

input x, but only 1/s channels. Except for x1, every xi has

corresponding convolution operator, denoted by Ki(). And we

use yi to denote the output of Ki(). To obtain hierarchical
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Fig. 2. Illustration of the hierarchical residual unit.

features, we add the output of Ki−1() to the feature subset xi,

and then they are fed intoKi(). Thus,yi can be generally written

as follows:

yi =

⎧

⎪

⎨

⎪

⎩

xi i = 1;

Ki(xi) i = 2;

Ki(xi + yi−1) 2 < i ≤ s.

(2)

Through this hierarchical residual structure, each convolution

operator Ki() can receive information from subsets xj(j ≤ i),
thus the feature split xi has a larger receptive field than xj . The

concatenation operation at the end of hierarchical residual unit

combines feature maps of different receptive fields. In addition,

the split and concatenation strategy can force the hierarchical

residual block process features more efficiently. In the hierar-

chical residual unit, larger scale factor s allows the unit to learn

features with richer receptive field sizes. We also conduct batch

normalization and rectified linear unit activation function after

every convolutional layer to train the HResNet more effectively.

Therefore, the residual-like connections within the hierarchical

residual unit could make it capture global and local features at

a granular level.

C. Attention Mechanism

Drawing intuition from the human visual system, the attention

mechanism can recalibrate channel-wise features by explicitly

establishing the relationships between channels [42]. The tradi-

tional HSI classification models assign equivalent weights to all

pixels and bands in the spatial and spectral domains, respectively.

It is a fact that different spatial pixels and spectral bands make

unequal discriminative contributions to classification results. For

instance, several edge pixels in the HSI block have different

labels with the center pixel, and these interfering pixels will

weaken the discriminative ability of spectral–spatial features,

thereby affecting the classification accuracy. If the weight of

these pixels can be suppressed, the discriminability of the

spectral–spatial features will be increased. Thus, it is feasible to

introduce the attention mechanism to HSI classification, which

can focus more on the discriminative and effective spatial and

spectral features and weaken information detrimental to classifi-

cation. Because exploiting spectral and spatial-wise attention is

superior to only using channel-wise attention [43], so we adopt

spectral attention module as well as spatial attention module

simultaneously to recalibrate spectral and spatial features of

multiple scales. Two attention modules are introduced in detail

as follows.

Fig. 3. Structure of the spectral attention module.

Fig. 4. Structure of the spatial attention module.

1) Spectral Attention Module: The spectral attention module

is constructed by modeling the interdependencies between chan-

nels, as shown in Fig. 3. The spectral attention mapX ∈ R
c×c is

calculated from the initial input A ∈ R
c×h×w, in which h× w

represents the spatial size while c denotes the channels of the

original features. Specifically, we first reshape and transpose

A ∈ R
c×h×w into AT ∈ R

c×n, and conduct a matrix multipli-

cation betweenA andAT . And the results are fed into a softmax

layer to get the attention map X

xji =
exp(Ai ×Aj)

∑c
i=1

exp(Ai ×Aj)
(3)

in which xji represents the influence of ith channel on the

jth channel. In addition, a matrix multiplication is conducted

betweenXT andA, and their results are reshaped into R
c×h×w.

Finally, a scale parameter α is used to weight the results and

perform a element-wise sum operator with the input A to obtain

the spectral attention map E ∈ R
c×h×w

Ej = α

c
∑

i=1

(xjiAj) +Aj (4)

where the parameterα is initialized to be 0 and can be optimized

gradually in the training process. We can see that the spectral

attention feature map E is a weighted combination of all the

original channels, which can selectively strengthen informative

channels and suppress less useful ones. Therefore, the spectral

feature discriminability can be increased through this spectral

attention module.

