
Research Article

HSIP: A Novel Task Scheduling Algorithm for
Heterogeneous Computing

Guan Wang,1,2 Yuxin Wang,3 Hui Liu,1 and He Guo1

1School of So�ware Technology, Dalian University of Technology, Dalian 116620, China
2Liaoning Police College, Dalian 116036, China
3School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Yuxin Wang; wyx@dlut.edu.cn

Received 22 September 2015; Revised 9 January 2016; Accepted 16 February 2016

Academic Editor: Bronis R. de Supinski

Copyright © 2016 Guan Wang et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

High-performance heterogeneous computing systems are achieved by the use of e	cient application scheduling algorithms.
However, most of the current algorithms have low e	ciency in scheduling. Aiming at solving this problem, we propose a novel
task scheduling algorithm for heterogeneous computing named HSIP (heterogeneous scheduling algorithm with improved task
priority) whose functionality relies on three pillars: (1) an improved task priority strategy based on standard deviation with
improved magnitude as computation weight and communication cost weight to make scheduling priority more reasonable; (2)
an entry task duplication selection policy to make the makespan shorter; and (3) an improved idle time slots (ITS) insertion-based
optimizing policy to make the task scheduling more e	cient. We evaluate our proposed algorithm on randomly generated DAGs,
using some real applicationDAGs by comparison with some classical scheduling algorithms. According to the experimental results,
our proposed algorithm appears to perform better than other algorithms in terms of schedule length ratio, e	ciency, and frequency
of best results.

1. Introduction

In the era of big data, data intensive computing cannot rely
on a single processor to be completed. It o
en relies on
heterogeneous computing system (HCS). A heterogeneous
computing system de�ned as high-speed network intercon-
nection of multiple processors computing platform can carry
out parallel and distributed intensive computing [1, 2]. �e
e�ectiveness of performing similar applications on heteroge-
neous computing systems relies on task scheduling methods
[3, 4]. Typically, an e�ective task scheduling method can
improve the e	ciency of a heterogeneous computing system.
Task scheduling methods aim to minimize the overall time
of completion (makespan) [5]. In detail, a task scheduling
algorithm needs to record the operations of the processors
and command their completion under the requirement of
task precedence.

Typical task scheduling algorithms include Heteroge-
neous Earliest Finish Time [6] and Critical Path On a
Processor [6], Standard Deviation-Based Algorithm for

Task Scheduling [7], and Predict Earliest Finish Time [8].
Although they have been widely used in heterogeneous
computing systems, they still have three drawbacks. First,
most of them ignore heterogeneity of di�erent computing
resources and di�erent communication between computing
resources. Second, current methods adopting entry task
duplication to all the processors lead to the overload of CPU.
Finally, they do not have an e�ective inserting-based policy.

Aiming at solving the three problems, this paper pro-
poses the Heterogeneous Scheduling with Improved Task
Priority (HSIP). It works in two steps: task prioritizing stage
followed by processors selection stage. In the �rst step,
the algorithm combines the standard deviation with the
communication cost weight to determine the priorities of
the tasks. In the second stage, we proposed an entry task
duplication strategy to determine whether there is a need for
entry task duplicate to other processors. At the same time,
the improved insertion-based optimizing policy makes the
makespan shorter. �e experimental results show that our
projected algorithm performs better than other algorithms in

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 3676149, 11 pages
http://dx.doi.org/10.1155/2016/3676149

2 Scienti�c Programming

Task

T1 14 16 9

T2 13 19 18

T3 11 13 19

T4 13 8 7

T5 12 13 10

T6 13 16 9

T7 7 15 11

T8 5 11 14

T9 18 12 20

T10 21 7 16

T1

T3

T10

T9T8T7

T6T5T4T2

18

23

12 9
11 14

19

16
27 23

1513

11
17 13

P1 P2 P3

Figure 1: Example ofDAG taskmodel and computation costmatrix.

terms of schedule length ratio, e	ciency, and frequency of
best results.

