
Citation: Nalajala, A.; Ragunathan,

T.; Naha, R.; Battula, S.K. HRFP:

Highly Relevant Frequent

Patterns-Based Prefetching and

Caching Algorithms for Distributed

File Systems. Electronics 2023, 12,

1183. https://doi.org/10.3390/

electronics12051183

Academic Editors: Minseok Choi

and Joongheon Kim

Received: 2 February 2023

Revised: 23 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

HRFP: Highly Relevant Frequent Patterns-Based Prefetching
and Caching Algorithms for Distributed File Systems
Anusha Nalajala 1 , T. Ragunathan 2, Ranesh Naha 3,* and Sudheer Kumar Battula 4

1 CSE Department, SRM University-AP, Amaravati 522502, India
2 Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education and Research,

Chennai 600116, India
3 School of Computer Science, The University of Adelaide, Adelaide 5005, Australia
4 School of Technology, Environments and Design (TED), University of Tasmania, Hobart 7000, Australia
* Correspondence: ranesh.naha@adelaide.edu.au

Abstract: Data-intensive applications are generating massive amounts of data which is stored on
cloud computing platforms where distributed file systems are utilized for storage at the back end.
Most users of those applications deployed on cloud computing systems read data more often than
they write. Hence, enhancing the performance of read operations is an important research issue.
Prefetching and caching are used as important techniques in the context of distributed file systems to
improve the performance of read operations. In this research, we introduced a novel highly relevant
frequent patterns (HRFP)-based algorithm that prefetches content from the distributed file system
environment and stores it in the client-side caches that are present in the same environment. We
have also introduced a new replacement policy and an efficient migration technique for moving the
patterns from the main memory caches to the caches present in the solid-state devices based on a
new metric namely the relevancy of the patterns. According to the simulation results, the proposed
approach outperformed other algorithms that have been suggested in the literature by a minimum of
15% and a maximum of 53%.

Keywords: frequent patterns; cloud computing systems; prefetching; caching and replacement
methods; distributed file systems

1. Introduction

Distributed file system (DFS) is a client-server architecture which enables web applica-
tions to store, retrieve, and process data from cloud computing platforms. A DFS creates
the impression to the user that the data is kept on the same node (computer system) where
the user is working even though the data is actually stored on some other nodes. DFS is a
crucial component on cloud computing platforms which is utilized as storage at the back
end. Cloud computing platforms are commonly used to deploy data-intensive applications
due to their enormous storage and processing capacities. The users of such data-intensive
applications that are deployed in the cloud perform read access requests (read requests)
more frequently when compared to write requests [1,2]. Therefore improving the perfor-
mance of read operations carried out on the DFS is a significant and challenging research
problem. The main aim of this research is to improve the performance of read operations by
proposing highly relevant frequent patterns-based prefetching, caching, and replacement
algorithms based on pattern relevancy.

The prefetching and client-side caching techniques [3,4] are used to fetch the data
in advance and cache them in the main memory (primary memory) or solid-state drive
(SSD) caches. Therefore, the file blocks can be read from these caches rather than DFS
by the web application programs that are executing on that particular nodes. The time
required to read the file blocks from the caches (primary and SSD caches) maintained in the
nodes is less than the time required to read the same from DFS. Hence, the performance of

Electronics 2023, 12, 1183. https://doi.org/10.3390/electronics12051183 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12051183
https://doi.org/10.3390/electronics12051183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1167-6343
https://orcid.org/0000-0003-4165-9349
https://orcid.org/0000-0001-6597-252X
https://doi.org/10.3390/electronics12051183
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12051183?type=check_update&version=1


Electronics 2023, 12, 1183 2 of 18

read operations can be improved by reading the data from main memory and SSD caches
thereby reducing the disk accesses.

Nowadays we can find computer systems with hard disks and SSD for storage. Multi-
ple types of secondary storage devices are used in general, to improve file access perfor-
mance as SSDs are faster than hard disks [5]. The file system is maintained by the operating
system in the hard disk and SSD of modern computers. Therefore, the DFS utilized by
cloud computing platforms must be able to effectively utilize both of these storage media.
This study addresses the issue of effectively utilising multiple memory devices to reduce
read access time.

We have assumed a rack-organised DFS environment with a name node and global
cache node in one of the racks, and a set of data nodes in all racks with multiple storage
devices. We also introduced a new HRFP-based prefetching algorithm which prefetches
the highly relevant frequent patterns based on the relevancy value generated in each data
node. The patterns which are prefetched using the HRFP-based prefetching algorithm are
stored in the caches of each data node efficiently. Thus, an increase in the speed of serving
the read requests in the DFS is observed. For that, we have compared our HRFP algorithm
with existing algorithms from the literature in terms of the cache hit ratio and average
read access time. We observed that the proposed approach outperformed the algorithms
proposed in the literature.

The following are the contributions of this paper.

1. Proposed highly relevant frequent patterns-based prefetching algorithm to prefetch
the file blocks based on pattern relevancy.

2. Proposed multi-level caching algorithm to fill the data node caches and caches of
global cache node with prefetched file blocks in an efficient manner.

3. Introduced a novel relevancy-based replacement policy to replace the caches of data
nodes and global cache node whenever there is a need to create space for storing the
incoming patterns.

The structure of remaining paper is organized as follows. The related work is pre-
sented in Section 2 and the architecture of the proposed method is discussed in Section 3.
In Section 4, the procedure to identify highly relevant frequent patterns and our proposed
HRFP algorithm are discussed. Section 5 discusses the results and the conclusions are
presented in Section 6.

2. Related Work

The prefetching, caching, and cache replacement techniques addressed in the literature
are presented in this section.

2.1. Literature on Prefetching and Caching Techniques

In this subsection, the methods for prefetching and, the caching techniques proposed
in the literature are discussed.

The metadata activities are segregated from the data operations in the distributed
file system (DFS) environment. The authors of [6] introduced HR-Meta, a technique
for prefetching metadata depending on how file access sequences relate to one another.
This method prefetches the information of the files that were related to the requested file
whenever a certain file was requested by the client. To minimise the number of metadata
accesses, related file metadata that had already been prefetched was given to the client.
Prefetching and caching file data in client-side caches was not the main concern of the
authors in this case, which further hinders the performance of the DFS.

In [7], the authors developed a novel mechanism to merge file names to feature vectors
and trained a gated recurrent neural network to provide file prefetching strategies in order
to analyse application I/O access patterns and improve the performance of current file
systems. They mapped the names of files or directories into a high-dimensional vector
space using the proposed embedding technique to show the relationship between files.
They used a neural network to determine whether or not a file needed to be prefetched



Electronics 2023, 12, 1183 3 of 18

by providing an access sequence of files as input. The disadvantage here is prediction,
which has computational overhead. Furthermore, a lot of data is loaded into the cache,
but only a little of it is really used. Storage problems are caused by these excessive data-
loading operations.

