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Abstract

Although video summarization has achieved great suc-

cess in recent years, few approaches have realized the in-

fluence of video structure on the summarization results. As

we know, the video data follow a hierarchical structure, i.e.,

a video is composed of shots, and a shot is composed of

several frames. Generally, shots provide the activity-level

information for people to understand the video content.

While few existing summarization approaches pay attention

to the shot segmentation procedure. They generate shots by

some trivial strategies, such as fixed length segmentation,

which may destroy the underlying hierarchical structure of

video data and further reduce the quality of generated sum-

maries. To address this problem, we propose a structure-

adaptive video summarization approach that integrates shot

segmentation and video summarization into a Hierarchical

Structure-Adaptive RNN, denoted as HSA-RNN. We evalu-

ate the proposed approach on four popular datasets, i.e.,

SumMe, TVsum, CoSum and VTW. The experimental result-

s have demonstrated the effectiveness of HSA-RNN in the

video summarization task.

1. Introduction

Nowadays, video data are increasing explosively due to

the popularity of video capture equipments, such as smart

phones and surveillance cameras. Videos have become the

most common visual data, which causes an urgent demand

for automatic tools to deal with the huge amount of video

data efficiently. In particular, video summarization is one of

the tools rising to this challenge [32, 37].

Video summarization provides us an efficient way to

browse and understand a lengthy video by shortening it into

a compact version, i.e., highlighting the essence and remov-

ing redundancy [31]. Practically, video summarization can

condense the video at three levels, that is, shots [27], frames
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Figure 1. The diagram of the proposed HSA-RNN, where Layer 1

and Layer 2 are designed to exploit the video structure and gener-

ate the video summary, respectively. Specifically, the blue and red

boxes represent the bidirectional LSTM unit in each layer. The

dashed boxes indicate the locations of detected shot boundaries.

The bidirectional LSTM in Layer 1 operates in a sliding manner,

and the stride at each step is equal to the length of previous detect-

ed shot.

[9] and objects [18]. In this paper, we focus on the first one

that summarizes the video with several key shots, because

it can better preserve the dynamic information and spatio-

temporal consistence of the video content [1, 12].

There has been a steady development in shot-based video

summarization. Existing approaches summarize the video

following a two-stage architecture, i.e., shot segmentation

and key shot selection [12, 27, 38, 23]. In particular, most

approaches focus on designing various models for the key
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shot selection step, like clustering and dictionary learning

algorithms [1, 8, 39], property models [17, 21, 13], and re-

cently proposed sequence models [37, 38, 23]. However,

few approaches pay attention to the shot segmentation part.

Practically, for most approaches, the video is segmented in-

to shots simply by abrupt changes among frames [23, 27],

motion magnitude variances [12, 21], or even fixed length

segmentation [38, 29, 33, 15]. These methods have not

made full use of the video structure, and usually lead to

unsatisfied shot segmentation results.

Actually, the summarization results are heavily depen-

dent on the video structures [12, 27, 38]. As we know,

videos share a hierarchical structure that a video is com-

posed of shots, and a shot is composed of several frames

[26, 4]. Shots are the fundamental units for people to under-

stand the activities in the video. Thus, the poor performance

of existing approaches on shot segmentation may lead to in-

evitable mistakes. Concretely, the inaccurate segmentation

causes information chaos, i.e., the information loss of a cer-

tain shot and information mixture of several adjacent shots,

which damages the integrity and independence of the activ-

ities in the video. As a result, it leads to the misjudgment of

summarization approaches on the latent video structure, and

finally causes interferences to generate correct summaries.

To address this problem, we propose a Hierarchical

Structure-Adaptive RNN (HSA-RNN) that can jointly ex-

ploit the video structure and summarize the video content.