2) Spatial Attention Module: Fig. 4 shows the spatial at-

tention module, the initial input A ∈ R
c×h×w is fed into two

different convolution layers to generate two new feature mapsB

andC, respectively, in which {B,C} ∈ R
c×h×w. And these two

feature maps are reshaped into R
c×n, where n = h× w refers

to the number of spatial pixels. Then a matrix multiplication

between BT and C is performed, and the results are fed into

a softmax layer to obtain spatial attention map S ∈ R
n×n as
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Fig. 5. Framework of our proposed HResNet with attention mechanism (the representative HResNetAM model has 4 scales and 6 kernels).

follows:

sji =
exp(Bi × Cj)

∑n
i=1

exp(Bi × Cj)
(5)

in which sji measures the ith pixel’s influence on the jth pixel.

The closer the spatial distance between two pixels, the greater

the correlation between them.

A new feature mapD ∈ R
c×h×w is also generated from initial

input feature A through a convolution layer and reshaped into

R
c×n subsequently. Then a matrix multiplication between D

and ST is performed, and the results are reshaped into R
c×h×w.

Finally, a scale parameter β is utilized to weight the results and

perform a element-wise sum operator with the initial input A to

get spatial attention map E ∈ R
c×h×w as follows:

Ej = β

n
∑

i=1

(sjiDj) +Aj (6)

in which the parameter β is initialized to be 0 and can be

optimized gradually in the training process. It can be inferred

that each position in the spatial attention feature map E is a

weighted combination of all the original pixels, which have a

global view and selectively emphasize informative positions.

Thus, the feature discriminability will be improved in the spatial

domain.

D. Framework of the Proposed Model

The whole structure of the HResNetAM model is illustrated

in Fig. 5. In order to make the most of the spectral and spatial

features of different scales, we adopt the double branch archi-

tecture for HSI classification. The upper spectral branch consists

of the hierarchical spectral residual network and corresponding

TABLE I
DETAILED PARAMETERS OF THE HResNetAM MODEL

spectral attention module. The HResNet containing spectral-

based convolution operators are utilized to extract hierarchical

spectral features, and the spectral attention module is employed

to assign different weights for hierarchical spectral features.

The lower spatial branch is composed of hierarchical spatial

residual network and corresponding attention block. For the

similar purpose, the spatial attention module can recalibrate

the spatial features of different scales. The adaptively weighted

multiscale spectral and spatial features are fused to conduct the

HSI spectral-spatial classification.

The model in Fig. 5 is a HResNetAM network with 4 scales

and 6 kernels, and the corresponding detailed parameters of the

spatial and spectral feature extraction network in HResNetAM

are listed in Table I. In this representative model, we employ the

Pavia Centre dataset and the spatial size is set to be 7. And the

HSI block serves as the input of the two branch structures. In our

proposed model, we employ the convolution kernels with (1, 1,
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TABLE II
LAND-COVER CLASSES AND SAMPLES OF THE PAVIA CENTRE DATASET

5) and (3, 3, 1) to extract spectral and spatial features, respec-

tively. Note that the stride of Conv1 in the spectral branch is (1,

1, 2) and stride for other convolution operations in HResNetAM

is (1, 1, 1).

III. EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, all the comparative classification exper-

iments are carried out on a workstation equipped with an Intel

Core i9-7900X, an Nvidia Geforce RTX 2080 Ti GPU, and 128 G

RAM. The proposed HResNetAM model is implemented using

the PyTorch library with Python language. We employ main

classification evaluation coefficients, namely, overall accuracy

(OA), average accuracy (AA), and Kappa coefficient (κ) to

quantitatively assess the classification performance. And we

also exploit classification maps to qualitatively evaluate the

experimental results. In order to increase the reliability and cred-

ibility of experimental results, we conducted ten trials for each

classification experiment with randomly selecting the training

samples.

A. Data Description

Four different benchmark hyperspectral datasets collected by

different sensors and at different time are utilized to conduct the

HSI classification experiments.

Pavia Centre: The Pavia Centre dataset was acquired by the

ROSIS sensor over the side of Ticino river, Pavia, northern

Italy. The spatial size of this dataset is 1096 × 715 pixels, and

corresponding geometric resolution is 1.3 m. This sensor can

acquire 115 bands in total in the wavelength range of 0.43–

0.86 µm. After removing the greatly noise-affected channels,

the remaining 102 spectral bands are employed for experiments.

