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ABSTRACT With the development of satellite technology, up to date imaging mode of synthetic aperture

radar (SAR) satellite can provide higher resolution SAR imageries, which benefits ship detection and

instance segmentation. Meanwhile, object detectors based on convolutional neural network (CNN) show

high performance on SAR ship detection even without land-ocean segmentation; but with respective short-

comings, such as the relatively small size of SAR images for ship detection, limited SAR training samples,

and inappropriate annotations, in existing SAR ship datasets, related research is hampered. To promote

the development of CNN based ship detection and instance segmentation, we have constructed a High-

Resolution SAR Images Dataset (HRSID). In addition to object detection, instance segmentation can also be

implemented on HRSID. As for dataset construction, under the overlapped ratio of 25%, 136 panoramic

SAR imageries with ranging resolution from 1m to 5m are cropped to 800 x 800 pixels SAR images.

To reduce wrong annotation and missing annotation, optical remote sensing imageries are applied to reduce

the interferes from harbor constructions. There are 5604 cropped SAR images and 16951 ships in HRSID,

and we have divided HRSID into a training set (65% SAR images) and test set (35% SAR images) with the

format of Microsoft Common Objects in Context (MS COCO). 8 state-of-the-art detectors are experimented

on HRSID to build the baseline; MS COCO evaluation metrics are applicated for comprehensive evaluation.

Experimental results reveal that ship detection and instance segmentation can be well implemented on

HRSID.

INDEX TERMS High-resolution SAR images dataset, ship detection, instance segmentation, deep learning,

convolutional neural network.

I. INTRODUCTION

Satellite-mounted synthetic aperture radar (SAR) can elimi-

nate the effects of complex weather, working time limit and

flight altitude in earth observation. As the high-resolution

and vast extent characteristics of SAR imagery, ship detec-

tion with SAR imagery has a unique advantage on marine

traffic safety monitoring and marine resources development

compared to other remote sensing methods [1]–[4]. In recent

years, with the launch of SAR satellites, such as Sentinel-1

[5], TerraSAR-X [6] and Chinese Gaofen-3, increasing

amounts of high-resolution SAR imageries are available for
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scientific research, which tremendously promotes the devel-

opment of automatic SAR ship detection [4], [7]–[10].

Traditional ship detection algorithms for SAR imageries

are mainly composed of Spectral Residual (SR) [11],

constant false alarm rates (CFAR) [12] and the improved

algorithms derived from them. For specific needs, CFAR

detection has been incorporated with diverse modules to

improve detection precision [13]–[17]. But the flaws, such as

manually defined feature of SAR imagery and strong depen-

dence on the statistical distribution of sea clutters, reduce

the robustness of CFAR when detecting the ships [2], [3].

Besides, without land-ocean segmentation, CFAR has the

even worse performance to the panoramic SAR imagery

which contains inland canal or port [18].
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With the capability to automatically extract the deep repre-

sentations of the image, convolutional neural network (CNN)

based algorithms show high robustness and efficiency.

Researchers attempt to promote SR and CFARwith the excel-

lent trait of CNN. Kang et al. creatively take the region pro-

posals generated by Faster R-CNN [19] as guard windows of

CFAR, which combines Faster R-CNN with CFAR to detect

small-sized ships [20]. Liu et al. combine the Land-Ocean

Segmentation-based CNN (SLS-CNN) detector with corn

features and the heat map of SR saliency for accurate ship

detection [21]. These experiments confirm the feasibility of

CNN in SAR ship detection. In computer vision, the emerging

object detectors based on CNN are roughly divided into

two-stage detection algorithms, multiple-stage algorithms,

and one-stage detection algorithms. Two-stage detection

algorithms are classification-based and combined with the

network to generate region proposals. Representative two-

stage algorithms are R-CNN [22], Fast R-CNN [23], Faster

R-CNN, etc. They send the feature maps generated by back-

bone networks, such as Residual Network (ResNet) [24], [25]

and Visual Geometry Group Network (VGG) [26],

to the additional network (e.g. region proposed network

(RPN) [19]) for preliminarily predicting the location of the

object. Multiple-stage detection algorithms use the cascaded

network and stepwise Intersection over Union (IoU) to

improve the detection precision. Representative algorithm

is Cascade R-CNN [27]. Combined with the additional net-

work, the detection speed of two-stage detection algorithms

and multiple-stage algorithms are slightly reduced compared

to one-stage detection algorithms, but they perform well

in precision. So, researchers have improved them for high

precision SAR ship detection. To adequately utilize spatial

information of SAR images, Zhao et al. have proposed the

cascade coupled CNN-guided (3C2N-guided) visual atten-

tion method [28]; ship proposals generated by the cas-

caded structure combine the spatial information to improve

SAR ship detection precision. Fan et al. have modified the

Faster R-CNN to adapt PolSAR ship detection [29]; ship

proposals are generated by multi-level features to detect

multi-scale ships. Wei et al. have modified the Cascade

R-CNN to realize precise and robust ship detection in

high-resolution SAR imageries [30]; the proposed HRFPN

structure connects high-to-low resolution subnetworks in par-

allel to realize high-resolution SAR ship detection. Different

from two-stage and multiple-stage detection algorithms, one-

stage detection algorithms squint towards regression-based

detectionmethods and omit the network for generating region

proposals. Class probability and position coordinate value of

the object are generated directly to improve the detection

speed, but the precision is reduced in general. Representa-

tive one-stage algorithms are You Only Look Once (YOLO

v1-v3) [31]–[33], RetinaNet [34] and Single Shot Multi-

Box Detector (SSD) [35], etc. As the detection speed extraor-

dinarily significant in real-time maritime disaster relief and

emergency military decisions, researchers have modified

the one-stage detection algorithms to SAR ship detection.

Zhang et al. have referenced the idea of YOLO series algo-

rithm and proposed the grid convolutional neural network

(G-CNN) for real-time SAR ship detection [36]. Wang et al.

have adjusted the hyperparameters of RetinaNet for SAR ship

detection [37]. Zhang et al. have combined the multi-scale

detection mechanism, concatenation mechanism, and anchor

box mechanism into the depthwise separable convolution

neural network (DS-CNN) to realize high-speed SAR ship

detection [38].

Semantic segmentation divides each pixel of the input

image into a semantically interpretable category, and the

segmented results are highlighted by the same color for the

instances within the same category. Instance segmentation

combines semantic segmentation with object detection, and

the predicted mask can depict the contour of the object.

The bounding boxes in instance segmentation are generated

by pixel-to-pixel masks; so, they are capable to locate the

edge of the instances. Each instance within the same cate-

gory is highlighted by a different color for determining the

semantical attributes of objects. The first attempt of instance

segmentation applied on CNN is Mask R-CNN [39] pro-

posed by He, K. Based on the structure of Faster R-CNN,

Mask R-CNN supplements a segmentation branch to generate

the pixel-to-pixel mask. Region of interest (RoI) pooling in

Faster R-CNN is replaced by RoI Align in Mask R-CNN;

RoI Align can determine the value of each sampling point

from the adjacent grid point through bilinear interpolation,

which enables pixel-to-pixel level mapping on the feature

map. Some instance segmentation detectors proposed after

Mask R-CNN, such as Cascade Mask R-CNN [40] follow

the idea to extend object detectors for instance segmentation.