As depicted in Figure 1, HSA-RNN has two layers, con-

structed by bidirectional Long Short-Term Memory (LSTM-

s). Specifically, the first layer is developed to exploit the

video structure. The fixed length bidirectional LSTM oper-

ates on the video frames in a sliding manner, and tries to de-

tect the shot boundaries step by step (the stride at each step

is equal to the length of previous detected shot). Once the

shot boundaries are detected, the hidden states correspond-

ing to those locations are taken as the encoded shot features

and input to the upper layer. The second layer is designed

to capture the forward-backward temporal dependencies a-

mong shots, and predict the probability of each shot to be

selected into the summary.

Overall, the contributions of this paper are summarized

as follows:

1) To our knowledge, we are the first to propose a

structure-adaptive video summarization approach that joint-

ly exploits the video structure and summarizes the video

content. It can make up the weakness of existing approach-

es in video structure exploitation, and further improve the

summary quality.

2) We design a sliding bidirectional LSTM to detect shot

boundaries in the video. It achieves an accurate segmenta-

tion of long videos with much shorter LSTM, so that the

vanishing gradient problem is mitigated.

3) The results on four popular datasets, i.e., SumMe [12],

TVsum [29], CoSum [5], and VTW [35], have demonstrat-

ed that our approach significantly improves the performance

on shot segmentation and video summarization.

2. Related Works

Video summarization is a long-standing problem. A

large amount of approaches have been proposed in the liter-

ature. They mainly fall in two broad categories, i.e., unsu-

pervised ones and supervised ones.

Unsupervised approaches typically select key shots ac-

cording to heuristic criteria [39, 25, 19, 24], including rep-

resentativeness and diversity, etc. One main subcategory

of unsupervised video summarization is cluster-based ap-

proaches [24, 1, 8], which aggregate similar shots into the

same cluster. Then cluster centers are selected as the com-

ponents of the final summary. Originally, clustering algo-

rithms are directly used for video summarization [40, 14].

Afterwards, domain knowledge is taken into account to gen-

erate better results [8, 24]. Some other works exploit more

powerful models for video summarization based on cluster-

ing, e.g., Ngo et al. [25] transform the video into an undi-

rected graph and generate the summary by cutting the graph

into several clusters. Recently, Chu et al. [5] propose to se-

lect visually co-occurring shots across videos with the same

topic by commonality analysis.

Dictionary learning is another subcategory of unsuper-

vised summarization approaches [9, 22, 39, 7], which aim-

s to find a few key shots to construct a dictionary as the

representative of the video content. To further retain the

local similarity of shots, Lu et al. [20] propose a Locality-

constrained Linear Coding (LLC) approach based on dic-

tionary learning. Moreover, to improve the efficiency of

video summarization, Zhao et al. [39] exploit a quasi real-

time approach to summarize videos.

Different from unsupervised ones, supervised approach-

es utilize human-created summaries to learn the underlying

selection criteria, and achieve better results [36, 10, 27, 17,

21, 12]. In supervised approaches, [17] and [12] formu-

late video summarization as a scoring problem with regard

to interestingness and importance, respectively. Then shots

with highest scores are selected to produce the video sum-

mary. Besides, Lu et al. [21] propose a storyness model

to make the summary follow a smooth story line. Several

other works even explore auxiliary information, including

web images [15], video category [27] and video titles [29],

to improve the summarization process.

More recently, deep learning based approaches are gain-

ing increasing attention [33, 37, 38, 23]. Yao et al. [33] pro-

pose a deep rank model based on Convolutional Neural Net-

works (CNN) to encode the input shot and output a ranking

score. Zhang et al. [37] develop a bidirectional LSTM to

predict the probability of each shot to be selected. Further-

more, a hierarchical architecture of LSTMs is constructed
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(a) Shot boundary detection with long single LSTM

LSTM LSTM LSTM
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Step 1:

Step 2:

Step 3:

(b) Shot boundary detection with sliding bidirectional LSTM

Figure 2. The comparison between the long single LSTM and sliding bidirectional LSTM on shot boundary detection. Compared to

the long single LSTM, the sliding bidirectional LSTM is much shorter, which can mitigate the vanishing gradient problem by avoiding

extremely long temporal dependency exploitation. Moreover, it can capture both the forward and backward information. Note that the blue

boxes denote the LSTM units, and the dashed boxes indicate the locations of detected shot boundaries.

to deal with the long temporal dependencies among video

frames [38], which has achieved the state-of-the-art in video

summarization. But it fails to capture the video structure

information, where the shot are generated by fixed length

segmentation. Besides, Mahasseni et al. [23] propose an

adversarial network to summarize the video by minimizing

the distance between the video and its summary.

3. Our Approach

Our approach has two layers, where the first layer is to

exploit the video structure, and the second layer is to sum-

marize the video. In this section, we describe our approach

layer by layer.

3.1. Video Structure Exploitation

Our work is based on the basic assumption that video da-

ta have a hierarchical structure that frames form shots and

shots form video [38]. Shot segmentation is the core prob-

lem in video structure exploitation. Different from existing

approaches that segment the video by change point detec-

tion or fixed length segmentation, we try to segment the

video based on the temporal dependencies among frames.

The target of this layer is to locate the shot bound-

aries in the video and generate the visual feature for

each shot. Specifically, taken the frame feature sequence

(f1, f2, . . . , fn) as input, the output is the shot feature se-

quence (s1, s2, . . . , sm), where n and m are the number of

frames and shots, respectively. Ideally, we hope each shot

feature is extracted exactly from the frame features belong-

ing to that shot.

Since LSTM is good at sequence modeling, the most s-

traightforward idea is to apply a long LSTM to the video

and detect the shot boundaries by a threshold of the out-

put at each step [4, 6], as depicted in Figure 2(a). But this

scheme has natural defects:

1) It is unfeasible to apply bidirectional LSTM to this

architecture. Actually, it is hard to detect the boundary just

utilizing the forward information, the information behind

the boundary is also very important.

2) The threshold for judging the boundary is hard to set.

Worse still, the threshold destroys the differentiability of the

architecture, which makes the end-to-end training difficult

to carry out.

To address above problems, a sliding bidirectional LST-

M is designed in this part. As depicted in Figure 2(b), it

is like a fixed-length one-dimensional filter that operates on

the frame sequence in a sliding manner. The length of the

bidirectional LSTM, k, is empirically selected according to

the shot lengths (k = 240 in this paper), and the stride at

each step is equal to the length of detected shot. The intu-

ition lying behind the sliding bidirectional LSTM is that: 1)

The sliding operation enables short LSTM to process long

videos. It avoids long temporal dependency exploitation a-

mong thousands of frames, which can mitigate the vanish-

ing gradient problem. 2) The bidirectional LSTM jointly

captures the forward and backward information in frame

sequence, which can detect the shot boundary effectively.

3) The sliding bidirectional LSTM just processes the local

frames at each step, which reduces the interference of irrel-

evant global information.

Specifically, at the first step, the bidirectional LSTM op-

erates on the frame subsequence (f1, f2, . . . , fk) by the fol-
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lowing equations,

h
1,f
t = LSTM

(

ft, h
1,f
t−1

)

, (1)

h
1,b
t = LSTM

(

ft, h
1,b
t+1

)

, (2)

where LSTM (·) stands for the operations in each LSTM

unit. Specifically, the LSTM proposed in [34] is employed

in our work. Eq. (1) and (2) denote the computations of

forward and backward LSTM, respectively. It can be ob-

served that the main difference between them lying in that

the backward LSTM operates reversely. h
1,f
t and h

1,b
t de-

note the hidden states of the bidirectional LSTM in the first

layer. They capture the forward and backward temporal de-

pendencies among frames, respectively.

