
HSF(C): A Software Verifier

Based on Horn Clauses

(Competition Contribution)

Sergey Grebenshchikov1, Ashutosh Gupta2,
Nuno P. Lopes3, Corneliu Popeea1, and Andrey Rybalchenko1

1 Technische Universität München
2 IST Austria

3 INESC-ID / IST - TU Lisbon

Abstract. HSF(C) is a tool that automates verification of safety and
liveness properties for C programs. This paper describes the verification
approach taken by HSF(C) and provides instructions on how to install
and use the tool.

1 Verification Approach

HSF(C) is a tool for verification of C programs based on predicate abstrac-
tion and refinement following the counterexample-guided abstraction refinement
(CEGAR) paradigm [4]. There are a number of successful tools [1,7,5,10,2] based
on abstraction refinement. We give here a brief description of our verification al-
gorithm; interested readers can find more details about the underlying theory
behind our implementation in [10,6].

The algorithm used in HSF(C) is a generalization of the CEGAR scheme that
deals with Horn-like clauses instead of transition systems/programs with pro-
cedures. We use Horn clauses to represent both the program to be verified and
the proof rule used for verification, i.e., safety checking for programs with pro-
cedures. The proof rule lists premises for program safety and requires auxiliary
assertions that represent inductive invariants. Given Horn clauses as input, our
algorithm proceeds in three steps.

1. With a fixed set of predicates, initially empty, we find a solution for the
auxiliary assertions. At this step we perform logical inference and rely on
abstraction to ensure termination in the presence of recursion and to ensure
efficiency in the presence of large sets of clauses.

2. We check whether the computed solution satisfies program safety. If so, the
verification succeeds and the algorithm returns “safe”.

3. We check whether the logical inference performed in the first step in the
setting without any abstraction yields a solution that still violates program
safety. If the violation is still present then we return “unsafe” and the infer-
ence tree as an error path that reaches the error location. Otherwise, we use
the obtained solution to refine the abstraction function and go back to the
first step.

C. Flanagan and B. König (Eds.): TACAS 2012, LNCS 7214, pp. 549–551, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



550 S. Grebenshchikov et al.

2 Software Architecture

HSF(C) relies on the CIL library [9] as a frontend for our tool. An additional
frontend step transforms the CIL abstract syntax tree representation in Horn
clauses. The Horn clauses are generated automatically from a proof rule for safety
checking with support for procedure summarization [11]. These Horn clauses are
then solved with the CEGAR algorithm described in the previous section. Our
solver is implemented in Prolog and compiled using the SICStus Prolog compiler
[12]. Our implementation relies on the constraint solver for linear arithmetic
CLP(Q) [8].

3 Discussion

In this section, we present our experience running HSF(C) on the benchmarks
from the software competition.

ControlFlowInteger. We found the approach based on abstraction and refinement
well suited for the benchmarks in the category. The proofs found by HSF(C)
typically involve a small number of predicates. For handling the few pointers
and heap-allocated structures that are used by these benchmarks, we found the
use of the pointer analysis provided by CIL to be sufficiently precise.

SystemC. The benchmarks from this category encode concurrency from the pro-
gram in finite-domain auxiliary variables. Some heuristics proposed in [3] com-
bine explicit-state model checking to model the states of the SystemC scheduler
with predicate abstraction. Such heuristics would have been more appropriate
to handle these benchmarks than our current approach based only on predicate
abstraction.

Other Categories. HSF(C) did not participate in the other four competition
categories, i.e., Concurrency, DeviceDrivers, DeviceDrivers64, and HeapManip-
ulation. Here we list the current limitations of our tool that we need to address
to be able to handle these benchmarks:

– Concurrency: the frontend of HSF(C) needs a model for the functions from
the Pthreads library.

– DeviceDrivers, DeviceDrivers64: some of the features of the C language that
HSF(C) does not precisely model are fixed-size integers, union types, volatile
variables, and bitwise operations.

– HeapManipulation: the pointer analysis that we use is not precise to handle
the data structures from these benchmarks.

To summarize, we ran our tool on 158 benchmarks from two categories. HSF(C)
obtained the following results:



HSF(C): A Software Verifier Based on Horn Clauses 551

– ControlFlowInteger (140/144 points): for all benchmarks where HSF(C) re-
ported a result, the result was correct. HSF(C) ran out of time for two
benchmarks.

– SystemC (8/87 points): for all benchmarks where HSF(C) reported a result,
the result was correct. HSF(C) ran out of time or memory on 57 benchmarks.

4 Tool Setup

HSF(C) can be downloaded from the following webpage:

http://www7.in.tum.de/tools/hsf/

The HSF(C) distribution consists of three statically compiled binaries that corre-
spond to the C frontend, a converter to Horn clauses, and the Horn clause solver.
The distribution also contains a script that runs the three executables with ap-
propriate parameters. The tool should be run as follows: ./qarmc.sh <file.c>.
The working directory (PWD) must be the directory where the HSF(C)’s files are
located. The only required library is the standard glibc 32-bit.

References

1. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: POPL (2002)

2. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

3. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A soft-
ware model checking approach. In: FMCAD, pp. 51–59 (2010)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate
Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

6. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL, pp. 331–344 (2011)

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

8. Holzbaur, C.: OFAI clp(q,r) Manual, Edition 1.3.3. Austrian Research Institute for
Artificial Intelligence, Vienna, TR-95-09 (1995)

9. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

10. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 245–259. Springer, Heidelberg (2007)

11. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL, pp. 49–61 (1995)

12. The Intelligent Systems Laboratory. SICStus Prolog User’s Manual. Swedish Insti-
tute of Computer Science, Release 4.2.0 (2011)

http://www7.in.tum.de/tools/hsf/

	HSF(C): A Software VerifierBased on Horn Clauses
	Verification Approach
	Software Architecture
	Discussion
	Tool Setup
	References