The corresponding image ground truth differentiates 9 classes,

and the detailed land-cover classes, training samples, and test

samples are shown in Table II.

Houston 2013: The Houston 2013 dataset was collected by

the ITRES CASI-1500 sensor over the University of Houston

campus in June 2012, which is provided by the 2013 IEEE GRSS

Data Fusion Competition [44]. The spatial size of this image

dataset is 349 × 1905 pixels, and the spatial resolution is 2.5 m.

This dataset has 144 spectral bands in the wavelength range of

0.38–1.05 µm. There are 15 land-cover classes within the image

coverage, and the detailed land-cover classes, training samples,

and test samples are shown in Table III.

TABLE III
LAND-COVER CLASSES AND SAMPLES OF THE HOUSTON 2013 DATASET

TABLE IV
LAND-COVER CLASSES AND SAMPLES OF THE DIONI DATASET

Dioni: The Dioni dataset is one of the HyRANK benchmark

datasets which have been developed in the framework of the

ISPRS Scientific Initiatives [45]. The HyRANK benchmark

datasets contain two training images (i.e., Dioni and Loukia)

along with the corresponding ground truth and two validation

images. The spatial size of the Dioni dataset is 250×1376 pixels,

which contains 176 spectral channels. There are 16 different

land cover classes in the HyRANK benchmark datasets, and the

selected Dioni dataset covers 12 classes. The detailed number of

training samples and test samples along with the corresponding

labels is reported in Table IV.

Houston 2018: The Houston 2018 dataset was gathered by

the ITRES CASI-1500 sensor over the University of Houston

campus in February 2017, which is provided by the 2018 IEEE

GRSS Data Fusion Competition [46]. We only use the training

portion of the whole HSI, and the ground truth is resampled

to adapt the hyperspectral dataset [47]. The spatial size of

this dataset is 601 × 2384 pixels at 1-m ground sampling

distance. There are 48 spectral bands in the wavelength range

of 0.38–1.05 µm. And there are 20 urban land-cover classes

within image coverage. The detailed number of training samples

as well as test samples with corresponding labels is shown in

Table V.
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TABLE V
LAND-COVER CLASSES AND SAMPLES OF THE HOUSTON 2018 DATASET

B. Experimental Setup

To evaluate the performance of proposed HResNetAM, we

use several state-of-the-art methods for comparative experi-

ments. These models include the deep learning-based models

(i.e., 3DCNN, CDCNN, SSRN, FDSSC, DBMA, and DBDA)

as well as the SVM with radial basis function (RBF) kernel. In

order to carry out comparative experiments more fairly, we use

the same number of training samples in all methods, and 20% of

the training samples are set as validation samples. Specifically,

the parameters of each method are given separately according

to the corresponding articles.

SVM: For SVM with RBF kernel, we employ the cross valida-

tion strategy to get the optimal regularization parameter C and

kernel parameter γ in the range of C = {2−2, 2−1, . . ., 27} and

γ = {2−2, 2−1, . . ., 27}, respectively. And we utilize all spectral

bands as input of SVM [48].

3DCNN: This method directly uses 3D convolution operators

to extract features of HSI, the architecture of the 3DCNN in [11]

contains two convolution layers and the fully connected layer.

This model uses 3D image cube as input, and the input size is

5×5×B, where B refers to the spectral bands.

CDCNN: The contextual deep CNN network constructs

deeper classification model with residual learning structure,

which is composed of the multiscale filter bank and two residual

blocks. Then three convolutional layers and one fully connected

layer are utilized for HSI classification [17]. The input of CD-

CNN is 5× 5×B block.

FDSSC: The FDSSC is based on 3D-CNN and dense block,

and this model contains two dense blocks and followed by the

average pooling, flatten and fully connected layer [23]. And we

also use the 9× 9×B image block as input.