Then, h
1,f
t and h

1,b
t are utilized to compute the confi-

dence of each frame to be the shot boundary,

ct = softmax
(

Relu
(

Wc

[

h
1,f
t ;h1,b

t

]

+ bc

))

, (3)

where Wc and bc are parameters to be learned, [· ; ·] indi-

cates the concatenation of vectors, Relu (·) is the activation

function, softmax (·) is utilized to normalize the values in

ct. Specifically, ct is a two-dimensional vector, where the

element ct (1) and ct (2) denote the confidence of frame t

to be the shot boundary or not, respectively. Therefore, the

shot boundary is determined as the frame with the maxi-

mum ct (1), i.e.,

t∗ = argmax
t

{c1(1), c2(1), . . . , ck(1)} , (4)

and h
1,f
t∗ is taken as the first shot feature s1. Then, the up-

per layer is activated with the input of s1, and the sliding

bidirectional LSTM moves to the next step taking the fol-

lowing frame sequence {ft∗+1, ft∗+2, . . . , ft∗+k} as input.

Finally, it will find out all the shot boundaries and the shot

feature sequence (s1, s2, . . . , sm) is computed. Note that m

is not fixed in our approach, it varies with different videos.

3.2. StructureAdaptive Video Summarization

After shot features are extracted, they will be input to the

second layer for video summarization. As aforementioned,

this layer is also a bidirectional LSTM, which is utilized to

capture the forward and backward temporal dependencies

among shots, and predict which shots are most representa-

tive to the video content.

Practically, the calculation in this layer is formulated as:

h
2,f
t = LSTM

(

st, h
2,f
t−1

)

, (5)

h
2,b
t = LSTM

(

st, h
2,b
t+1

)

, (6)

where h
2,f
t and h

2,b
t denote the hidden states of the forward

and backward LSTM, respectively. They capture the global

temporal dependencies among shots, which are essential to

generate the video summary.

Then, the output hidden state is employed to predict the

probability of each shot to be selected into the summary. It

is formulated as:

pt = softmax
(

Relu
(

Wp

[

h
2,f
t ;h2,b

t ; st

]

+ bp

))

. (7)

Similar to ct, pt is also a two-dimensional vector, and each

element reflects the probability of the t-th shot to be key or

non-key. Therefore, the key shots in the summary are finally

selected according to pt. Besides, it can be observed from

Eq. (8) that pt is jointly determined by the shot feature st
and the hidden states of the bidirectional LSTM, i.e., h

2,f
t

and h
2,b
t . This is because that st encodes the intra-shot tem-

poral dependencies among frames, h
2,f
t and h

2,b
t capture the

forward and backward inter-shot dependencies of the video.

All of these information are important to determine the rep-

resentativeness of shot t.

In the training procedure, given human-created sum-

maries as references, the parameters in HSA-RNN are

learned by the following function:

Ω = argmin
Ω

1

T

T
∑

i=1

n(i)
∑

t=1

L
(

p̂
(i)
t , g

(i)
t

)

, (8)

where Ω denotes all parameters in the proposed approach.

T is the total number of training videos, n(i) are the number

of frames in video i. Considering that the generated shot-

s may have different durations with human-created shot-

s, in this paper, the predicted shot-level probability p
(i)
t is

extended to the frame-level p̂
(i)
t by assigning frames with

the probability values of their shots. In this case, Eq. (8)

can optimize not only the summarization results, but also

the boundary detection results, since frames in the same

shot share the same gt scores while others not (making the

boundary discriminative). The loss function L measures the

cross-entropy of the generated distribution p̂
(i)
t and the ref-

erence distribution g
(i)
t .

Practically, to achieve a faster coverage, we take a layer-

wise training strategy for the proposed HSA-RNN. In other

words, the first layer is pre-trained, and then the parameters

are fixed to train the second layer. Finally, the whole archi-

tecture is fine-tuned end-to-end. Specifically, the first layer

is pre-trained with an extra loss function,

Ω1 = argmin
Ω1

1

S

S
∑

i=1

F (i)
∑

t=1

L
(

c
(i)
t , b

(i)
t

)

, (9)

where Ω1 stands for the training parameters in the first layer.

b
(i)
t is the boundary labels, S is the total number of training

samples, F (i) denotes the number of frames in sample i.
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Each training sample is composed of two shots and contains

exactly one boundary. Note that Our approach doesn’t need

shot boundary labels of the whole video, the boundaries of

key shots are enough.