In [8–10], the authors introduced the initiative data prefetching technique. The data
was prefetched by using prediction algorithms based on past disk accesses. Before the
prefetched data was requested, it was delivered to the appropriate client. There is often a
storage and computation burden, and the predictions may not be accurate in many situations.

In [11], data correlation-based prefetching was implemented. The prefetching method
employed in this method was based on text-based syntax analysis. The reference relations
used in this approach were used to prefetch the data from the files. This method prefetches
the files that were explicitly correlated (in the form of hyperlinks) in the target file when it
was requested. Since the correlated files were also prefetched together with the requested
file, which has a higher frequency, the files with a lower frequency and correlation to the
requested file may not be disregarded in this scenario, and maintaining them in the cache
may create a storage problem.

File data was prefetched using the intelligent pipe-lined prefetching strategy for
distributed systems known as IPODS based on the hints produced by web applications [12].
There will be more burden on client applications for generating hints to prefetch the data.
Hermes is a distributed and hierarchical I/O system [13], in which prefetching of the file
data was done using a server push strategy, which results in an increase of burden on servers
which may result in low performance. The authors of [14,15] introduced a prefetching
technique based on simple support. The data that was prefetched using support value is
cached without using multiple storage devices.

The authors of [16,17] presented prefetching methods that were applied at the file
system level (disk). The file access patterns that need to be prefetched were found using
frequent sequence pattern mining techniques. There may or may not always be a correlation
between the access patterns. The proposed methods might not work well if file requests
are interleaved or if access patterns vary often.

To increase I/O access performance, recent research [18] has recommended using
flash-based storage devices, phase-changing memory devices and dynamic RAMs for
caching [19–22]. In [23], a file system was proposed, that consists of solid-state drives
(SSDs) and non-volatile RAMs for specific applications that require long execution times.
All of these caching techniques addressed in the literature mainly concentrate on data
caching in local caches only.

To address flash memory access latency and cost constraints, the authors of [24] pre-
sented a hybrid main memory structure that combines dynamic RAM and flash storage with
a cluster-based migration mechanism positioned between them. To address performance
loss brought on by unforeseen memory access patterns, a regression-based prefetching
approach was developed. The drawback with this method is, the prefetching is based on
prediction which requires more computation.

Some researchers used the centralised cache approach to track access frequency and
notify data nodes to store popular data [25,26]. However, jobs that run on the same node are
the only ones that can use the cached data. Big data applications, cannot bring significant
performance improvement with those approaches.

Remote memory access was used by the developers of [27] to implement a novel
caching system in HDFS. A separate cache node was used to store the information of
cached data in each data node. All of the data nodes in the cluster have access to this cache
node. The data was cached based on frequency without considering the recentness is the
disadvantage of this approach.

In [28], the authors introduced cache performance optimization of the quality of experi-
ence framework for cloud computing servers. This paper presents a new cache replacement
algorithm for variable video file sizes, analyses the particular requirements for the multi-
terminal type of QoC framework, and provides an outline design for the client and server



Electronics 2023, 12, 1183 4 of 18

sides. It then describes the implementation details for the client and server sides and
concludes with a thorough functional and performance testing of the entire system. The dis-
advantage with this approach is increased complexity and memory usage. Optimizing
cache performance can involve adding additional layers of complexity to the system or ap-
plication. Furthermore, it often requires using more memory, which can be a disadvantage
in memory-constrained systems.

Several state-of-the-art multi-level caching techniques were proposed in the litera-
ture [29–32] which mainly concentrates on caching the data based on prediction by analyz-
ing the characteristics of I/O accesses. The authors of [33] predicted the life time of files
by analyzing the access frequency of the files. The authors in [34] proposed WorkflowRL
method which manages the data in the multi-level storage systems based on reinforce-
ment learning. These approaches mainly rely on prediction which involves computational
overhead. Moreover, the prediction may not be precise for all types of workloads.

Several access frequency based caching methods for big data applications have been
proposed in [35–38]. Hyperbolic caching [39] is a priority-based caching technique in which
the priority is determined by the frequency of access after entering into the cache. The new
file blocks without access frequency cannot withstand with these approaches and the old
file blocks with access frequency that are already in cache persists for longer times.

The existing prefetching and caching approaches focus only on prefetching file blocks
based on support, hints generation, and machine learning approaches and caching the
same without considering multilevel memory devices. In this research, we introduced a
new HRFP-based prefetching and caching algorithm based on the relevancy value. This
algorithm reduces the number of disk accesses by allowing the majority of read requests
made by client application programs to be fulfilled from the client-side caches kept in
those specific data nodes. This decrease in disk access will shorten the read access time of
the DFS.

2.2. Replacement Policies

Several replacement policies have been introduced in the literature ([40–43]) which are
based on machine learning approaches. In [44,45], for web caching, a replacement method
combining classification models were presented. These studies used the percentage of
objects reuse to decide victim which is to be replaced from the cache. Even though these
machine learning replacement methods bring benefits, they require more computational
capacity which involves the updation of data for every data access in the memory.

In [4], the authors discussed several replacement procedures based on frequency, size,
and weight considerations. Least recently used (LRU) is a recency-based policy that replaces
the object that has been accessed the fewest times with a new object that has just arrived
while taking into account the frequency of the replaced object’s access. Least frequently
used (LFU) policies, which are frequency-based, replace cache items whose frequency was
lower and don’t focus on how recently an object has been utilized. A replacement policy
called SIZE replaces an object by taking its size into account; as a result, larger files are
replaced first rather than the files which are accessed recently and frequently.

All the replacement policies addressed in the literature mainly focus on replacing
the objects based on some factors like frequency, recentness and size. Some replacement
policies were also proposed based on machine learning methods which involve complex
computations. In this research, we proposed a novel relevancy-based replacement policy
for file block access patterns and a migration technique for moving the evicted patterns
to the global cache node or SSD cache of the same node based on relevancy value. So, we
can save the evicted pattern if its relevancy value is higher than the patterns stored in the
global cache node or SSD cache of the same node.

The following Table 1 summarizes the related work.



Electronics 2023, 12, 1183 5 of 18

Table 1. Related work.

Reference Approach Limitations

J. Zhang et al. [6] HR-Meta Client-side prefetching
was not considered.

H. Chen et al. [7] RNN based prefetching Computational Overhead is high

G.O. Ganfure et al. [46] Deeprefetcher Overhead of tranining
neural network models.

G. Cherubini et al. [47] Prefetching was done based
on machine learning models

Computational and
storage overhead are high.

Y. Chen et al. [11] Data correlation based
prefetching

Files which are not popular
were also prefetched.

M.M. Al Assaf et al. [12] IPODS Overhead on clients to
generate hints.

A. Kougkas et al. [13] Hermes Overhead on servers.

J. Liao et al. [8–10] Initiative data prefetching Low-level file system
serves the I/O requests.

R. Gopisetty et al. [14,15] Support-based prefetching Multi-level memories were
not considered.

S. Jiang et al. [16] DiskSeen Prefetching errors are high
if file requests are interleaved.

Z. Li et al. [17] C-miner
Prefetching may not be accurate
if the file sequence access pattern

changes regularly.