�e rest of this paper is constructed as follows: Section 2
presents the task scheduling problem and Section 3 outlines
the related work on the task scheduling in heterogeneous
computing systems. �e projected algorithm is clari�ed in
Section 4 and the experimental outcomes are presented in
Section 5. Section 6 summarizes and concludes the �ndings
of this paper.

2. Heterogeneous Task-Scheduling Problem

A task schedulingmodel is composed of an application, a tar-
get computing environment, and performance benchmarks.
An application can be characterized by a directed acyclic
graph (DAG), � = (�, �), where � = {V1, V2, . . . , V�} is the
set of V nodes and � = {�1, �2, . . . , ��} is the set of edges. A
DAG model example in Figure 1 is similar to literature [6].
Each node V� ∈ � denotes an application task. Each �(�, �) ∈ �
denotes that the communication cost between two jobs under
the task dependence constraint such as task V� should ful�ll
its execution prior to task V�. In a given application DAG, a
task without any parent is known as an entry task while a
task without any child is regarded as an exit task. If a DAG
has more than one entry (exit) node, a mock entry (exit)
node with zero both in weight and in communication edges
is added to the graph. �e DAG is supplemented by a matrix
	 that is equal to V ×
 computation cost matrix, where V
represents the number of tasks and
 symbolizes the number
of processors in the system.	�,� provides the estimated time
for task V� completion onmachine
�. �emean time for task
completion of task V� is calculated as the following equation:

�� = (∑�∈���,�)� . (1)

��,� denotes the communication cost between task V� and
task V�. When both V� and V� are processed on the same
processor, ��,� becomes zero due to neglecting the interpro-
cessor communication costs.�emean communication costs

are commonly calculated to label the edges [6]. �e average
communication cost ��,� of an edge �(�, �) is calculated as the
following equation:

��,� = � + data�,�

� , (2)

where � indicates the average latency time of all processors

and � is the mean bandwidth of all links that connects the
group of � processors. data�,� is the quantity of data elements
that task V� needs to send to task V�.

Furthermore, in ourmodel, the processors are considered
in a fully linked topology. �e task execution and com-
munication with other processors can be attained for each
processor simultaneously and without con�ict. And now we
will present some of the common characteristics used in task
scheduling, which we will discuss in the following sections.

De	nition 1. Makespan, or schedule length, represents the
�nish time of the last task in the scheduled DAG, de�ned as
(3), where AFT(Vexit) denotes the Actual Finish Time of the
exit node:

makespan = max {AFT (Vexit)} . (3)

De	nition 2. EST(V�,
�) indicates the Earliest Start Time
(EST) of a node V� on a processor
� and is de�ned as

EST (V�,
�)
= max{�Avl (
�) , max

V�∈pred(V�)
{AFT (V�) + ��,�}} ,

(4)

where �Avl(
�) is the earliest time when processor
� is
ready while pred(V�) is the group of immediate predecessor
tasks of task V�. �e inner max bracket in the EST equation
represents the time all data were requested by V� arriving at
the processor
�. �e communication cost ��,� is zero when
the predecessor node V� is given to processor
�. For the entry
task, EST(Ventry,
�) = 0.
De	nition 3. EFT(V�,
�) represents the Earliest Finish Time
(EFT) of a node V� on a processor
� and is de�ned as

EFT (V�,
�) = EST (V�,
�) + ��,�, (5)

which represents the Earliest Start Time of a node V� on a
processor
� plus the computational cost of V� on a processor

�. For the entry task, EFT(Ventry,
�) = �Ventry ,�.

De	nition 4. Out-degree communicationcostweight (OCCW)
of task V� means the possible max sum of communication
costs generated by V� with its immediately successors and is
de�ned as follows:

occw (V�) = ∑
V�∈succ(V�)

���,

occw (Vexit) = 0.
(6)

Scienti�c Programming 3

Out-degree communication cost weight also a�ects the
task priorities ordering. If a task with larger out-degree com-
munication cost weight was not executed, all its successors
would not be ready.