For both the first and second layer, training is performed

by minimizing the cross-entropy loss with the RMSProp

Optimizer, with a learning rate of r = 1 × 10−4, decay

parameter ρ = 0.9 and epsilon ǫ = 1 × 10−5. The di-

mensionality of the LSTM hidden state is fixed as 256, and

dropout rate = 0.5 is applied for each LSTM to avoid

overfitting.

4. Experiments

The proposed approach is tested on four datasets, i.e.,

SumMe [12], TVsum [29], CoSum [5] and VTW [35]. Both

the results on shot boundary detection and video summa-

rization are presented.

4.1. Setup

4.1.1 Datasets

In this paper, the first dataset for training is composed of

three popular small datasets, i.e., SumMe [12], TVsum [29],

CoSum [5]. The three datasets contain 25, 50, 51 videos, re-

spectively. These videos share similar contents, styles and

durations. Therefore, to enrich the training data, it is more

proper to combine them into one dataset, namely Combined

dataset in this paper. Similar setting can be found in many

existing summarization approaches [37, 38]. Concretely,

the Combined dataset contains 126 videos, the duration for

each video is about two minutes. In our work, the Com-

bined dataset is divided into two parts, i.e., 100 videos for

training and 26 videos for testing.

The second dataset is VTW [35]. It is much bigger than

previous three datasets, which consists of 2529 videos with

the average duration of 1.5 minutes. These videos are down-

loaded form the YouTube website in open domain. Each

video is annotated with the locations of human selected key

shots. For training, the annotations are transfered to scores,

where key shots are scored with 1 and others are with 0.

In our work, the VTW dataset is split into a training set of

2000 videos and a testing set of 529 videos.

Although all the above four datasets provides the sum-

mary labels of each video, only the CoSum dataset provides

the shot boundary labels. The SumMe dataset and VTW

dataset just has the boundaries of key shots. In this case,

to augment the training samples, for CoSum dataset, any t-

wo adjacent shots are used for training. For SumMe dataset

and VTW dataset, a random number of frames surrounding

the shot boundary are cut from the video, and the generated

segments are taken as the training samples. TVsum is not

considered in shot boundary detection, because its shots are

manually generated by fixed length segmentation.

4.1.2 Feature Extraction

To analyze the influence of different features to the perfor-

mance, both shallow feature and deep feature are extracted

for the frame. Specifically, the shallow feature is extracted

by the concatenation of color histogram, SIFT and optical

flow [38]. They are widely used in video summarization,

and each of them captures the appearance, key point and

motion information in the frame, respectively. Besides, the

deep feature is extracted from the fc7 layer of the VGGnet-

16, which is the most popular CNN feature in computer vi-

sion tasks [28].

4.1.3 Evaluation Metrics

The quality of generated summaries are evaluated by their

similarities to human-created reference summaries. In this

paper, the similarity is measured by three popular metrics,

i.e., precision (P), recall (R) and F-measure (F), where

P =
#correct shots

#generated shots
, R =

#correct shots

#reference shots
,

F is the harmonic mean of P and R. The three metrics are

most frequently used in the video summarization task. Note

that one shot in the generated summary is considered as the

correct shot if there is a reference shot sharing more than

half duration overlap with it.

Besides, we also provide the results of shot boundary de-

tection in this paper. The evaluation also employs the above

three metrics. In particular, a shot is taken as correctly seg-

mented if the interval between the detected boundary and

annotated boundary is less than 10 frames. The rationality

lying behind is that, compared to the length of the shot, the

difference caused by 10 frames is almost invisible.