H. Herodotou et al. [25]
T. Yoshimura et al. [26] Centralized caching approach Limited to single computer

system.

H. Li et al. [48] Shared Cache

approach
The data was cached

irrespective
of popularity.

S. K. Yoon et al. [20,21]
S. Huang et al. [19]

N. Niu et al. [22]

Flash- based caching
approach

Not effective for big data
applications

D. Akbari bengar et al. [40]
M. Sabeghi et al. [41]

P. Aimtongkham et al. [42]
Y. Wang et al. [43]

Machine learning based
replacement policies Computational overhead is high

W. Ali et al. [4] LRU, LFU, SIZE
These policies won’t consider

frequency and recency
in a combined manner.

3. Architecture of Distributed File System

We have considered a rack-organized architecture for deploying the DFS as shown in
Figure 1. Every rack has a switch attached to it, and all of those switches are linked to one
main switch that is connected to the router for internet usage. The metadata information
of file blocks stored on the data nodes (Dnodes) is maintained by the name node (Nnode).
The Nnode consists of a metadata controller for managing activities related to metadata.
In addition, Nnode has DFS server software installed on it. All applications running
in the Dnodes can access a global cache directory maintained by the global cache node
(Gnode). To store the file blocks, the Gnode consists of a local cache (Gnode_LC) and
an SSD cache (Gnode_SC) and it has local and SSD cache controllers for handling the
I/O requests. For performing prefetch activities, the Gnode additionally has a prefetch
controller. The Dnode has local and SSD caches (Dnode_LC and Dnode_SC), and a hard



Electronics 2023, 12, 1183 6 of 18

disk (disk) to store files and file blocks. The Dnodes have separate local and SSD cache
controllers and also have a prefetch controller for handling prefetch-related activities.
The Dnodes also have DFS server software installed on it. The Dnodes have a log to store
the file and file block ids that are accessed by the client programs. The Nnode, Gnode,
and set of Dnodes are arranged in rack organization and the Nnode and Gnode are present
in one of the racks.

Figure 1. Rack organization of Nnode, Gnode, and Dnodes.

4. Proposed Work

This section covers the procedure for identifying the highly relevant frequent patterns
(HRFPs) first. Next, the proposed HRFP-based algorithm is discussed. Then, the read and
write algorithms followed in the DFS are explained. Lastly, the replacement procedure for
HRFPs, is discussed.

4.1. Identification of HRFPs

This section discusses the procedure for identifying the HRFPs based on the rele-
vancy value of the file block access pattern. As mentioned in the previous Section 3, all
Dnodes maintain logs with the details of file block requests that are initiated by the client
application programs.

The support values for all the files that are present in the log entries of the Dnodes are
computed first. The number of entries of a file fid and the total number of entries in the log
is divided by each other to determine the support value for that file. The files with 60%
of support value [15] are considered popular files and are stored in popular_files_list. Next,
the file block access patterns are identified for each popular file specified in popular_files_list
by computing the confidence value. Let us assume that the, session of file blocks in the log
is represented as [fid Bx By. . . Bz]. The confidence value for a pattern [Bx By] of a file fid is
calculated as a fraction of the total number of times the pattern fid[B fx By] appears in the
log of a Dnode and the total number of times fid[Bx] appears in the log [49]. The patterns
along with the confidence value are stored in a localconf_patterns_list. Then, the relevancy



Electronics 2023, 12, 1183 7 of 18

value for each pattern of a file is calculated by multiplying that file support value with the
confidence value of that pattern.

The reason for multiplying the file support value with the confidence value of the
pattern is to ensure that the highly popular patterns are prefetched. There may be files with
low support values and patterns with high confidence values indicating that the popularity
of the file is low and its patterns confidence is high. In this regard, we have multiplied
the file support value by the confidence value of the pattern so that we may not lose the
patterns with a high confidence value. After calculating the relevancy value for all the
patterns, they are stored in local_patterns_list in the decreasing order of the relevancy value.
The procedure for identifying the local HRFPs is described in the Algorithm 1.

Algorithm 1 Identification of local HRFPs

1. for each file fid in the log of Dnode do
2. calculate support value for fid
3. if(support(fid) ≥ sfid_th) then
4. add fid with support value to popular_files_list
5. sort popular_files_list in descending order of support value
6. end for
7. for each pattern of fid in popular_files_list
8. calculate confidence value for the pattern
9. add patterns with confidence value to localconf_patterns_list
10. calculate relevancy value for the patterns
11. add patterns with relevancy value to local_patterns_list
12. sort local_patterns_list in descending order of relevancy value.
13. Add patterns to local_HRFPs_list
14. end for

Next, the globally popular files are identified by calculating the global support value.
The global support value of a file is computed using the fraction of the number of times a
file ID appears in the log entries of Dnodes and the total number of log entries in Dnodes.
The files with 60% support value are called global popular files and these files are saved
in global_popular_files_list. Then for all global popular files, file block access patterns are
identified by computing the global confidence value. The global confidence value for a
pattern [Bx By] of a file fid is computed as a fraction of the total number of times fid[Bx By]
appears in the entries of the logs in all Dnodes and the total number of times fid[Bx] appears
in the entries of the logs in all Dnodes. The patterns along with the confidence value are
stored in globalconf_patterns_list. The relevancy value for all the patterns are calculated
globally and are stored in global_patterns_list in the decreasing order of the relevancy value.
The steps for identifying the global HRFPs are described in the Algorithm 2.

Algorithm 2 Identification of global HRFPs

1. for each file fid in the log do
2. calculate global support value for fid
3. if(global support(fid) ≥ sfid_th) then
4. add fid with global support value to global_popular_files_list
5. sort global_popular_files_list in descending order of global support value
6. end for
7. for each pattern of fid in global_popular_files_list
8. calculate global confidence value for the pattern
9. add patterns with global confidence value to globalconf_patterns_list
10. calculate the global relevancy value for all the patterns
11. add patterns with relevancy value to global_patterns_list
12. sort global_patterns_list in descending order of global confidence value.
13. Add patterns to global_HRFPs_list
14. end for



Electronics 2023, 12, 1183 8 of 18

4.2. The HRFP-Based Prefetching and Caching Algorithm

We discuss the procedure for prefetching HRFPs from the DFS and caching them in
local Dnodes followed by the procedure for prefetching and caching the global HRFPs in
Gnode based on the relevancy value in this subsection.

4.2.1. Prefetching and Caching in Dnodes

Initially, the local HRFPs are identified by following the procedure described in
Algorithm 1. After identifying the local HRFPs, they are stored in the local_HRFPs_list.
Then, the HRFPs that are specified in the local_HRFPs_list are prefetched from the DFS and
are cached in the multi-level storage devices (Dnode_LC and Dnode_SC) of all the Dnodes
that are available in the DFS based on their respective sizes. The steps for prefetching
the HRFPs and caching the same based on relevancy value in the Dnodes is presented in
Algorithm 3.