The length and contour of ships can’t be measured by SAR

ship detection, but these parameters can provide information

about the type of ships. For example, the particular shape

of the aircraft carrier can be segmented for military strikes.

While there is no existing dataset that can support instance

segmentation in SAR imageries, and related research is

hampered.

As for existing SAR ship datasets, they have their limita-

tions when applied to CNN-based ship detectors. OpenSAR-

ship [41] has 10 categories. But the samples are extremely

imbalanced between the categories, and it’s hard to train the

high-performance classification model with this dataset [42].

Ship chips are designed as small size image for ship

classification. Similar to OpenSARship, ship chips in the

SAR-Ship-Dataset [43] have a size of 256 × 256 pixels.

The small size ship chips are beneficial to ship classifi-

cation [44], but they contain fewer scatterings from the

land. The model trained by the ship chips may have trouble

locating the ships near the highly reflective objects [37].

In the SAR ship detection dataset (SSDD) [45], the SAR

images have larger size but they need to be augmented

before training and testing due to the limited data, and

ship detection precision tested by the test set of SSDD

are generally too high [30], [37]. Besides, inappropriate

annotations and less challenging detection scenes exist in
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these datasets [43], [45]. Compared to OpenSARship and

SAR-Ship-Dataset which fit ship classification, researchers

tend to use SSDD when developing CNN-based ship

detectors [28]–[30], [36], [38].

To promote the development of CNN based detectors

for ship detection and instance segmentation and exclude

the deficiencies in applicable SAR ship datasets for CNN,

we have constructed a High-Resolution SAR Images Dataset

(HRSID). Compared to the low-resolution SAR images, high-

resolution SAR images have detailed and accurately repre-

sented feature of ships, and ships are more than just the bright

spot. Instance segmentation in high-resolution SAR images

can authentically and effectively depict the shape of ships

pixel-by-pixel than low-resolution SAR images. Besides,

high-resolution SAR images are beneficial to delicate tasks

such as maritime transport safety and fishery enforcement.

So, 136 panoramic high-resolution SAR imageries with rang-

ing resolution from 1m to 5m are cropped to 5604 SAR

images with 800 × 800 pixels. The SAR imageries have

various polarization, imaging mode, imaging condition, etc.,

and there are 16951 ships in HRSID. To reduce wrong

annotation and missing annotation of ships, optical remote

sensing imagery on Google Earth [46] which has similar

imaging data to SAR imagery is selected to exclude the

potentially disturbing surroundings of ships. 8 state-of-the-

art detectors and Microsoft Common Objects in Context (MS

COCO) [47] evaluation metrics are applied for comprehen-

sive evaluation on HRSID. HRSID is available on our website

now [48]; annotations for inshore and offshore images are

supplemented at the moment. We hope it can benefit the

development of ship detection and instance segmentation for

the community. A concise summary of our contributions are

as follows:
1) A complete process of constructing the high-resolution

SAR dataset for ship detection and instance seg-

mentation is applied. HRSID is designed for CNN

based detectors, which has excluded the defi-

ciencies in the existing SAR ship dataset when

constructing.

2) As the first SAR ship dataset which supports instance

segmentation, the effects of instance segmentation are

examined on SAR images. For ship detection, large size

SAR imagery is used to examine the migration ability

of the model trained on our dataset.

3) MS COCO evaluation metrics are applied for

comprehensive evaluation on ship detection and

instance segmentation, which include average pre-

cision (AP) for IoU threshold and small, medium,

large objects. Statistical results of 8 state-of-the-

art detectors are regarded as the baseline of

HRSID.
This paper is organized as follows. Section II presents the

process to construct the dataset. Section III describes the

detectors to experiment on the dataset. Section IV presents

the experimental results. Section V and VI is the conclusions

and discussions, respectively.

II. DATASET CONSTRUCTION AND COMPONENT

ANALYSIS

A. SAR IMAGERIES FOR DATASET CONSTRUCTION
The original SAR imageries for constructing HRSID are

99 Sentinel-1B imageries, 36 TerraSAR-X and 1 TanDEM-

X [49] imageries; the resolution of SAR imageries is under

3m to keep detailed and accurately represented feature of

ships. Under different imaging modes of radar sensors, ships

appear in different forms. For example, TerraSAR-X has sev-

eral imagingmodes: Staring SpotLight (ST), High Resolution

SpotLight (HS), SpotLight, StripMap (SM), ScanSAR (SC),

Wide ScanSAR (WSC); under the Wide ScanSAR imaging

mode, the scan scope can up to 270km in azimuth and 800km

in range, which can meet the broad demand of large area cov-

erage monitoring such as marine traffic, sea ice monitoring

and regular detection of oil films, but the detailed feature of

ships is unclear compared to high-resolution SAR imageries.

To ensure high imaging quality, we have chosen the high-

resolution imaging mode of the satellite when constructing

the dataset. As for Sentinel-1B satellite, the imaging mode

of S3 StripMap is selected, which has the resolution from

1.7m × 4.3m to 3.6m × 4.9m in range and azimuth;

corresponding swath width is 80km. As for TerraSAR-X,

the selected imaging mode are ST, HS, and SM, corre-

sponding resolution of imaging mode is up to 25cm, up

to 1m, up to 3m, respectively; corresponding swath size is

4 × 3.7km2, up to 10 × 5km2, 30 × 50 km2, respectively.

Several imaging areas of SAR imageries in constructing

HRSID are highlighted by the rectangular box in Figure 1.

The imageries are provided by Google Earth.

The imaging region is selected at the port with tremen-

dous cargo handling capacity or the crisscrossed busy canals

throughout the trading cities. These areas can simultaneously

present specific scenes in need with the limited swath in

high-resolution SAR imageries. For instance, the offshore

areas which are covered with a wide variety of ships and

the anchorage areas where ships are difficult to distinguish

from the clutter interfered background can coexist in the

same SAR imagery. Consequently, the limited amount of

SAR imageries can be fully utilized to generate more cropped

SAR images when constructing the dataset. In addition to

the imaging region, the backscatter coefficients value influ-

enced by polarization and incident angle of radar sensors

will affect the imaging condition of SAR imageries. In terms

of SAR imageries pre-processed by the supplier, the inter-

feres such as foreshortening, layover, and shadowing of

ships are influenced by the incident angle of radar sensors.