SSRN: The SSRN combines residual learning and 3D-CNN,

which extracts spectral and spatial features in sequence us-

ing corresponding residual blocks, and the following average

pooling layer and an fully connected layer are employed for

classification. This method also uses 7×7×B image block as

input [18].

DAMA: The DAMA is based on attention mechanism and

dense block, which contains spectral branch and spatial branch

as well as corresponding attention blocks. The convolutions with

(1, 1, 7) and (7, 7, 1) kernels are utilized in spectral and spatial

branches, respectively, and the size of the input is 7×7×B [31].

DBDA: The architecture of the DBDA is presented in [32],

which also contains spectral and spatial dense blocks and corre-

sponding attention blocks. And we use 7×7×B image block as

input.

The DBMA [31] and DBDA [32] models utilize dense net-

work to extract spectral and spatial features, and attention

modules are employed to recalibrate extracted features. These

two methods are used as comparative methods to verify the

feature extraction capability of HResNet. In order to conduct

the ablation study of attention mechanism, we also design the

HResNet model as one comparative method, which has the same

network structure with corresponding HResNetAM but without

spectral and spatial attention modules.

C. Parameters Analysis and Setting

The parameters in deep learning models can influence the HSI

classification to some extent, so we evaluate the main parameters

in our proposed model, they are learning rate, spatial size, the

number of training samples, as well as the number of scales

and kernels. And in our classification experiments, because

the HResNetAM with different batch sizes and epoches has

relatively stable classification accuracies, so we set the batch

size and epochs as 32 and 200, respectively.

1) Learning Rate: The learning rate greatly influences

the convergence rate of the network and the HSI

classification performance. Referring to the relevant

experiments, we analyze the effect of learning rate at

{0.0001, 0.0002, 0.0003, 0.0008 0.001, 0.005, 0.01} on overall

accuracies. Fig. 6 shows the ten experimental results on

four datasets with different learning rates. In this figure, two

independent horizontal lines represent the overall range of the

classification results, and the two edges of the box denote upper

quartile and lower quartile, respectively. The horizontal line in

box refers to median value, and the � denotes abnormal outliers.

It can be found that a smaller learning rate has a relatively stable

classification accuracy and bigger learning rate will result in

larger variance in the classification accuracy. According to the

average OA and variance in four groups of HSI classification,

we set the learning rate to be 0.0002, 0.0001, 0.0002, and

0.0005 for four benchmark datasets, respectively.

2) Spatial Size: For the purpose of utilizing the spatial in-

formation for spectral-spatial classification, we exploit the 3D

image cube as input. The spatial size can also influence the

HSI classification results, and we set neighborhood size in the

range of {3, 5, 7, 9, 11, 13}. Table VI shows the average overall

accuracy and corresponding variance of the proposed method on

four hyperspectral datasets with different spatial sizes. Based on
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Fig. 6. Box plot of OAs with different learning rates on four different datasets. (a) Pavia Centre dataset. (b) Houston 2013 dataset. (c) Dioni dataset. (d) Houston
2018 dataset.

Fig. 7. Box plot of OAs with different number of training samples on four different datasets (a) Pavia Centre dataset. (b) Houston 2013 dataset. (c) Dioni dataset.
(d) Houston 2018 dataset.

Fig. 8. Bar chart of OAs with different number of scales and kernels on four different datasets. (a) Pavia Centre dataset. (b) Houston 2013 dataset. (c) Dioni
dataset. (d) Houston 2018 dataset.

TABLE VI
OVERALL ACCURACY(%) OF THE HResNetAM METHOD WITH DIFFERENT

SPATIAL SIZE ON FOUR DIFFERENT DATASETS

the experimental results, we find that the classification accuracy

generally increases and then decreases as the neighborhood

increases. Thus the optimal neighborhood sizes of the four

datasets are set to be 5, 7, 7, and 11, respectively.

3) Training Samples: The number of training samples also

have great influence on HSI classification performance. For the

purpose of evaluating the robustness and generalization of HRes-

NetAM model toward different numbers of training samples, we

randomly choose {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}
annotated samples per class for four datasets. Fig. 7 shows the

average overall accuracy achieved by HResNetAM with differ-

ent numbers of training samples on four hyperspectral datasets.