Algorithm 3 Prefetching and Caching in Dnodes

1. for each Dnode
2. while Dnode_LC && Dnode_SC are not full
3. for each HRFP of fid in local_HRFPs_list do
4. for i=1 to Dnode_LC_MAX
5. prefetch HRFPi from DFS to Dnode_LC
6. end for
7. if Dnode_LC is full
8. for i= Dnode_LC_MAX + 1 to Dnode_SC_MAX
9. prefetch HRFPi from DFS to Dnode_SC
10. end for
11. end if
12. end for
13. end while

4.2.2. Prefetching and Caching in Gnode

The global HRFPs are identified by following the procedure described in Algo-
rithm 2 and are stored in global_HRFPs_list. From global_HRFPs_list, the global HRFPs are
prefetched from the DFS and cached the same in the client-side caches (Gnode_LC and
Gnode_SC) maintained in Gnode. The process followed for prefetching the global HRFPs
and caching the same in the Gnode is presented in the following Algorithm 4.

Algorithm 4 Prefetching and Caching in Gnode

1. while Gnode_LC && Gnode_SC are not full
2. for each HRFP of fid in global_HRFPs_list do
3. for i=1 to Gnode_LC_MAX
4. prefetch HRFPi from DFS to Gnode_LC
5. end for
6. if Gnode_LC is full
7. for i= Gnode_LC_MAX + 1 to Gnode_SC_MAX
8. prefetch HRFPi from DFS to Gnode_SC
9. end for
10. end if
11. end for
12. end while



Electronics 2023, 12, 1183 9 of 18

4.3. Procedures for Read and Write in the DFS

We discuss the read, write, and replacement procedures followed by the DFS in
this section.

4.3.1. Procedure for Reading from DFS

The default procedure for reading a file block (fb) which is initiated by a client process
(CP) executing on a Dnode from the DFS is as follows:

1. The DFS client software (DFSCP) installed in Dnode makes communication with
Nnode on behalf of CP to get the addresses of Dnodes where the fb was present.

2. The Nnode sends the Dnode addresses where the fb was stored.
3. After receiving the addresses from Nnode, DFSCP communicates with the nearby

Dnode for reading fb and delivering it to the CP.

The proposed read procedure for reading fb which is requested by the CP executing
in a Dnode is depicted in the Figure 2.

Figure 2. Flow diagram of proposed read procedure.

The steps involved for reading the fb are explained below:

1. Checks for fb in Dnode_LC.
2. fb is delivered to CP.
3. Checks for fb in Gnode_LC.
4. fb is transferred to Dnode_LC and delivered to CP.
5. Checks for fb in Dnode_SC.
6. fb is transferred to Dnode_LC and delivered to CP.
7. Checks for fb in Gnode_SC.
8. fb is transferred to Dnode_LC and delivered to CP.
9. Contacts Nnode and checks in the file system for fb.
10. fb is transferred to Dnode_LC and delivered to CP.

The Algorithm 5 explains the proposed read procedure to read a fb which is requested
by the CP executing in a particular Dnode.



Electronics 2023, 12, 1183 10 of 18

Algorithm 5 Proposed read algorithm

1. if fb is present in Dnode_LC of Dnode
2. CP reads fb from Dnode_LC
3. else if fb is present in Gnode_LC of Gnode
4. fb is read from Gnode_LC of Gnode and provided to CP
5. copy fb to Dnode_LC of Dnode
6. if Dnode_LC of Dnode is full
7. Follow relevancy-based replacement policy
8. end if
9. else if fb is present in Dnode_SC of Dnode
10. fb is read from Donde_SC of Dnode and provided to CP
11. else if fb is present in Gnode_SC of Gnode
12. fb is read from Gnode_SC of Gnode and provided to CP
13. copy fb to Dnode_LC of Dnode
14. if Dnode_LC of Dnode is full
15. Follow relevancy-based replacement policy
16. end if
17. else
18. Follow default read procedure
19. end if

4.3.2. Relevancy-Based Replacement Policy

Replacement policies are useful for creating space for the entry of new blocks whenever
a miss in the cache appears. We have introduced a relevancy-based replacement policy
for patterns that increases the hit ratio and at the same time decrease the read access time
of the DFS. Whenever Dnode_LC of Dnode where the request initiated is full, the HRFP
with the lowest relevancy value is evicted creating space for the HRFP where the requested
fb is a member. The evicted pattern is either placed in the Gnode_LC of the Gnode or
Dnode_SC of Dnode based on the relevancy value of the evicted HRFP to avoid losing
patterns which have relevancy value higher than the existing patterns already present in
the caches (Gnode_LC and Dnode_SC).

The relevancy-based replacement policy for HRFPs whenever the Dnode_LC and
Dnode_SC of Dnodes and Gnode_LC and Gnode_SC of Gnode are full, is described in
Algorithm 6.

Algorithm 6 Relevancy-based replacement policy

1. if Dnode_LC of Dnode is full
2. Remove the HRFP which has lowest relevancy value
3. calculate relevancy for removed HRFP globally
4.if (global relevancy >= Gnode_LC’s lowest relevancy value)
5. add HRFP to Gnode_LC
6. if Gnode_LC is full
7. Remove the HRFP which has lowest relevancy value
8. end if
9. end if
10.else
11. add HRFP to Dnode_SC of Dnode
12. if Dnode_SC of Dnode is full
13. Remove the HRFP which has lowest relevancy value
14. end if
15. end if

4.3.3. Write Procedure

The following is the default write procedure to write fb on to the DFS:



Electronics 2023, 12, 1183 11 of 18

1. The DFSCP on behalf of the CP running in the Dnode communicates with the Nnode
to retrieve addresses of Dnodes where it has to write the fb.

2. Based on the replication factor, Nnode gives the addresses of the Dnodes.
3. The CP begins to write data in the Dnode where it is requested after obtaining the

Dnode addresses. It transfers the data to the remaining Dnodes for writing purposes
in a pipelined fashion.

The proposed write procedure for writing fb in the DFS is as follows:

1. If fb already exists, invalidate all the existing entries in the Dnode and Gnode caches.
2. If fb does not exist, then the default write procedure is followed to write fb.

The following Algorithm 7 explains the proposed write procedure to write fb which is
initiated by a CP running in a particular Dnode.

Algorithm 7 Proposed write algorithm

1. for each Dnode
2. if fb is present in Dnode_LC, Dnode_SC of Dnode and Gnode_LC, Gnode_SC of
Gnode
3. invalidate fb
4. else
5. write fb in Dnode_LC of Dnode using default write procedure
6. if Dnode_LC of Dnode is full
7. follow relevancy-based replacement policy
8. end if
9. end if
10. end for

4.4. Re-Initiation of Prefetching

Initially, all the caches present in Dnodes and Gnode are filled with the local and global
HRFPs that are prefetched using the HRFP-based prefetching algorithm. The prefetching
process is restarted whenever the Lcache and GLcache hit ratio of the Dnodes and Gnode
falls below the threshold which is defined based on [14]. The hit ratio of all Dnodes and
Gnode is monitored by a background task separately. All the other activities in the DFS
environment will run simultaneously with this task. Prefetch re-initiation is done without
interrupting other activities. The HRFPs are then filled in the corresponding Dnodes and
Gnode caches after prefetching. Fresh requests of client programs are recorded as the latest
log entries, and the old entries are deleted.