We have chosen the incident angle which has minimized

interferes. Sentinel-1B SM has 6 elevation beams and the

incident angle varies from 18.3◦ ∼ 46.8◦. S3 beam corre-

sponds to the incident angles of 27.6◦ ∼ 34.8◦, and ships

under this elevation beam have less interferes compared to

other elevation beams. Existing interferences are disposed

of in subsequent annotation procedure. As for polariza-

tion, the radar remote sensing system has four fundamental

polarization methods: HH, VV, HV, VH [50]. In general,
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FIGURE 1. Several SAR imagery acquisition areas of our dataset. (a) and (c) are generated by the imaging mode of Sentinel-1B S3 SM; (b) is
generated by TerraSAR-X SM. The rectangular coverage area is the imaging range.

TABLE 1. Detailed information of the SAR imageries for constructing HRSID.

co-polarization has higher backscatter coefficients value of

ships and sea clutters than cross-polarization [51], [52]. Ships

and sea clutters in cross-polarized SAR imageries are brighter

to the background than co-polarized SAR imageries [52].

While the calm sea in co-polarized SAR imageries is rel-

atively darker to the background than cross-polarized SAR

imageries due to specular reflection of the sea. So, when

constructing HRSID, we have selected 116 co-polarized SAR

imageries with a clear distinction between ships and back-

ground, and 20 cross-polarized SAR imageries are added for

the supplement. Detailed descriptions of these SAR imageries

are shown in Table 1. Due to the inconsistent scattering

caused by the angular difference in the wide area, we mainly

perform the correction and compensation according to the

distance.

To make the model trained by our dataset can distin-

guish and segment the ships from complex backgrounds,

we have analyzed the reasonable ratio of each type of detec-

tion scene in HRSID beforehand. When training the detec-

tors, large amounts of ships with detailed and accurately

represented features should be prepared for training. So, the

offshore scenes with ships distributed in the sea are the main

component of HRSID. Ship detection in inshore scenes is

influenced by man-made facilities or buildings. The inshore

scenes are regarded as the interferential scene to maintain a

certain amount in HRSID.While the challenging scenes, such

as the adjacent ships, cluster-distributed small ships in the

canal and large size ships defined by MS COCO evaluation

metrics [47], are added to HRSID as supplementary. Adja-

cent ships challenge the non-maximum suppression (NMS)

algorithm used in CNN based ship detectors to generate

precise bounding box for location; cluster-distributed small

ships in the canal are dense in the space, and they challenge

the location and instance segmentation; large size ships are

scarce in the training samples and detectors tend to detect the

component of their features as small ships.

The downloaded SAR imageries are pre-processed by the

supplier beforehand. It still needs to be processed to display

as a grayscale imagery, and we use the clipping function

with linear transformation for implementation. The clipping

function is defined in formula 1 as follows:

y =

{

kx, 0 < x ≤ β × max(x)

β × max(x), x > β × max(x)
(1)
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FIGURE 2. Some representative high-resolution SAR images in our dataset with 800 × 800 pixels.

x represents the pixel of the downloaded SAR image. When

the value of the pixel is less than β ×max(x), use the penalty

factor k for linear transformation; we set k =1 here. When

the value of the pixel is higher than β × max(x), reduce it to

β×max(x). y represents the output grayscale image. Based on

the default setting in the reference [50], we tune the threshold

β for different imaging scenes to present distinguishable

feature of ships.

Through the side-scan mechanism of SAR sensors contra-

posing specific regions, panoramic SAR imagery has a large

image size. It is supposed to be cropped to the matched input

size of CNN. The process is divided into four steps in our

research. First of all, in order to avoid reduplicative cropping

when constructing dataset, the port and offshore areas with

relatively dense distribution of ships are separated from the

panoramic SAR imagery for the subsequent sliding window

procedure; besides, the sporadically distributed ships on the

sea are individually separated from the SAR imagery with

800 × 800 pixels window, and threshold β is individually set

for the image. Secondly, a sliding window with 800 × 800

pixels is adopted to satisfy the demand of scaling transfor-

mation in CNN based ship detectors and reserve the scene

which contains ships and man-made facilities to measure

the ship detection competence of detectors. Thirdly, the slid-

ing window is shifting over the SAR imagery with a stride

of 600 pixels in length and width, and the overlapped ratio of

successively cropped images is set at 20% to ensure all the

ships appeared in panoramic SAR imageries have complete

features when cropped by sliding window. Fourthly, we have

filtered out 400 cropped images with pure background.When

testing the robustness of the trained model, the full negative

sample can provide information of land or sea clutter.

Cropped SAR images with 800 × 800 pixels are the main

components of our dataset. Ships in the high- resolution SAR

images have detailed and accurately represented features.

Some SAR image samples are shown in Figure 2. (a) and (b)

represent offshore single and multiple ships; (c) and (d) are

the adjacent ships; (e) and (f) show ships berthing at the

port and large size ships, respectively. (g) and (h) display the

cluster-distributed small ships in the canal.

B. ANNOTATION STRATEGIES FOR DATASET

CONSTRUCTION

The bounding box is well performed in locating the

objects [53]. In ship detection, the location of the ships is

determined by four vertex coordinate values of the bounding

box. But with the sharp shape, the annotated bounding box

areas coexist ships and background features; the predicted

bounding boxes only provide the four vertex coordinate

values but not the shape of ships. For instance segmenta-

tion, polygons are applicable in annotation and they fit the

contour of the ships well. Polygon annotated mask is also

applied to generate the bounding box for object detection,

and the bounding boxes are precise enough to locate the

edge of ships. So, we use the polygons to annotate the ships

when constructing the dataset. As for optical remote sens-

ing images, the annotation strategy for object detection and

instance segmentation can refer to this work [54]. But as SAR

imagery is grayscale imagery, the corresponding annotation

strategy should add additional procedure. In the inshore areas,

the man-made facilities and buildings have similar features

to ship, which interferes with annotation. We have designed

some auxiliary means to deal with it as is shown in Figure 3.
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FIGURE 3. The auxiliary means to distinguish ships in offshore areas.

(a) confirms the bright pixels as a ship with partially enlarged

details in optical remote sensing images; (b) shows the same

imaging region in the gray image and optical image to deter-

mine the possible interference from the facilities, buildings

or cranes in the port. The red oval marked objects are ships,

and the orange rectangle framed objects are cranes that may

interfere with annotating ships.

Ports generally have huge cargo volumes so that ships

will not call at a certain berthage for long, but the facilities

and buildings in the port are almost the same for a long

time, and the easy moving objects in the port such as cranes

have a distinct feature which is distinguishable to the ships.

In optical remote sensing imageries, the location of the facil-

ities, buildings, and cranes is easy to determine; the possible

berthage of ships is consequently confirmed. So, the optical

remote sensing imagery which has adjacent imaging date to

the SAR imageries are taken from Google Earth to help the

SAR experts with auxiliary judgment.

In the SAR images with 800 × 800 pixels, the feature of

ships still has mixed interference caused by incident angle,

polarization, etc. These situations, such as moving targets,

ships surrounded by high-reflective objects and large antenna

elevation, can twist the shape of ships. Tominimize the devia-

tion of ship detectors without causing controversy, we classify

the adjacent interference emanated from ships as a compo-

sition of ships. While the highlighted pixels, for example,

spindly sidelobe caused by the offset of swift navigation, are

reserved according to the similarity to the principle structure

of ships.