4.2. Results and Discussion

One of the main novelties of our approach is to integrate

video structure exploitation (i.e., shot boundary detection)

and video summarization into one architecture. Therefore,

to verify the effectiveness of our approach, the results on

shot boundary detection and video summarization are dis-

cussed, respectively.

4.2.1 Results of Shot Boundary Detection

To verify the performance of our approach on shot bound-

ary detection, the results of various approaches on SumMe,

CoSum and VTW are presented in Table 1. Generally, the

compared approaches can be roughly divided into two cate-

gories, i.e., non-RNN-based (the first five) and RNN-based

(the last four). For a fair comparison, all RNN-based ap-

proaches are equipped with the same shallow feature and

deep feature. But for non-RNN-based approaches, the fea-

tures are extracted by the methods reported in their original
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(b) Results on the CoSum dataset

120 160 200 240 280 320 360

k

0.5

0.6

0.7

0.8

0.9

1

F
-m
e
a
s
u
re

(c) Results on the VTW dataset

Figure 3. Distributions of the shot boundary detection results varying with the length of the sliding bidirectional LSTM.

Table 1. The results (F-measure) of various approaches on shot boundary detection. (The scores in bold indicate the best values.)

Feature shallow feature deep feature

Datasets SumMe CoSum VTW SumMe CoSum VTW

Super Frame [12] – 0.405 – – – –

KTS [27] – 0.412 – – 0.421 –

Frame Similarity [2] 0.506 0.397 0.502 – – –

Hierarchical Clustering [3] 0.525 0.414 0.512 0.549 0.423 0.546

FCNN [11] – – – 0.871 0.795 0.893

Multiscale RNN [6] 0.838 0.740 0.865 0.846 0.752 0.869

Boundary-aware RNN [4] 0.824 0.738 0.871 0.826 0.753 0.873

Sliding single LSTM 0.841 0.732 0.872 0.845 0.750 0.875

Sliding bidirectional LSTM 0.864 0.774 0.891 0.887 0.792 0.902

papers, since most of them are quite feature-dependent. In

Table 1, we can clearly see that, for most approaches, they

perform better with deep feature than with shallow feature.

Besides, the results on CoSum are lower than the other two

datasets. It is because that the shot length in CoSum varies

largely, from dozens to hundreds of frames, which makes

the shot boundary detection more challenging. Fortunate-

ly, our approach can still get satisfactory results, which in-

dicates the effectiveness of the sliding bidirectional LST-

M. Note that the results of most compared approaches are

reproduced by the released source code, except for Frame

Similarity and FCNN. They are implemented by ourselves,

since their source codes are not available..

In Table 1, The first five approaches are non-RNN-based,

where Super Frame and KTS detect shot boundaries by the

motion magnitude and change point in the frame sequence.

They are widely used in existing summarization approach-

es. Frame Similarity and Hierarchical Clustering segment

the video by grouping similar frames into the same clus-

ter chronologically. Strategies similar to the two approach-

es are frequently used in the shot segmentation of summa-

rization tasks. The poor performance of the above four ap-

proaches indicates the necessity of developing professional

tools for exploiting the video structure before summariza-

tion. FCNN is a fully convolutional neural network that

specially designed for the shot boundary detection task and

has achieved state-of-the-art results. We can see that our

sliding bidirectional LSTM gets comparable performance

with FCNN, which demonstrates the superiority of our ap-

proach in shot boundary detection.