5. Simulation Experiments

First, we outline the assumptions that are considered for conducting simulation exper-
iments in this section. Next, we discuss the procedure for data set generation and experi-
mental setup for conducting experiments. Lastly, the simulation results are presented.

5.1. List of Assumptions

The list of assumptions made for carrying out the simulation experiments are

1. DFS with one lakh files and ten thousand file blocks per file.
2. File block size was considered as 32 KB.
3. Time to fetch a file block from local cache of Dnode is 0.0008 milliseconds (ms) [50].
4. Time to fetch a file block from SSD of Dnode is 0.0104 milliseconds [51].
5. Reading from disk of Dnode requires 3.5 ms [52].
6. 0.032 ms to read a file block from remote memory of same rack and 0.045 ms to read

from different rack.
7. The delay to transfer file block from remote memory is 0.04 ms [53].



Electronics 2023, 12, 1183 12 of 18

5.2. Simulation

In this section, we first explain how to generate a data set that simulates a real work-
load, and then we discuss the configuration needed to run the simulation tests.

5.2.1. Data Set Generation

A dataset (log) has been generated that mirrors a realistic workload following the
technique described in [54]. File and block frequencies are generated using the Zipf
distribution [55]. The maximum frequency for files is 500 and file blocks are set to 1000.
The daily requests are simulated in intervals using a Poisson distribution. Each interval
has a thousand requests. All intervals are merged according to their arrival order and
considered as a complete log.

5.2.2. Experimental Setup

We have used a DFS architecture which we discussed in Section 3 to carry out the
simulation experiments. A log (eighty percent read requests and twenty percent write
requests) is generated [56], as stated in the preceding subsection. A file access session is
represented as a log entry. we have assumed that five to fifteen blocks have been accessed
by the CP in each session. From these details, we have extracted HRFPs for every file based
on relevancy values. Then, the prefetched HRFPs are cached in Dnode_LC, Dnode_SC,
Gnode_LC, and Gnode_SC using the procedure described in the previous section. We
considered one lakh sessions of requests for every simulation run to calculate the average
read access time (ARAT). We have compared the performance of our HRFP algorithm
with Hadoop without caching(HDFS [57]), Hadoop with caching (Dcache) [27], SBFBAP
(support-based frequent patterns prefetching and caching) algorithm [58], Support-based
prefetching and (SBMS) algorithm [15] by following multi-level caching. Furthermore we
also tested the HRFP algorithm performance with LRU (least recently used) [4] replacement
policy rather than using a relevancy-based replacement procedure.

5.2.3. Experimental Results

The simulation results using the proposed HRFP algorithm and other existing algo-
rithms from the literature are shown in this section.

Figure 3 shows the performance of ARAT using proposed HRFP and HRFP-LRU
algorithms and the existing SBMS, SBFBAP, HDFS, and Dcache algorithms. The results are
collected by increasing the size of Dnode_LC from 100 to 500 file blocks and Dnode_SC
from 1000 to 5000 file blocks respectively. The size of Gnode_LC and Gnode_SC are fixed
to 3000, 5000 and 30,000, 50,000 file blocks respectively.

From Figure 3, we found that the proposed HRFP and HRFP-LRU algorithms are
performing better than the existing SBFBAP, SBMS, Dcache, and HDFS algorithms. This
indicates that the patterns which have high relevancy value tend to be requested again
and again in the future. We also found that the proposed HRFP algorithm which follows a
relevancy-based replacement policy works better than the LRU replacement policy.

Next, the hit ratio (Hratio) of the local caches of Dnodes using the proposed and
existing algorithms is shown in Figure 4. The Hratio is noted by varying the size of
Dnode_LC in the Dnodes from 100 to 500 file blocks and the Dnode_SC size from 1000
to 5000 file blocks. The size of Gnode_LC is set to 3000, 5000 file blocks, and the size of
Gnode_SC is set to 30,000, 50,000 file blocks.

We can notice that the Hratio of the local caches in Dnodes is high in the HRFP
algorithm than in the HRFP_LRU algorithm, which in turn has resulted in high Hratio than
the existing SBFBAP, SBMS, and Dcache algorithms. We have also observed that when the
local cache size is increased, the Dnode_LC Hratio is also improved.



Electronics 2023, 12, 1183 13 of 18

(a) (b)

Figure 3. Figures (a,b) represent Average read access time in milliseconds when the size of Gnode_LC
is set to 3000, 5000 file blocks and size of Gnode_SC is 30,000, 50,000 file blocks respectively.

(a) (b)

Figure 4. Figures (a,b) shows Hratio of Dnode_LC in Dnodes when the size of Gnode_LC is set to
3000, 5000 file blocks and size of Gnode_Sc is 30,000, 50,000 file blocks respectively.

In Figure 5, the trend in the Hratio of SSD caches in Dnodes is depicted. The size of
Dnode_SC is varied from 1000 to 5000 file blocks and the Dnode_LC size in Dnodes is
varied from 100 to 500 file blocks. The sizes of Gnode_LC and Gnode_SC are fixed to 3000,
5000 and 30,000, 50,000 file blocks, respectively.



Electronics 2023, 12, 1183 14 of 18

(a) (b)

Figure 5. Figures (a,b) shows Hratio of Dnode_SC in Dnodes when the size of Gnode_LC is set to
3000, 5000 file blocks and size of Gnode_SC is 30,000, 50,000 file blocks respectively.

We have observed high SSD cache Hratio in the proposed HRFP algorithm than in
the HRFP_LRU algorithm. We have also observed that the HRFP_LRU algorithm has high
Hratio than the SBFBAP, SBMS, and Dcache algorithms. The SSD cache Hratio increased if
we increased the size of the Dnode_SC.

In Figure 6, the Gnode_LC and Gnode_SC Hratio for the HRFP, HRFP_LRU, and the ex-
isting algorithms are shown. The Hratio is calculated by varying Dnode_LC and Dnode_SC
sizes of Dnodes from 100 to 500 file blocks and 1000 to 5000 file blocks, respectively, while
Gnode_LC and Gnode_SC sizes are fixed to 3000, 5000, 30,000, and 50,000 file blocks.

We observe that the Hratio of Gnode_LC and Gnode_SC of Gnode increases with
respect to the size of the cache. We have noticed high Hratio for the proposed HRFP
algorithm than the HRFP_LRU algorithm. The HRFP_LRU algorithm has high Hratio than
the other algorithms. From these observations, we can say that the HRFP algorithm is
performing better than the other algorithms.