Apart from the annotating methods mentioned above,

we tactfully adjust the order of ship annotating and SAR

imagery cropping to avoid reduplicative annotation. If the

SAR imageries are cropped before annotation, ships in the

overlapped areas may lead to reduplicative and inconsistent

annotations. So, a more reasonable annotation scheme is

formulated as is shown in Figure 4. Firstly, we annotate the

ships on panoramic SAR imagery all at once. Secondly, the

annotated SAR imageries are processed to generate the cor-

responding imageries for semantic segmentation and instance

segmentation. Thirdly, a sliding window with 800 × 800 pix-

els acts on the imageries to generate the SAR images with

instance segmentation and semantic segmentation images.

Fourthly, the annotations are regenerated from the instance

segmentation and semantic segmentation images to the for-

mat MS COCO dataset [47]. The strategy can still generate

annotations for the ships when boundaries of sliding window

fall on it, and it has reduced the workload of annotation.

To examine the consequence of annotation, we have visu-

alized the annotated ships in Figure 5. In the format of

the MS COCO dataset, the polygons annotated by experts

are transformed to mask for segmentation, and the bound-

ing boxes for object detection are generated by the mask.

The transformed mask can locate the ships with its contour

and the bounding box generated by the mask is capable to

locate the edge of ships. When annotating, the polygons are

generated by the software named Labelme [55], which can

support the annotation formats of the polygon, rectangle,

circle, etc. As for dataset constructing, the annotations of each

SAR image constitute a JavaScript Object Notation (JSON)

file in MS COCO dataset format, facilitating the reading

and transmission of information. MS COCO dataset format

enables each ship instance annotation contains the category

id, bounding box, and segmentation mask. Thus, guarantee-

ing HRSID can satisfy the demand for ship detection and

instance segmentation.

C. STATISTICS ANALYSIS ON HRSID

Existing large optical datasets (e.g., MS COCO, Ima-

geNet [56], PASCAL VOC [57]) have a large variety of

categories for large-scale visual identity; correspondingly,

they contain large amounts of images. Distinguished from the

multiple colors in optical images, SAR imagery appears as

grayscale images; but the imaging effect of SAR imageries

is influenced by various factors such as clutters and incident

angle of the satellite. Object detection in SAR imageries

is still complicated. However, CNN based ship detectors

which are trained by existing SAR datasets tend to reach

the bottleneck of precision [30], [37]. So, some challenging

detection scenes are supplemented in HRSID to add complex-

ity. Besides, these high-resolution scenes can provide similar

SAR detection scenes to optical scenes to add the complexity

of ship detection.

As the limited operational capability in consumer-oriented

graphic cards, the small datasets, for example, NWPU VHR-

10 [58] constructed by optical remote sensing images and

SSDD for SAR ship detection, are extensively applicated in

object detection [30], [37], [59], [60]. So, HRSID is designed

to have 5604 high-resolution SAR images for wide usage.
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FIGURE 4. The strategy of annotation.

FIGURE 5. The annotated ships with category id, bounding box and mask in HRSID.

As it’s designed for CNN based ship detection and instance

segmentation, it contains one category and provides anno-

tations for the ships, and other categories appeared in SAR

images aren’t annotated.

We refer to the MS COCO evaluation metrics [47] to ana-

lyze our dataset. HRSID is divided into the training set with

the amount of 65% images, and the test set with 35% images.

Statistics of HRSID, the training set, and the test set are shown

as a histogram in Figure 6, the area of the bounding box and

aspect ratio of the bounding box are taken into consideration.

The aspect ratio of the bounding box corresponds to the

shape of the bounding box, and it’s essential for the CNN

based detectors which adopt anchor to generate bounding

box [19], [27]. The area of the bounding box is the criterion to

measure the scale of ships in the MS COCO dataset. Accord-

ing to the scale division for object detection in MS COCO,

area of the bounding box below 32× 32 pixels corresponds to

the small object, area of the bounding box from 32× 32 pixels

to 96 × 96 pixels correspond to the medium object and area

of the bounding box above 96 × 96 pixels correspond to the

large object. Statistically, the number of annotated ships is

16951, and each SAR image is distributed with 3 ships on

average. The number of small ships, medium ships, and large

ships takes up 54.5%, 43.5% and 2% of all ships, respectively.

The area of the bounding box for small ships, medium ships,

and large ships takes up 0∼0.16%, 0.16%∼1.5% and above

1.5% of the SAR image, respectively. So, HRSID has the

characteristics of small objects but large detection scenes;

ships are sparsely distributed in SAR images. As the very

high-resolution (VHR) SAR imageries with specific contexts

are scarce, which is the source of large ships, HRSID has a

relatively low ratio of large ships. In the training set and test
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FIGURE 6. Statistics of HRSID, training set and test set, including the aspect ratio of the bounding box and area of the bounding
box.

TABLE 2. Different groups of SAR images with the same imaging parameter.

set, the properties are similar to HRSID. To sum up, HRSID

emphases on examining the ability of detectors in detecting

small and medium ships.

Considering the imaging parameters such as incident

angle, polarization, resolution, etc., are different, we divide

the dataset into different groups according to the serial num-

ber. Each group has the same imaging parameters and the

number of ships is counted as is shown in Table 2. Mean-

while, statistics of the SSDD and the SAR-Ship-Dataset are

summarized in Table 3. Parameters, including the size of

ships, size of images, number of images, annotations and

resolution are used for analysis. Quantitatively, all the dataset

emphasis on detecting small and medium ships. As for the

SAR-Ship-Dataset, the small size ship chips are beneficial to

ship classification; but they are incompetent to delicate ship

detection tasks. As for the SSDD, it has wide range usage

for CNN based ship detection relative balanced size of ships

and multiple sizes of SAR images; but with the fewer number

of SAR images, SSDD needs to be augmented before training

and testing. In terms of HRSID, the resolution of SAR images

varies from 0.5m∼3m. Ships are annotated by polygons, and

the annotations contain masks and bounding boxes for ship

detection and instance segmentation, respectively. The model

trained by high-resolution SAR images fit the delicate tasks

such as maritime transport safety and fishery enforcement.

Besides, taking the difference in the stride while cropping and

size of cropped images into account, the capacity of HRSID

is equivalent to the SAR-Ship-Dataset.