From this figure, we can observe that the classification accuracy

will quickly reach a relatively stable level with the increase of

training samples. According to the overall accuracies of each

dataset, we set 140, 180, 140, and 180 per class for training in

four datasets, respectively. Since there are fewer labeled samples

in some images, we set specific numbers of training samples for

those datasets. In the Houston 2013 dataset, we use 100 labeled

samples for Water and Tennis Court classes. In the Dioni dataset,

we use 100 labeled samples for Mineral Extraction Sites class

and 50 labeled samples for Fruit Trees class. And in the Houston
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TABLE VII
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE PAVIA CENTRE DATASET (BOLD VALUES REPRESENT THE BEST

RESULTS IN THE CORRESPONDING ROWS)

TABLE VIII
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE HOUSTON 2013 DATASET (BOLD VALUES REPRESENT THE BEST

RESULTS IN THE CORRESPONDING ROWS)

TABLE IX
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE DIONI DATASET (BOLD VALUES REPRESENT THE BEST RESULTS IN THE

CORRESPONDING ROWS)
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TABLE X
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE HOUSTON 2018 DATASET (BOLD VALUES REPRESENT THE BEST

RESULTS IN THE CORRESPONDING ROWS)

Fig. 9. Classification maps of different methods on the Pavia Centre dataset. (a) Pseudocolor image (bands 93, 53, and 19). (b) Ground-truth map. (c) SVM. (d)
3DCNN. (e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

2018 dataset, 100 labeled samples and 50 labeled samples are

used for Water and Unpaved parking lots classes, respectively.

4) Number of Scales and Kernels: In our proposed classifi-

cation model, different number of scales and kernels can also

influence the classification accuracy. For the sake of evaluating

the classification ability of HResNetAM model toward different

numbers of scales and kernels, we evaluate the influence of

these two parameters using cross validation strategy. We set the
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Fig. 10. Classification maps of different methods on the Houston 2013 dataset. (a) Pseudocolor image(bands 70, 30 and 12). (b) Ground-truth map. (c) SVM.
(d) 3DCNN. (e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

number of scales and kernels with {4, 5, 6, 7, 8} and {4, 6, 8},

respectively. The average overall classification accuracies using

different model structures are shown in Fig. 8. Based on the

comparative results, we can learn that the classification accu-

racy is lower when the numbers of scales and kernels are low,

especially for the Dioni and Houston 2018 datasets. Since the

proposed method can extract multiscale features, higher scales

can effectively improve the classification accuracy especially for

more complex images. And the optimal parameter combinations

of four HSI datasets are selected as {6, 8}, {7, 8}, {7, 6}, and

{8, 6}, respectively.

D. Comparative Classification Results With

State-of-The-Art Methods

1) Quantitative Comparisons: The average OAs, AAs,

Kappa coefficients, and corresponding variance as well as av-

erage classification accuracy of every land-cover class with

different classification methods on four benchmark HSI datasets

are listed inTables VII–X. Note that the bold value in these tables

represents the optimal value in the corresponding row. From

the quantitative comparisons, several conclusions can be drawn,

they are listed as follows.

1) First of all, in the case of the same number of training

samples, the deeper the model is, the higher the classifica-

tion accuracy will be. In four classification experiments,

the deeper models (i.e., CDCNN, FDSSC, SSRN, DBMA,

and DBDA) have higher classification accuracies than the

3DCNN.

2) The attention mechanism will improve classification to a

certain degree. In four groups of HSI classification exper-

iments, the DBMA and DBDA with attention mechanism

generally have higher classification accuracies than the

SSRN and FDSSC. Because the HResNet model has the

same network structure with HResNetAM but without

attention blocks, the classification results from HResNet

can also verify the effectiveness of attention mechanism.

And we can see that the HResNetAM has higher clas-

sification accuracies than HResNet in four classification

experiments.