The ARAT performance improvement of the proposed algorithms in comparison to
existing algorithms from the literature is summarised in the Table 2 below. The results
shown in Table 2 indicate that the HRFP algorithm outperformed the HDFS, Dcache,
SBMS and SBFBAP algorithms by 53%, 41%, 34%, and 22%, respectively. The HRFP_LRU
algorithm also showed a performance improvement of 44%, 36%, 23%, 15% in comparison
with the HDFS, Dcache, SBMS and SBFBAP algorithms respectively.

Table 2. Improvement of proposed algorithms performance in terms of ARAT compared with existing
algorithms from literature.

Proposed Algorithms
Existing Algorithms

HDFS Dcache SBMS SBFBAP

HRFP 53% 41% 34% 22%

HRFP_LRU 44% 36% 23% 15%



Electronics 2023, 12, 1183 15 of 18

(a) (b)

(c) (d)

Figure 6. Figures (a–d) shows Hratio of GLcache and GScache when the sizes of them are set to 3000,
5000 file blocks and 30,000, 50,000 file blocks.

Overall, we can come to conclusion that the HRFP-based prefetching, caching, and re-
placement algorithm performs well than the HRFP_LRU, SBFBAP, SBMS, Dcache, HDFS
algorithms with different cache sizes in Dnodes and Gnode from the obtained results.
The reason for the better performance of the HRFP algorithm is that we have given impor-
tance to the highly popular patterns by considering the relevancy value. The HRFP_LRU
algorithms achieved the next best performance indicating that the proposed HRFP algo-
rithm works better with relevancy-based replacement than LRU replacement because if we
replace a least recently used file block access pattern, we may lose a pattern that may have
a higher relevancy value. The SBFBAP algorithm performs better than the SBMS, Dcache,
and HDFS algorithms in which simple support is considered for the patterns for prefetching
and caching purposes. The SBMS and Dcache algorithms showed less performance because
the file blocks are prefetched instead of patterns based on simple support value and these
algorithms do not follow multi-level caching. Lastly, the HDFS algorithm achieved poor
performance because all the requested file blocks are served from the file system as there is
no concept of client-side caching.



Electronics 2023, 12, 1183 16 of 18

5.2.4. Discussion

We believe that the HRFP algorithm can be useful for social media applications like
Facebook, LinkedIn, Amazon and so on. For example consider Facebook, where each user
accesses this application in different ways. While accessing a page on Facebook some files
and file blocks are requested from the node where the application is running. Every user
produces a pattern of accessing the pages of an application. Most of the users use some
pages more frequently and some pages very less frequently which forms frequent file block
access patterns for every user. We generated a log based on this type of workload using
medisyn, and Zipf distribution as discussed in Section 5.2.1 to test our proposed algorithms.
Finally, we can conclude that the proposed HRFP algorithm with the relevancy-based
replacement is performing better than the remaining algorithms as it requires less read
access time than the other approaches.

6. Conclusions

In this research, we proposed highly relevant frequent pattern-based prefetching,
caching, and replacement algorithms. The support value of the file and the confidence
value of the pattern are used for calculating the relevancy value for the file block access
patterns. After identifying the highly relevant frequent patterns, they are prefetched from
the DFS and cached in the multi-level memories of the DFS environment we considered.
We observed that the performance of our proposed algorithms when compared with the
existing Support-based frequent block access pattern prefetching and caching algorithm,
Hadoop distributed file system with and without caching, and the proposed algorithm
with LRU replacement. Our simulation findings show that the proposed highly relevant
frequent pattern-based prefetching and caching algorithm outperforms the other techniques
addressed in the literature when employing the relevancy-based replacement policy. In the
future, we wish to use the Hadoop distributed file system to implement the proposed
algorithms and evaluate their effectiveness.

Author Contributions: Conceptualization, A.N. and S.K.B.; Methodology, A.N. and T.R.; Investiga-
tion and Writing original draft, A.N.; Writing review & editing, T.R., R.N. and S.K.B.; Visualization,
A.N. and S.K.B.; Supervision, T.R., R.N. and S.K.B. All authors have read and agreed to the published
version of the manuscript

Funding: This research received no external funding.

Acknowledgments: We want to express our gratitude to the anonymous reviewers who review
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stein, T.; Chen, E.; Mangla, K. Facebook immune system. In Proceedings of the 4th Workshop on Social Network Systems,

Salzburg, Austria, 10–13 April 2011; pp. 1–8.
2. Wildani, A.; Adams, I.F. A case for rigorous workload classification. In Proceedings of the 2015 IEEE 23rd International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Atlanta, GA, USA, 5–7 October 2015;
pp. 146–149.

3. Mittal, S. A survey of recent prefetching techniques for processor caches. ACM Comput. Surv. (CSUR) 2016, 49, 1–35. [CrossRef]
4. Ali, W.; Shamsuddin, S.M.; Ismail, A.S. A survey of web caching and prefetching. Int. J. Adv. Soft Comput. Appl 2011, 3, 18–44.
5. Kasavajhala, V. Solid state drive vs. hard disk drive price and performance study. Proc. Dell Tech. White Pap. 2011, 8–9. Available

online: https://profesorweb.es/wp-content/uploads/2012/11/ssd_vs_hdd_price_and_performance_study-1.pdf (accessed
on 11 November 2022)

6. Zhang, J.; Jiang, B. A kind of Metadata Prefetch Method for Distributed File System. In Proceedings of the 2021 International
Conference on Big Data Analysis and Computer Science (BDACS), Kunming, China, 25–27 June 2021; pp. 115–121.

7. Chen, H.; Zhou, E.; Liu, J.; Zhang, Z. An rnn based mechanism for file prefetching. In Proceedings of the 2019 18th International
Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Wuhan, China, 8–10
November 2019; pp. 13–16.

8. Liao, J. Server-side prefetching in distributed file systems. Concurr. Comput. Pract. Exp. 2016, 28, 294–310. [CrossRef]

http://doi.org/10.1145/2907071
https://profesorweb.es/wp-content/uploads/2012/11/ssd_vs_hdd_price_and_performance_study-1.pdf
http://dx.doi.org/10.1002/cpe.3432


Electronics 2023, 12, 1183 17 of 18

9. Liao, J.; Trahay, F.; Gerofi, B.; Ishikawa, Y. Prefetching on storage servers through mining access patterns on blocks. IEEE Trans.
Parallel Distrib. Syst. 2015, 27, 2698–2710. [CrossRef]

10. Liao, J.; Trahay, F.; Xiao, G.; Li, L.; Ishikawa, Y. Performing initiative data prefetching in distributed file systems for cloud
computing. IEEE Trans. Cloud Comput. 2015, 5, 550–562. [CrossRef]

11. Chen, Y.; Li, C.; Lv, M.; Shao, X.; Li, Y.; Xu, Y. Explicit data correlations-directed metadata prefetching method in distributed file
systems. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2692–2705. [CrossRef]

12. Al Assaf, M.M.; Jiang, X.; Qin, X.; Abid, M.R.; Qiu, M.; Zhang, J. Informed prefetching for distributed multi-level storage systems.
J. Signal Process. Syst. 2018, 90, 619–640. [CrossRef]

13. Kougkas, A.; Devarajan, H.; Sun, X.H. I/O acceleration via multi-tiered data buffering and prefetching. J. Comput. Sci. Technol.
2020, 35, 92–120. [CrossRef]

14. Gopisetty, R.; Ragunathan, T.; Bindu, C.S. Support-based prefetching technique for hierarchical collaborative caching algorithm
to improve the performance of a distributed file system. In Proceedings of the 2015 Seventh International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP), Nanjing, China, 12–14 December 2015; pp. 97–103.