III. STATE-OF-THE-ART ALGORITHMS FOR BUILDING

THE BASELINE

A. BACKBONE NETWORK

In order to compare the performance of the detectors

on our dataset under the same conditions, we use the

ResNet-FPN [61] architecture as the backbone network of

the detectors. With the residual module, ResNet is deeper

but stable [25], [26]. Feature Pyramid Networks (FPN) [62]

construct the top-down feature pyramid structure, which is

based on fusing the inherent multi-scale feature map. As

for ResNet, conv2, conv3, conv4, and conv5 are recorded as

{C2, C3, C4, C5} with corresponding strides of {4, 8, 16,

32} relative to the pixel of the input image. By upsampling

the C5 layer with a top-down pathway to match the size of

convolutional layers, reducing the dimension of the channels
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TABLE 3. Statistics of SSDD, SAR-Ship-Dataset and HRSID.

FIGURE 7. The architecture of ResNet-FPN.

with a 1 × 1 convolutional layer and merging the maps

with a 3 × 3 convolutional network to eliminate the effects

of upsampling. The output feature maps are {P2, P3, P4,

P5} which corresponds to {C2, C3, C4, C5}. The composite

structure of ResNet and FPNmakes the detectors adaptable to

detect small objects. It’s beneficial to ship detection because

ships often appear as small objects in SAR images [61]. The

architecture of ResNet-FPN is shown in Figure 7.

B. STATE-OF-THE-ART DETECTORS

Improved backbone networks, optimized loss functions (e.g.,

Focal Loss [34] applied in RetinaNet) and functional subnet

are beneficial to develop object detectors. So, building a

baseline with state-of-the-art detectors that contain common

structure for reference is essential for HRSID to be imple-

mented in further study. We have selected 8 state-of-the-art

detectors to build the baseline of HRSID.

1) FASTER R-CNN

Faster R-CNN consists of three modules: ResNet, Region

Proposed Network (RPN) and Fast R-CNN. ResNet-FPN

extracts the feature map of the SAR image. RPN can generate

the ship proposals for preliminarily predicting the location of

ships. The RoI Pooling layer can transform the scale of the

region proposed feature map to fit the input size of fully con-

nected layers. Fast R-CNN finishes the binary classification

and bounding box regression.

2) CASCADE R-CNN

As for detectors using the anchor mechanism, the IoU thresh-

old value of the bounding box is used to distinguish the

positive and negative samples. The precision of the predicted

bounding box under the IoU threshold value will be classified

into negative samples and filtered. Cascade R-CNN replaces

Fast R-CNN in Faster R-CNN with cascaded Fast R-CNN.

The cascaded Fast R-CNN assigns increasing IoU threshold

value in sequence for each Fast R-CNN. Besides, the IoU

threshold value is assigned at an incremental interval to avoid

mismatching.

3) RETINANET

RetinaNet consists of two components: ResNet-FPN, Fully

Convolutional Networks (FCN). Two independent FCN

branches perform the classification and location tasks sepa-

rately. FCN can adapt to the flexible size of feature maps, and

it’s more robust than full connected layers. Focal Loss lowers

the weight of negative samples and strengthens the effects of

positive samples. It has solved the category imbalance in one-

stage detection algorithms.

4) MASK R-CNN

Based on the structure of Faster R-CNN, Mask R-CNN adds

a mask branch to predict the segmentation mask for each

Region of Interest (RoI), paralleling to the classification and

bounding box regression branch in Fast R-CNN. The mask

branch utilizes FCN to predict the segmentation mask in a

pixel-to-pixel manner. Besides, RoI Pooling in Faster R-CNN

is replaced by RoI Align in Mask R-CNN. RoI Align deter-

mines the value of each sampling point from the adjacent grid

point on the feature map through bilinear interpolation so that

it can finish one-to-one correspondence between input pixels

and output pixels. Without quantization in the coordinates,

Mask R-CNN can generate a pixel-to-pixel mask for instance

segmentation. The loss function of the mask is calculated

separately to ship detection.

5) MASK SCORING R-CNN

Among the instance segmentation tasks in Mask R-CNN,

the quality of the segmentedmask is determined by the classi-

fication confidence of object detection branches. But there are

no strong correlations between the two.When segmenting the

instances, the mask quality of overlapped congeneric objects

tends to be poor. Mask Scoring R-CNN [63] adds MaskIoU

Head to improve the mask quality, and the mask score is

defined by the product of classification score and MaskIoU

score. MaskIoUHead transforms the output scale of the mask

branch with the MaxPooling layer and concatenates it with
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the RoI feature map as its input, through 4 convolution layers

and 3 fully connected layers to get the output.

6) CASCADE MASK R-CNN

As the name implies, Cascade Mask R-CNN is the hybrid of

Mask R-CNN and Cascade R-CNN. It combines the excel-

lent characteristics of the two detectors, so that the Cascade

R-CNN, which performs well in object detection, can finish

the instance segmentation tasks. Each cascade structure adds

a mask branch to finish the instance segmentation task and

generate the pixel level mask.

7) HYBRID TASK CASCADE

In the structure of CascadeMask R-CNN, each stage contains

the bounding box branch and mask branch. But there are no

association between the parallel structure. To improve the

detection precision, Hybrid Task Cascade [40] interweaves

bounding box and mask branches for joint multi-stage pro-

cessing, and uses semantic segmentation branches to provide

spatial context.

8) HRSDNET

Apart from the above standard ship detection methods,

we have added the dedicated ship detection method for SAR

images. HRSDNet adopts the high-resolution feature pyra-

mid network (HRFPN) as the backbone network. HRFPN

connects the high-to-low resolution subnetworks in paral-

lel for obtaining accurate spatial precision. The Soft Non-

Maximum Suppression (Soft-NMS) is used to detect the

cluster distributed ships.

IV. SHIP DETECTION AND INSTANCE SEGMENTATION

PERFORMANCE ON HRSID

In this section, we will evaluate the experimental results on

HRSID generated by state-of-the-art detectors mentioned.

Not only the measured AP be regarded as the baseline of our

dataset, but we also visualize the detection and segmentation

results of the detectors.

A. EVALUATION METRICS

For quantitatively and comprehensively evaluation of the per-

formance of object detectors, the evaluation metrics such as

IoU, precision, recall, andmAP are the normativemeans [57].

In supervised learning, the coordinates of the object’s location

are annotated by the experts, which is called ground truth in

object detection and instance segmentation. The overlap rate

of predicted result and ground truth is the measurement of

the correlation between the two; a higher degree of overlap

indicates a better correlation and more precise prediction.

As is shown in formula 2, bounding box IoU is defined by

the overlap rate of the predicted bounding box and ground

truth bounding box:

IoUbbox =
Bboxpd ∩ Bboxgt

Bboxpd ∪ Bboxgt
(2)

Analogously, mask IoU for instance segmentation is defined

by the overlap rate of predicted mask and ground mask to

measure the segmentation precision, as is shown in formula 3:

IoUmask =
Maskpd ∩Maskgt

Maskpd ∪Maskgt
(3)

During classification, algorithms may misjudge the back-

ground and objects. There are four classification results: True

Positives (TP), True Negatives (TN), False Negatives (FN)

and False Positives (FP). TP denotes the amount of cor-

rectly classified positive samples; TN shows the amount

of correctly classified negative samples; FN represents the

amount of missed positive samples; FP indicates the number

of false alarms in the background. The precision and recall

are defined by these criteria, as is shown in formula 4 and

formula 5.