In Table 1, the last four are RNN-based approaches. In

fact, Multiscale RNN and Boundary-aware RNN are not o-

riginally designed for the shot boundary detection or video

summarization tasks. But they are capable of discover-

ing the latent hierarchical structure of sequences. In this

case, they are modified to detect the shot boundaries in this

part. Specifically, Multiscale RNN and Boundary-aware

RNN share similar architectures that they apply a long s-

ingle LSTM to the video, and detect the shot boundary by a

threshold of the LSTM output at each step. Once the bound-

ary is detected, the hidden state and memory cell of the next

LSTM unit is re-initialized. It can be observed that they

get comparable results with the baseline of our approach,

i.e., Sliding single LSTM, where the bidirectional LSTM is

replaced by a single LSTM. But our Sliding bidirectional

LSTM performs significantly better than them, which indi-
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Table 2. The summarization results (F-measure) of various approaches on the Combined dataset. (The scores in bold indicate the best

values.)

Feature shallow feature deep feature

Datasets SumMe TVsum CoSum SumMe TVsum CoSum

VSUMM [8] 0.328 0.390 0.407 0.335 0.391 0.412

LiveLight [39] 0.357 0.460 0.525 0.384 0.477 0.511

CSUV [12] 0.393 0.532 – – – –

LSMO [13] 0.397 0.548 – 0.403 0.568 –

Summary Transfer [36] 0.397 0.543 0.636 0.409 0.541 0.653

vsLSTM [37] 0.370 0.534 0.638 0.416 0.579 0.644

dppLSTM [37] 0.407 0.579 0.644 0.429 0.596 0.655

Hierarchical RNN [38] 0.394 0.566 0.656 0.411 0.577 0.663

HSA-RNN 0.425 0.584 0.682 0.441 0.598 0.692

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure 4. Four exemplar results from the Combined dataset. Each video is depicted by four frames. The five bars below each video

represent the summaries generated by vsLSTM, dppLSTM, Hierarchical RNN, HSA-RNN and human beings, respectively. Specifically, the

long gray bar stands for the whole video stream, and the short blue bar denotes the selected key shot.

cates the necessity of both forward and backward informa-

tion in shot boundary detection.

In Figure 3, the analysis of the hyper parameter k (the

length of the sliding bidirectional LSTM) is presented. It

can be observed that the performance of our approach rises

when k < 200 and begins to decline when k > 300, and

there is a long steady stage when 200 < k < 300. It shows

that, to a certain extent, the performance of our approach is

robust to the variance of k.

4.2.2 Video Summarization on the Combined Dataset

Table 2 shows the performance of different approaches on

the Combined dataset. The compared approaches are sep-

arated into two parts by the double horizontal line in the

middle, where the above five are non-RNN-based and the

below four are RNN-based. Note that, in Table 2, the re-

sults of the above five approaches are reported in the litera-

ture, and the last three compared approaches are tested with

their source codes. For the above five, they are all popu-

lar approaches of different types. Specifically, VSUMM and

LiveLight are based on clustering and dictionary learning,

respectively. CSUV and LSMO utilize property models to

measure the importance, representativeness and diversity of

each shot, and then summarize the video according to the

shot scores. Summary Transfer generates the summary with

category labels of videos, and gets the best results among

non-RNN-based approaches. However, our approach get

comparable results, even without the category information

of videos.

In Table 2, the last four approaches are RNN-based.

vsLSTM is the first approach that introduces LSTM to the

video summarization task. It applies a long plain bidi-

rectional LSTM to the whole video and predicts the shot

importance with a Multi-Layer Perception (MLP). Howev-

er, videos for summarization usually contain thousands of

frames. It is really hard to train such a long LSTM, let
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Table 3. The summarization results of various approaches on the VTW dataset. (The scores in bold indicate the best values.)

Feature shallow feature deep feature

Metrics Precision Recall F-measure Precision Recall F-measure

CSUV [12] 0.367 0.423 0.393 – – –

HD-VS [33] – – – 0.392 0.483 0.433

vsLSTM [37] 0.388 0.490 0.433 0.397 0.495 0.441

Hierarchical RNN [38] 0.408 0.516 0.456 0.417 0.525 0.465

HSA-RNN 0.434 0.537 0.480 0.443 0.548 0.491

alone with MLP. Worse still, it has been reported in [26]

that such a long LSTM weakens its capability in temporal

dependency exploitation, which is essential to video sum-

marization. dppLSTM is derived from vsLSTM by a De-

terminatal Point Process model to measure the diversity a-

mong key shots. Although it improves the performance,

the generalization of vsLSTM is reduced, since some of the

video summaries don’t meet the diversity constraints, such

as the VTW dataset. Besides, both vsLSTM and dppLSTM

ignore the latent hierarchical structure of the video data.