15. Gopisetty, R.; Ragunathan, T.; Bindu, C.S. Improving performance of a distributed file system using hierarchical collaborative
global caching algorithm with rank-based replacement technique. Int. J. Commun. Netw. Distrib. Syst. 2021, 26, 287–318.
[CrossRef]

16. Jiang, S.; Ding, X.; Xu, Y.; Davis, K. A prefetching scheme exploiting both data layout and access history on disk. ACM Trans.
Storage (TOS) 2013, 9, 1–23. [CrossRef]

17. Li, Z.; Chen, Z.; Srinivasan, S.M.; Zhou, Y. C-Miner: Mining Block Correlations in Storage Systems. FAST 2004, 4, 173–186.
18. Theis, T.N.; Wong, H.S.P. The end of moore’s law: A new beginning for information technology. Comput. Sci. Eng. 2017, 19, 41–50.

[CrossRef]
19. Huang, S.; Wei, Q.; Feng, D.; Chen, J.; Chen, C. Improving flash-based disk cache with lazy adaptive replacement. ACM Trans.

Storage (TOS) 2016, 12, 1–24. [CrossRef]
20. Yoon, S.K.; Yun, J.; Kim, J.G.; Kim, S.D. Self-adaptive filtering algorithm with PCM-based memory storage system. ACM Trans.

Embed. Comput. Syst. (TECS) 2018, 17, 1–23. [CrossRef]
21. Yoon, S.K.; Youn, Y.S.; Burgstaller, B.; Kim, S.D. Self-learnable cluster-based prefetching method for DRAM-flash hybrid main

memory architecture. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2019, 15, 1–21. [CrossRef]
22. Niu, N.; Fu, F.; Yang, B.; Yuan, J.; Lai, F.; Wang, J. WIRD: An efficiency migration scheme in hybrid DRAM and PCM main

memory for image processing applications. IEEE Access 2019, 7, 35941–35951. [CrossRef]
23. Byna, S.; Breitenfeld, M.S.; Dong, B.; Koziol, Q.; Pourmal, E.; Robinson, D.; Soumagne, J.; Tang, H.; Vishwanath, V.; Warren, R.

Exahdf5: Delivering efficient parallel i/o on exascale computing systems. J. Comput. Sci. Technol. 2020, 35, 145–160. [CrossRef]
24. Yun, J.T.; Yoon, S.K.; Kim, J.G.; Kim, S.D. Effective data prediction method for in-memory database applications. J. Supercomput.

2020, 76, 580–601. [CrossRef]
25. Herodotou, H. Autocache: Employing machine learning to automate caching in distributed file systems. In Proceedings of the

2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), Macao, China, 8–12 April 2019; pp. 133–139.
26. Yoshimura, T.; Chiba, T.; Horii, H. Column Cache: Buffer Cache for Columnar Storage on HDFS. In Proceedings of the 2018 IEEE

International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 282–291.
27. Zhang, X.; Liu, B.; Gou, Z.; Shi, J.; Zhao, X. DCache: A Distributed Cache Mechanism for HDFS based on RDMA. In Proceedings

of the 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International
Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Cuvu, Fiji,
14–16 December 2020; pp. 283–291.

28. Laghari, A.A.; He, H.; Laghari, R.A.; Khan, A.; Yadav, R. Cache performance optimization of QoC framework. EAI Endorsed Trans.
Scalable Inf. Syst. 2019. [CrossRef]

29. Shin, W.; Brumgard, C.D.; Xie, B.; Vazhkudai, S.S.; Ghoshal, D.; Oral, S.; Ramakrishnan, L. Data Jockey: Automatic data
management for HPC multi-tiered storage systems. In Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 511–522.

30. Wadhwa, B.; Byna, S.; Butt, A.R. Toward transparent data management in multi-layer storage hierarchy of hpc systems. In
Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018;
pp. 211–217.

31. He, S.; Wang, Y.; Li, Z.; Sun, X.H.; Xu, C. Cost-aware region-level data placement in multi-tiered parallel I/O systems. IEEE Trans.
Parallel Distrib. Syst. 2016, 28, 1853–1865. [CrossRef]

32. Ren, J.; Chen, X.; Liu, D.; Tan, Y.; Duan, M.; Li, R.; Liang, L. A machine learning assisted data placement mechanism for hybrid
storage systems. J. Syst. Archit. 2021, 120, 102295. [CrossRef]

33. Thomas, L.; Gougeaud, S.; Rubini, S.; Deniel, P.; Boukhobza, J. Predicting file lifetimes for data placement in multi-tiered storage
systems for HPC. In Proceedings of the Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems,
Online Event, 26 April 2021; pp. 1–9.

34. Shi, W.; Cheng, P.; Zhu, C.; Chen, Z. An intelligent data placement strategy for hierarchical storage systems. In Proceedings of
the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020;
pp. 2023–2027.

http://dx.doi.org/10.1109/TPDS.2015.2496595
http://dx.doi.org/10.1109/TCC.2015.2417560
http://dx.doi.org/10.1109/TPDS.2019.2921760
http://dx.doi.org/10.1007/s11265-017-1277-z
http://dx.doi.org/10.1007/s11390-020-9781-1
http://dx.doi.org/10.1504/IJCNDS.2021.114445
http://dx.doi.org/10.1145/2508010
http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1145/2737832
http://dx.doi.org/10.1145/3190856
http://dx.doi.org/10.1145/3284932
http://dx.doi.org/10.1109/ACCESS.2019.2904803
http://dx.doi.org/10.1007/s11390-020-9822-9
http://dx.doi.org/10.1007/s11227-019-03050-x
http://dx.doi.org/10.4108/eai.13-7-2018.156594
http://dx.doi.org/10.1109/TPDS.2016.2636837
http://dx.doi.org/10.1016/j.sysarc.2021.102295


Electronics 2023, 12, 1183 18 of 18

35. Cao, T. Popularity-Aware Storage Systems for Big Data Applications. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2022.
36. Dessokey, M.; Saif, S.M.; Eldeeb, H.; Salem, S.; Saad, E. Importance of Memory Management Layer in Big Data Architecture. Int.

J. Adv. Comput. Sci. Appl. 2022, 13, 1–8. [CrossRef]
37. Kim, T.; Choi, S.; No, J.; Park, S.S. HyperCache: A hypervisor-level virtualized I/O cache on KVM/QEMU. In Proceedings of

the 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 3–6 July 2018;
pp. 846–850.