3) Comparing the overall accuracies of four different

datasets, it can be found that the classification performance

of four groups of HSIs is different. Among them, the

Pavia Centre dataset has the highest classification accuracy

and the Houston 2018 dataset has low accuracy. This is

mainly due to the different levels of complexity within the
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Fig. 11. Classification maps of different methods on the Dioni dataset. (a) Pseudocolor image (bands 23, 11, and 6). (b) Ground-truth map. (c) SVM. (d) 3DCNN.
(e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

hyperspectral datasets. However, by introducing the scale

factor into HSI classification model, the classification

performance can be significantly improved. For example,

the average overall classification accuracy of the proposed

HResNetAM model is 83.61%, which is 3.27% higher

than the DBDA models (i.e., 80.34%). Thus, the scale

factor will be helpful for the HSI classification model on

complex datasets.

2) Qualitative Comparisons: Except the quantitative eval-

uation from Tables VII–X, the classification maps obtained

by nine different methods are also exploited for qualitative

evaluation. Figs. 9–12 show the classification maps on the Pavia

Centre dataset, the Houston 2013 dataset, the Dioni dataset,

and the Houston 2018 dataset with different classification meth-

ods, respectively. In these figures, the pseudocolor image and

ground-truth are also displayed, and different land-cover classes

are represented by different colors. When comparing the clas-

sification maps obtained by different methods in (c)–(k) with

the ground-truth map in (b), we can learn that the proposed

HResNetAM model can obtain more reasonable classification

maps, which can prove the superiority of HResNetAM. In

addition, when dealing with more complex images, take the

Houston 2018 dataset, for example, traditional deep learning

methods have more noise pixels in classification maps. Due to

the introduction of scale factor and attention mechanism, the

proposed HResNetAM can generate more homogeneous and

reasonable classification maps.

E. Discussion

When performing the deep learning models for HSI classi-

fication, traditional models often have difficulties in extracting

multiscale information at a granular level, which will affect the

classification accuracy to some degree. To address this problem,

we propose the HResNet with attention mechanism which can

learn spectral and spatial features with different scales, and

these features are fused for joint classification. The designed

HResNetAM model, based on hierarchical residual learning and

attention mechanism, can achieve better classification results

compared with state-of-the-art deep learning models. The main

reasons can be summarized as the following two aspects.

First, the importance of hierarchical features learning ability.

The designed model utilizes HResNet to extract spatial and

spectral features at different scales for the first time, which can

learn characteristics from different receptive fields. And these

global and local features can make contributions to the HSI

classification results, especially for more complex images, such

as the Dioni and Houston 2018 datasets, and the comparative

experiments confirm the effectiveness of the scale factor for HSI

classification.
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Fig. 12. Classification maps of different methods on the Houston 2018 dataset. (a) Pseudocolor image (bands 23, 11, and 6). (b) Ground-truth map. (c) SVM. (d)
3DCNN. (e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

Second, the attention mechanism can further improve the

classification performance to a certain extent. The attention

mechanism is orthogonal to HResNet, so it is feasible to combine

these two learning strategy for HSI classification. And the exper-

imental results also verify the advantages of combing attention

mechanism with HResNet.

IV. CONCLUSION

In this study, we propose a novel HResNet with attention

mechanism model for HSI spectral-spatial classification, which

have three advantages. The first one is that the proposed network

utilizes hierarchical residual block to extract more discriminative

spectral–spatial features of different scales, so as to maintain

multiscale information for classification. The second one is that

the attention mechanism is employed to calibrate the weights

of hierarchical spectral and spatial features, and the third one is

the double branch structure has potential in learning the spectral

and spatial features separately. Therefore, the novel hierarchical

residual network architecture with attention mechanism can

extract more complete and discriminative information of HSI

data by managing spectral–spatial features at a hierarchical level.

And the residual learning structure and batch normalization

can further improve the HSI classification efficiency in training

process. The performance of HResNetAM has been verified on

four benchmark HSIs compared with state-of-the-art models,

and the experimental results have confirmed the superiority of

proposed method.
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