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

Based on the quantities of precision and recall, AP is

defined. In the Cartesian coordinate system, if the horizontal

coordinate is recall value and the vertical coordinate is pre-

cision value, the area under the recall-precision curve is AP

value, as is shown in formula 6:

AP =

∫ 1

0

P(r)dr (6)

where P represents precision and r represents recall. If there

are multiple categories in the dataset, the numerical average

of all categories is defined as mean AP (mAP).

Common dataset evaluation formats are Pascal Visual

Object Classes (Pascal VOC) and Microsoft Common

Objects in Context (MS COCO). The calculation criterion of

mAP for the Pascal VOC dataset is based on an IoU thresh-

old of 0.5, while the evaluation metrics in MS COCO are

abundant and comprehensive. In the evaluationmetrics ofMS

COCO, objects with multiple sizes in an identical category

are assessed individually due to their wide disparity in AP;

except for the same AP50 in evaluation metrics of Pascal

VOC, MS COCO has the strict metric of IoU thresholds such

as AP75 and AP. AP75 represents the calculation under the

IoU threshold of 0.75, and AP is the primary challenge metric

with the calculation of average IoU, which has ten IoU thresh-

olds distributed from 0.5 to 0.95with the step of 0.05. In terms

of the capabilities in multi-scale object detection, there are

APS, APM, and APL for evaluation. Specifically, the three

indicators denote the objects with small (area < 322 pixels),

medium (322 < area < 642 pixels) and large (area > 642

pixels) size. We have taken AP, AP50, AP75, APS, APM, and

APL to characterize the performance of the detectors on our

test set. Except for the IoU computation which is respectively

performed on bounding boxes and masks, the evaluation

metrics above are in all respects for object detection with

bounding boxes and instance segmentation with masks.
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TABLE 4. Ship detection statistics generated by bounding box AP on test set of HRSID.

B. EXPERIMENTAL DETAILS

All the experiments on our dataset are supported by the per-

sonal computer (PC) with the 64-bits Ubuntu 18.04 operating

system. The software configuration consists of python pro-

gramming language, PyTorch 1.3.0, CUDA 10.1 and cuDNN

7.6.1. The hardware capabilities include NVIDIA RTX-

2080 GPU (8GB memory), Intel R©i7-8700 CPU @3.20GHz

and 32 GB RAM. To maintain the same hyperparame-

ters of the detectors, we choose mmdetection (a flexible

toolkit for reimplementing existing methods) [64] for train-

ing and testing. To make more accurate location and seg-

mentation, the SAR images are proportionally resized to

1000 × 1000 pixels in the process of training and test-

ing [65]–[68]. All the detectors are trained with GPU and

finished in 12th epochs; the momentum and weight decay

are set to 0.9 and 0.0001, respectively. IoU threshold is set

to 0.7 when training and testing for rigorous filtering to

the bounding boxes with low precision. The IoU thresholds

in Cascade R-CNN are set to {0.5, 0.6, 0.7}. We choose

SGD with the initial learning rate of 0.0025 as the optimizer,

the other hyperparameters are set to the default values in

mmdetection.

C. SHIP DETECTION RESULTS ON STATE-OF-THE-ART

DETECTORS

In Table 4, we have shown the ship detection statistics gen-

erated by bounding box AP on the test set of HRSID. Each

detector adopts ResNet50-FPN and ResNet101-FPN as the

backbone network for contrast. Considering the feasibility

in practical application, we have added the model size after

training and the test speed per SAR image for each detector.

Generally, with more functional structure and deeper net-

work, the model size and AP will increase, but the detection

FIGURE 8. The detection PR curve with the backbone of ResNet-50.

speed is reduced in return. To build the baseline of our

dataset, the settings of hyperparameters are consistent. The

precision-recall curve (PR curve) of each detector is shown

in Figure 8 and Figure 9.

Through the comparison of the statistics, detectors with

ResNet101-FPN perform better in bounding box AP than

detectors with ResNet50-FPN as a backbone in general, but

the deeper network adds the size of the model after training

and lower the detection speed on SAR images. With the same

backbone network, RetinaNet has the minimum model size

of 290.0Mb and outperforms other two-stage and multiple-

stage detection algorithms in detection speed, but it’s inferior

in bounding boxAP;HRSDNet receives the highest bounding

box AP of 69.4% and the model size of 728.2Mb with the

cascaded networks, while it takes 0.154s to detect the ships.

Compared to CascadeMask R-CNN, the bounding box AP of
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FIGURE 9. The detection PR curve with the backbone of ResNet-101.

Hybrid Task Cascade (HTC) is improved by 0.7% and 0.8%

with the backbone of ResNet50-FPN and ResNet101-FPN,

respectively. Mask R-CNN performs better in bounding box

AP than Faster R-CNN with its mask branch and RoI Align.

Using the stepwise increasing IoU threshold in each cas-

caded detection structure, Cascade R-CNN receives a promi-

nent improvement of 3.1% and 2.9% than Faster R-CNN in

bounding box AP with the backbone of ResNet50-FPN and

ResNet101-FPN, respectively.

Under the bounding box IoU threshold of 0.5, the bounding

box AP of state-of-the-art detectors is above 84.7%. While

under the relatively strict bounding box IoU threshold of 0.75,

bounding box AP is above 67.2%. As for multi-scale ship

detection, when detecting the small and medium ships in our

dataset, the bounding box AP of detectors is above 60.4% and

60.9%, respectively. Benefit from the ResNet-FPN backbone,

detectors are applicable to detect small ships. But they have

abrupt decreasing in bounding box AP when detecting large

ships on account of the relatively strict definition for large

SAR ships in MS COCO evaluation metrics and the fewer

training samples.

To examine the ship detection ability of detectors to com-

plex detection scenes, we have selected 4 representative

scenes in the test set of HRSID for ship detection. Visible

results are shown in Figure 10. Green bounding boxes denote

ground truth and red bounding boxes denote predicted results.

The bounding box IoU threshold for testing is set to 0.7 to

avoid excessive amounts of the false alarms; the predicted

bounding box under the confidence coefficient of 0.7 is fil-

tered. Column 1 shows ships which have a similar feature

to the objects in the port, Column 2 denotes the cluster-

distributed small ships in the canal, Column 3 exhibits the

adjacent ships, Column 4 is the large size ships mooring in the

port. Row 1 to Row 8 represents the ship detection results of

Faster R-CNN, Cascade R-CNN, RetinaNet, Mask R-CNN,

Mask Scoring R-CNN, Cascade Mask R-CNN, Hybrid Task

Cascade, and HRSDNet, respectively.