38. Einziger, G.; Friedman, R.; Manes, B. Tinylfu: A highly efficient cache admission policy. ACM Trans. Storage (ToS) 2017, 13, 1–31.
[CrossRef]

39. Blankstein, A.; Sen, S.; Freedman, M.J. Hyperbolic caching: Flexible caching for web applications. In Proceedings of the 2017
USENIX Annual Technical Conference (USENIX ATC 17), Santa Clara, CA, USA, 12–14 July 2017; pp. 499–511.

40. Akbari Bengar, D.; Ebrahimnejad, A.; Motameni, H.; Golsorkhtabaramiri, M. A page replacement algorithm based on a fuzzy
approach to improve cache memory performance. Soft Comput. 2020, 24, 955–963. [CrossRef]

41. Sabeghi, M.; Yaghmaee, M.H. Using fuzzy logic to improve cache replacement decisions. Int J Comput Sci Netw. Secur. 2006,
6, 182–188.

42. Aimtongkham, P.; So-In, C.; Sanguanpong, S. A novel web caching scheme using hybrid least frequently used and support vector
machine. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE),
Khon Kaen, Thailand, 13–15 July 2016; pp. 1–6.

43. Wang, Y.; Yang, Y.; Han, C.; Ye, L.; Ke, Y.; Wang, Q. LR-LRU: A PACS-oriented intelligent cache replacement policy. IEEE Access
2019, 7, 58073–58084. [CrossRef]

44. Ma, T.; Qu, J.; Shen, W.; Tian, Y.; Al-Dhelaan, A.; Al-Rodhaan, M. Weighted greedy dual size frequency based caching replacement
algorithm. IEEE Access 2018, 6, 7214–7223. [CrossRef]

45. Chao, W. Web cache intelligent replacement strategy combined with GDSF and SVM network re-accessed probability prediction.
J. Ambient Intell. Humaniz. Comput. 2020, 11, 581–587. [CrossRef]

46. Ganfure, G.O.; Wu, C.F.; Chang, Y.H.; Shih, W.K. Deepprefetcher: A deep learning framework for data prefetching in flash storage
devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 3311–3322. [CrossRef]

47. Cherubini, G.; Kim, Y.; Lantz, M.; Venkatesan, V. Data prefetching for large tiered storage systems. In Proceedings of the 2017
IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 823–828.

48. Li, H.; Ghodsi, A.; Zaharia, M.; Shenker, S.; Stoica, I. Tachyon: Reliable, memory speed storage for cluster computing frameworks.
In Proceedings of the ACM Symposium on Cloud Computing, Seattle,WA, USA, 3–5 November 2014; pp. 1–15.

49. Paz, H.R.; Abdala, N.C. Applying Data Mining Techniques to Determine Frequent Patterns in Student Dropout: A Case Study. In
Proceedings of the 2022 IEEE World Engineering Education Conference (EDUNINE), Santos, Brazil, 13–16 March 2022; pp. 1–4.

50. Vengeance, C. Corsair Vengeance LPX DDR4 3000 C15 2x16GB CMK32GX4M2B3000C15. 2019. Available online: https:
//ram.userbenchmark.com/Compare/Corsair~Vengeance-LPX-DDR4-3000-C15-2x16GB-vs-Group-/m92054vs10 (accessed on
11 November 2022 ).

51. Intel. List of Intel SSDs. 2019. Available online: https://en.wikipedia.org/w/index.php?title=List_of_Intel_SSDs&oldid=898338
259 (accessed on 11 November 2022 ).

52. seagate. Storage Reviews. 2015. Available online: https://www.storagereview.com/seagate_enterprise_performance_10k_hdd_
review (accessed on 11 November 2022 ).

53. 5020, C.N. Switch Performance in Market-Data and Back-Office Data Delivery Environments. 2019. Available online: https:
//www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-switches/white_paper_c11-492751.html (accessed
on 11 November 2022 ).

54. Tang, W.; Fu, Y.; Cherkasova, L.; Vahdat, A. Medisyn: A synthetic streaming media service workload generator. In Proceedings
of the 13th international workshop on Network and operating systems support for digital audio and video, Monterey, CA, USA,
1–3 June 2003; pp. 12–21.

55. Nagaraj, S. Zipf’s Law and Its Role in Web Caching. Web Caching Appl. 2004, 165–167._19. [CrossRef]
56. Intel. Resource and Design Center for Development with Intel. 2019. Available online: https://www.intel.com/content/www/

us/en/design/resource.design-center.html (accessed on 11 November 2022 ).
57. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA, 3–7 May 2010; pp. 1–10.
58. Nalajala, A.; Ragunathan, T.; Rajendra, S.H.T.; Nikhith, N.V.S.; Gopisetty, R. Improving Performance of Distributed File System

through Frequent Block Access Pattern-Based Prefetching Algorithm. In Proceedings of the 2019 10th International Conference
on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.14569/IJACSA.2022.0130554
http://dx.doi.org/10.1145/3149371
http://dx.doi.org/10.1007/s00500-019-04624-w
http://dx.doi.org/10.1109/ACCESS.2019.2913961
http://dx.doi.org/10.1109/ACCESS.2018.2790381
http://dx.doi.org/10.1007/s12652-018-1109-4
http://dx.doi.org/10.1109/TCAD.2020.3012173
https://ram.userbenchmark.com/Compare/Corsair~Vengeance-LPX-DDR4-3000-C15-2x16GB-vs-Group-/m92054vs10
https://ram.userbenchmark.com/Compare/Corsair~Vengeance-LPX-DDR4-3000-C15-2x16GB-vs-Group-/m92054vs10
https://en.wikipedia.org/w/index.php?title=List_of_Intel_SS Ds&oldid=898338259
https://en.wikipedia.org/w/index.php?title=List_of_Intel_SS Ds&oldid=898338259
https://www.storagereview.com/seagate_enterprise_performa nce_10k_hdd_review
https://www.storagereview.com/seagate_enterprise_performa nce_10k_hdd_review
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-switches/white_paper_c11-492751.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-switches/white_paper_c11-492751.html
http://dx.doi.org/10.1007/1-4020-8050-6_19
https://www.intel.com/content/www/us/en/design/resource.design-center.html
https://www.intel.com/content/www/us/en/design/resource.design-center.html

	Introduction
	Related Work
	Literature on Prefetching and Caching Techniques
	Replacement Policies

	Architecture of Distributed File System
	Proposed Work
	Identification of HRFPs
	The HRFP-Based Prefetching and Caching Algorithm
	Prefetching and Caching in Dnodes
	Prefetching and Caching in Gnode

	Procedures for Read and Write in the DFS
	Procedure for Reading from DFS
	Relevancy-Based Replacement Policy
	Write Procedure

	Re-Initiation of Prefetching

	Simulation Experiments
	List of Assumptions
	Simulation
	Data Set Generation
	Experimental Setup
	Experimental Results
	Discussion


	Conclusions
	References