�e aim of the scheduling issue is to determine an
assignment of the tasks in a given DAG to processors so
that the schedule length is reduced to a minimum. When
all nodes in the DAG are scheduled, the schedule length will
now become AFT, the Actual Finish Time of the exit task, as
expressed by (3).

3. Related Works

Recently, a number of task scheduling algorithms in het-
erogeneous computing systems have been projected. �ey
can approximately be categorized into two groups, dynamic
scheduling and static scheduling. In the dynamic category,
the execution, communication costs, and the relationship of
the tasks are unknown. Decisions aremade at runtime.While
in the static category, such information is known ahead of
time. Dynamic scheduling is runtime scheduling, whereas
static scheduling is compile-time scheduling.

Dynamic scheduling means when new task comes, only
the task is about to be executed and the freshly arrived
task will be re�ected in the rescheduling process. Dynamic
scheduling is adequate for conditions inwhich the system and
task parameters are unknown at the compiled time.�erefore
decisions are made at runtime with further observations.
Some typical dynamic scheduling algorithms have been
presented in the literatures, such as Batch Mode Mapping
Heuristics [9], Dynamic Mapping Heuristics [10], Dynamic
Scheduling Cycle Strategy [11], and dynamic scheduling
method [12].

Static scheduling algorithms are categorized into two
major groups, that is, guided random search-based algo-
rithms and heuristic-based algorithms. Typical guided ran-
dom search-based algorithms include GA Multiproces-
sor Task Scheduling [13], Knowledge-Augmented Genetic
Approach [14], and Problem-Space Genetic Algorithm
(PSGA) [15]. �ey give approximate solutions through more
iterations, which increase the costs as opposed to the
heuristic-based approach. �e heuristic-based group com-
prises three subcategories: list, clustering, and duplication
scheduling. Heterogeneous Earliest Finish Time [6], Critical
Path On a Processor [6], Standard Deviation-Based Algo-
rithm for Task Scheduling [7], Predict Earliest Finish Time
[8], Longest Dynamic Critical Path (LDCP) [16], Heteroge-
neous Critical Parent Trees (HCPT) [17], High-Performance
Task Scheduling (HPS) [18], low complexity Performance
E�ective Task Scheduling (PETS) [19], Heterogeneous Earli-
est Finish with Duplicator (HEFD) [20], and Selective Dupli-
cation Algorithm [21] are typical heuristic-based algorithms.
Clustering heuristics are primarily proposed for homoge-
neous systems, but they have limitations in higher level
heterogeneity systems. �e duplication heuristics generate
the shortest makespan but cause a higher time complexity.
�e execution of task duplication consumes more processor
power. �is not only causes more power consumption, but

also more importantly in the sharing resource occupies
processors that are used for other tasks. List scheduling
heuristics ensure comparatively more e	cient schedule with
a complexity that generally can be quadratic with respect
to the number of tasks. Because it produces relative shorter
scheduling length with low algorithm complexity as�(V2,
),
HEFT algorithm [6] becomes the most popular and widely
used algorithm.

HEFT uses the mean value of the computation cost and
the mean value of communication cost as the rank value
to determine the scheduling sequence. But it is considered
less reasonable for the heterogeneous environment. If the
computation costs of the same task on di�erent processors
are too large, and if the communication cost weights of the
task are too large, the HEFT algorithmwill not give a justi�ed
scheduling. CPOP algorithm [6] also has a complexity of

�(V2,
). In this approach all critical path tasks are assigned
to the same processor, which causes load unbalance of
processors and increases the schedule length.

SDBATS algorithm is based on the HEFT algorithm
and makes the performance signi�cantly improved [7]. But
SDBATS uses the standard deviation of the computation
cost to calculate the rank value for priority instead of the
mean value of the computation cost. �is will cause the
unfairness of task scheduling when the communication cost
is too large. It is not necessary to use standard deviation of the
communication cost when the communication cost of each
node to the lower level node is 0 or another certain value.
SDBATS algorithm also runs entry task on all the processors
at the beginning of the scheduling. �is policy will increase
the scheduling length if there is a remarkable di�erence in the
computation cost among the processors.