Actually, Hierarchical RNN is the one most similar to

our approach. It develops a two-layer architecture to cap-

ture the intra-shot and inter-shot temporal dependency sep-

arately. The better performance than vsLSTM reflects the ef-

fectiveness of this hierarchical structure. But Hierarchical

RNN fails to exploit the video structure before summariz-

ing the video. Specifically, the shots in Hierarchical RNN

are generated by fixed length segmentation, which mainly

has two drawbacks: 1) it will destroy the inherent intra-shot

temporal dependency and obstruct the first layer LSTM to

understand the video structure. 2) it will break the integri-

ty of activities captured in each shot, and then reduce the

summary quality. Fortunately, the proposed HSA-RNN can

make up these drawbacks, which has been verified by the

results in Table 2.

Finally, Figure 4 presents some exemplar summaries

generated by RNN-based approaches, i.e., vsLSTM, dp-

pLSTM, Hierarchical RNN, and HSA-RNN. It can be ob-

served that the summaries generated by HSA-RNN show

the highest similarity with the human generated summaries.

Moreover, the durations of selected key shots are close to

those of manually generated shots, which means less infor-

mation loss or mixture in the key shots. Overall, it demon-

strates the superiority of HSA-RNN in video summarization.

4.2.3 Video Summarization on the VTW Dataset

Table 3 presents the results of different approaches on the

VTW dataset. Actually, quite a lot of existing approaches

are dataset dependent. For a fair comparison, only the re-

sults of those approaches most suitable for VTW are listed

in this part.

CSUV, vsLSTM and Hierarchical RNN have been intro-

duced in Table 1. HD-VS adopts two-stream CNNs to sum-

marize the video, where AlexNet [16] and C3D [30] are

employed to extract the appearance and temporal informa-

tion, respectively. Benefiting from the super ability of CNN

in visual feature extraction, it gets the best performance a-

mong non-RNN-based approaches on VTW.

In Table 3, it can be observed that vsLSTM and Hier-

archical RNN perform better than HD-VS. It indicates that,

benefiting from the capability of sequence modeling, LSTM

is more suitable for the video summarization task. Further-

more, the even better performance of the proposed HSA-

RNN exhibits its improvements on video summarization by

exploiting the video structure.

Overall, the experimental results in Table 1, 2 and 3 have

verified the effectiveness of our approach in three aspect-

s: 1) the structure-adaptive architecture. It makes up the

gap between structure exploitation and video summariza-

tion, and improves the summary quality effectively. 2) the

hierarchical structure. It increases the long temporal de-

pendency capture ability of LSTM, meanwhile, reduces the

computation operations significantly. 3) the bidirectional

LSTM. Both forward and backward information are impor-

tant to shot boundary detection and video summarization.

5. Conclusion

In this paper, we propose a Hierarchical Structure-

Adaptive RNN (HSA-RNN) for the video summarization

task, which can adaptively exploit the video structure and

generate the summary simultaneously. Specifically, it con-

tains two layers, constructed by bidirectional LSTMs. The

first layer is utilized to segment the video into several shot-

s and extract shot features. The second layer is designed

to capture the forward and backward temporal dependen-

cies among shots, whose outputs are employed to predict

the probability of each shot to be selected into the sum-

mary. To our knowledge, it is the first approach that inte-

grates structure exploitation and video summarization into

one end-to-end architecture. The results on four popular

datasets have verified the effectiveness of our approach in

both shot boundary detection and video summarization.
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