As is shown in Column 1 and Column 2, all the two-

stage and multiple-stage detection algorithms have high

TABLE 5. Ship detection in the inshore and offshore scenes of HRSID.

performance in detecting ships near man-made facilities in

the port but missed detection and false alarm appear when

the scene switches to the canal with cluster-distributed small

ships; RetinaNet has difficulty in detecting ships in the above

scenes. In Column 3, it appears as if the performance of

detectors with the NMS algorithm has reached the bottleneck

in detecting adjacent ships. In Column 4, large size ships are

hard to detect due to insufficient amounts of corresponding

samples in the training set, which accords with statistical APL
in Table 4.

D. SHIP DETECTION IN INSHORE AND

OFFSHORE SCENES

Ship detection in the pure sea background is less challenging

to the CNN-based detectors as there are no interferential

objects in these scenes. So, we have divided HRSID into

inshore and offshore scenes to measure the capability of state-

of-the-art detectors in detecting ships with interferences. Sta-

tistically, inshore scenes occuy the proportion of 18.4%, and

offshore scenes occupy the proportion of 81.6%. In Table 5,

we have shown the ship detection results in inshore and

offshore scenes. As for detecting the offshore scenes, AP,

AP50, and AP75 of state-of-the-art detectors is above 79.6%,

98%, 93.2%, respectively.When detecting the small, medium

and large ships, the highest bounding box AP among the

detectors is still maintained at 88.5%, 86.9%, 68.2%, respec-

tively. While detecting the inshore scenes, the detection pre-

cision has dropped significantly; the bounding box AP of

all detectors ranges from 41.3% to 61.8%. Compared with

the offshore scenes, AP50 and AP75 for inshore scenes has

reduced by 20% and 22% respectively. As for detecting small,

medium and large ships, the highest bounding box AP is

59.9%, 77.4% and 48.8% respectively. In summary, detectors

can precisely detect the ships in offshore scenes but the

inshore scenes in HRSID are still challenging to the state-

of-the-art detectors.
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FIGURE 10. Visible ship detection results of state-of-the-art detectors with ResNet50-FPN backbone on complex detection scenes from the test set of
HRSID. Green bounding box denotes ground truth and red bounding box denotes predicted results.
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FIGURE 10. (Continued.) Visible ship detection results of state-of-the-art detectors with ResNet50-FPN backbone on complex detection scenes from the
test set of HRSID. Green bounding box denotes ground truth and red bounding box denotes predicted results.

E. COMPARISON WITH THE BASELINE OF SSDD

Compared to the ship chips in OpenSARship and SAR-Ship-

Dataset which are dedicated to the ship classification [42],

SAR images in SSDD can be better implemented in ship

detection [28]–[30], [36], [38]; researchers tend to aug-

ment the images in SSDD to fix its flaws when developing

algorithms. To verify that HRSID is more applicable to

CNN-based detectors, we have experimented on SSDD for

further comparison in detection precision. All the detectors

and corresponding hyperparameters are consistent with the

experiments on HRSID when measuring the baseline of

SSDD. The baseline of SSDD is shown in Table 6.

SSDD is randomly divided into the training set (65% SAR

images) and test set (35% SAR images). The model size of

the state-of-the-art detectors is the same as HRSID. Since the

training set of SSDD has 4.8 times fewer SAR images than

the training set of HRSID, the detection speed of the model

trained by SSDD has decreased for about 0.02s. Under the

bounding box IoU threshold of 0.5, the bounding box AP

of the models trained by the training set of SSDD is above

90%. But with a relatively strict bounding box IoU threshold

of 0.75, bounding boxAP has a sharp decrease for about 25%.

So that ships are easy to detect but hard to locate precisely

in the SSDD. While in HRSID, AP50 is decreased by about

7% than SSDD; but AP75 has increased by about 8% than

SSDD. There is no sharp decrease between AP50 and AP75
in HRSID. Compared to the APS in HRSID, APS in SSDD

is reduced for about 10% under the ResNet-FPN backbone.

As for the APL in SSDD, it receives the abnormal results.

There are 76 large size ships in SSDD and 50 large ships for

training, but APL of detectors vary from 45.4% to 61.2%. The

few training samples but relatively high precision shows that

the feature of large ships hasn’t been clearly distinguished

from small and medium ships. In HRSID, the feature of the

large ship in high-resolution SAR image is more detailed

and distinguishable to small and medium ships as is shown

in Figure 5. With the lack of large ships, statistics of APL
in HRSID are lower but real than SSDD. To sum up, ship

detection in HRSID is more challenging and detectors can

locate the ships precisely than SSDD. Ship detection statistics

in high-resolution SAR images aremore authentical than low-

resolution SAR images.
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TABLE 6. The baseline of SSDD.

TABLE 7. Descriptions of Alos-2 SAR imagery.

TABLE 8. Instance segmentation statistics generated by mask AP on test set of HRSID.

F. SHIP DETECTION RESULT ON ALOS-2

To examine the migration ability of the model trained on our

dataset, we have obtained a panoramic Alos-2 SAR imagery

with multiple inshore and offshore ships for the experiment.

Detailed descriptions are shown in Table 7.

The size of large-scale SAR imagery doesn’t fit the input

of CNN based detectors. So, the detection process is divided

into several steps. Firstly, the SAR imagery is vertically and

parallelly cropped by 800 × 800 pixels sliding window; each

successively cropped image has an overlapped ratio of 20%

to ensure the stitching process can be implemented. Secondly,

187 cropped SAR images are inputted into the detectors to get

the detection results. Thirdly, detection results are stitched to

form the detected panoramic SAR imagery. The visible ship

detection result of Cascade R-CNN with ResNet50-FPN is

shown in Figure 11. Green bounding boxes denote ground

truth and red bounding boxes denote predicted results.

The model trained by HRSID performs well in detecting

the offshore ships, and there are few false alarms on the

land. But as the man-made facilities or buildings in the port

have a similar feature to the ships, false alarms and missing

detections increase when the model detects inshore ships.

To sum up, the model trained by HRSID has the migration

ability to detect large size SAR imagery and is of value in

practical application.

G. INSTANCE SEGMENTATION RESULTS ON

STATE-OF-THE-ART DETECTORS

In Table 8, we have shown the instance segmentation statistics

generated by mask AP on the test set of HRSID, which
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FIGURE 11. Visible ship detection result on Alos-2 SAR imagery of Cascade R-CNN with ResNet50-FPN. Green bounding boxes denote ground truth
and red bounding boxes denote predicted results.

are the results of Mask R-CNN, Mask Scoring R-CNN,

Cascade Mask R-CNN, and Hybrid Task Cascade. Similar

to the bounding box AP in object detection, mask AP is

generated by the IoU of the predicted mask and ground truth

mask. Mask prediction is more complicated than bounding

box prediction due to the alterable shape of the mask. So,

the mask AP is slightly reduced compared to bounding box

AP. In three-dimensional space, objects may lose some par-

tial features due to occlusion from the same category; but

ships are generally distributed on the surface of the water,

occlusion of ships is rare. Mask IoU head has limited effects

to improve the mask quality when segmenting the ships,
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FIGURE 12. The segmentation PR curve with the backbone of ResNet-50.

and mask AP in Mask Scoring R-CNN is almost the same

compared to Mask R-CNN.With the stepwise increasing IoU

threshold in each cascade of instance segmentation structure,

Cascade Mask R-CNN performs better in mask AP than

Mask R-CNN. Benefit from the interactive bounding box

and mask branch, the mask AP of HTC has improved by

0.6% and 0.7%, with the backbone of ResNet50-FPN and

ResNet101-FPN respectively. Specifically, the mask AP has

increased by 3% when detecting the medium ships.

On account of sharing the same model, model size and test

speed per image of instance segmentation are the same as

ship detection statistics. All the detectors have the mask AP

for about 54%. Under the mask IoU threshold of 0.5, mask

AP of Mask R-CNN, Cascade Mask R-CNN, and Hybrid

Task Cascade is above 86%, 86.6%, and 86.4%, respectively.

While with the relatively strict mask IoU threshold of 0.75,

mask AP is above 64.3% for the detectors. As for multi-scale

instance segmentation, when segmenting the small and

medium ships in HRSID, mask AP of detectors is above

53.3% and 61.2%, respectively. When segmenting the large

ships, mask AP is still low with a limited amount of large

size ships. The statistics indicate that detectors can generate

a more precise mask for medium ships than small ships. The

precision-recall curve (PR curve) of each detector is shown

in Figure 12 and Figure 13.

We have selected 4 representative scenes in the test set of

HRSID for instance segmentation. Visible results are shown

in Figure 14. Row 1 is the ground truth of bounding boxes and

masks; the bounding boxes appear as green for distinguishing

from the predicted red bounding boxes below. Row 2 and

Row 3 show the instance segmentation results of Mask R-

CNN with ResNet50-FPN backbone and ResNet101-FPN

backbone, respectively. Row 4 and Row 5 represent Cascade

Mask R-CNN with ResNet50-FPN and ResNet101-FPN,

respectively.

Different from visible results in ship detection, the pre-

dicted mask in instance segmentation can depict the ships

with concrete shape, which is beneficial to determine the

FIGURE 13. The segmentation PR curve with the backbone of ResNet-101.

type of ships. In the visible results of instance segmentation,

detectors can segment offshore ships, berthed ships in the

canal and berthed ship near man-made facilities well; but

it appears overlapped masks in segmenting adjacent ships.

Compared with the ResNet50-FPN backbone, detectors with

ResNet101-FPN backbone can generate the more accurate

mask.

V. DISCUSSION

With a different incident angle of the radar signal, environ-

mental factor, polarization methods, etc., the pre-processed

SAR imageries exist clutter noise which interferes with the

feature of ships then the ship detection and instance seg-

mentation with CNN. So, distinguished from constructing

an optical remote sensing dataset for object detection and

instance segmentation [54], ships should be accurately and

completely annotated when constructing the SAR dataset

for ship detection and instance segmentation. Existing SAR

ship datasets prepared for CNN have respective defects, and

detectors tend to reach too high AP50 when testing on these

datasets [30], [37]. For example, the HR-SDNet, which is

dedicated to CNN based ship detection, has reached 98.8%

of AP50 when experimenting on SSDD [30].

In this paper, we have designed a complete and efficient

process to construct a high-resolution SAR dataset for CNN

based ship detection and instance segmentation. To avoid

wrong annotation and missing annotation caused by man-

made facilities which are similar to ships [37], we have

developed the auxiliarymethod for annotation in Section II.B.

As for ships in low-resolution SAR images are presented

as highlighted spots, the effects of instance segmentation

on low-resolution SAR images may be limited. So, high-

resolution SAR imageries are applied to construct the dataset,

and they are cropped to 800 × 800 pixels SAR images for

better implementation on the functions such as multi-scale

training. To comprehensively evaluate the performance of

detectors, we have employed MS COCO dataset evaluation

metrics for comprehensive evaluation on HRSID with
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FIGURE 14. Visible instance segmentation results of Mask R-CNN and Cascade Mask R-CNN with ResNet50-FPN and ResNet101-FPN backbone
on test set of HRSID. Row 1 is the ground truth. Row 2 to Row 5 are the predicted results.

8 state-of-the-art detectors. Quantitatively, detectors with

improved structure have received proper improvement on

bounding box AP when detecting ships; the maximum

bounding box AP50 of the results is 89.3%. The APL of the

detectors varies from 16.4% to 38.1% on account of insuffi-

cient amounts of large ships in HRSID, and this phenomenon
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also appears in the existing SAR ship dataset prepared for

CNN as is discussed in Section II.C. We are looking forward

to the subsequent supplement from the community to perfect

HRSID. The statistics of model size, test speed, and COCO

evaluation metrics reasonably vary from detectors. To chal-

lenge the detectors and examine the ability of detectors to

detect the ship in complex scenes, some complex scenes

are added in HRSID and the correspondingly visible results

of detectors are tested. The results show that the complex

scenes such as cluster-distributed small ships and adjacent

ships are still challenging to the detectors. As for the visi-

ble detection results in instance segmentation, the generated

mask can authentically depict the distribution of ships with

its concrete shape pixel-by-pixel, establishing a preliminary

basis for further research on instance segmentation.

The statistical detection results are regarded as the base-

line of state-of-the-art detectors, including ship detection

and instance segmentation statistics. With reasonable AP to

state-of-the-art detectors and challenging detection scenes,

HRSID is worth further research to promote the development

of ship detection and instance segmentation. The novel struc-

ture and algorithms can also be tested on HRSID. We hope

HRSID can promote the development of ship detection and

instance segmentation in SAR images just like MS COCO in

optical images.

Future work will be conducted on ship detection and

instance segmentation with HRSID. Existing problems in

our experiments, such as poor instance segmentation perfor-

mance in cluster-distributed small ships and adjacent ships

are the major indicator of our further research.

VI. CONCLUSION

In this research, we have constructed a high-resolution SAR

dataset for CNN based ship detection and instance segmen-

tation. 136 SAR imageries with resolution under 5m are

cropped to 5604 SAR images with 800 x 800 pixels. When

building the baseline of our dataset, we have applicated

8 state-of-the-art detectors to our dataset for ship detection

and instance segmentation. The large size SAR imagery is

used for examining the migration ability of the model trained

on our dataset. Besides, we have measured the baseline of

SSDD to verify the novelty of HRSID. The experimental

results reveal (1) the process we have designed for construct-

ing HRSID is effective as the statistical results of detectors

are reasonable; (2) ship detection and instance segmentation

can be implemented on HRSID, and the predicted pixel-by-

pixel mask can depict the shape of ships which is beneficial to

determine the type of ships; (3) the baseline of HRSID shows

its superiority compared to SSDD; (4) The model trained by

HRSID can detect ships in large size SAR imagery and is of

value in practical application. We hope HRSID can promote

the development of ship detection and instance segmentation.
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