�e latest excellent DAG scheduling algorithm is the
PEFT algorithm [8].�is algorithm puts forward the priority
weights Optimistic Cost Table (OCT) by introducing a look-
ahead feature, which chooses the minimum sum of the
computational cost and communication cost in all child
nodes for task scheduling. It also uses this strategy in the
processor allocation. But when the same node in di�erent
processor calculation cost di�erence is large, the algorithm
does not give a reasonable allocation strategy. When the
subnode communication cost weight di�erence is large (high
parallelism in the DAG and big communication data), PEFT
loses its advantage.

4. The Proposed HSIP Algorithm

In this section, we introduce a new scheduling algorithm
for a con�ned number of heterogeneous processors, known
as Heterogeneous Scheduling with Improved Task Priority
(HSIP). �e algorithm contains two key stages: a task pri-
oritizing stage for calculating task priorities and a processor
selection stage for choosing the best processor to execute the
current task.

4.1. Detailed Description of HSIP Algorithm. In task pri-
oritizing stage, we improved the task priority strategy. In
the processor selection stage, according to the priority of

4 Scienti�c Programming

Input: DAG, set of tasks �, set of Processors �
Output: Schedule result, makespan
(1) Starting from the exit node, compute rank� for all tasks by using “Improved Task Priority Strategy”.
(2) Sort the tasks in scheduling list by decreasing order of rank� value.
(3) While there are unscheduled tasks in the list do
(4) Select the �rst task V� from the list for scheduling
(5) If the task is the entry task
(6) Use “Entry Task Duplication Selection Policy”
(7) Else (task V� is not the entry task)
(8) if satisfy the condition of ITS insertion-based optimizing policy
(9) Use “ITS Insertion-based Optimizing Policy”
(10) else
(11) for each processor
� in the processor set (
� ∈ �) do
(12) Compute the earliest �nish time (EFT) by (5)
(13) end
(14) Assign task V� to the processor
� that minimize EFT of task V�
(15) End if
(16) End if
(17) Update list
(18) End while

Algorithm 1

task scheduling order, tasks are assigned to the minimum
EFT processor to be executed [6]. On the basis of the
above strategy, we proposed two innovative policies, entry
task duplication selection policy and idle time slots (ITS)
insertion-based optimizing policy. �ey improve the e	-
ciency of scheduling algorithm.

�e detailed description of HSIP algorithm is as shown in
Algorithm 1.

4.1.1. An Improved Task Priority Strategy. In descending order
of rank� value as a scheduling priority, the upward rank,
rank�, of each task has been calculated using the following
equation:

rank� (V�)
= max

V�∈succ(V�)
{�� × �� + occw (V�) + rank� (V�)} ,

rank� (Vexit) = �exit × �exit,
(7)

where �� is the standard deviation of computation cost of any
given task V� on the available pool of processors.

Standard deviationworks better than themean valuewith
the response to the di�erences of the computation cost.When
computation costs of the same task in di�erent processors
di�er largely, the standard deviation value will be big. Or else,
it will be small. �erefore, using the standard deviation can
prioritize the node with larger computation cost di�erences
and improve the overall scheduling results.

However, the standard deviation value of the calculation
cost is far below the communication cost weight of task
in terms of magnitude. Our algorithm multiplies standard
deviation by the average cost as the calculation cost weight.
�us, the task with larger di�erence of computing cost can
get higher priority, as well as the task with large transmission

time to child nodes. In fact, our algorithm rank� equation
can produce better scheduling policy comparing to the other
state-of-the-art algorithms, and the results are shown in
Figure 2. Descending order of the upward rank rank�(V�) is
as the task priority in our approach.�e upward rank of each
task for instance provided by Figure 1 is shown in Table 1.

4.1.2. Entry TaskDuplication Selection Policy. Traditional task
duplication algorithm has shorter length of scheduling. But
it is limited by the overload of the processor utilization,
mentioned in the literature [6, 8, 20, 21]. However, for the
entry task (the �rst scheduled task), when it is running on
one processor in the beginning, the other processors are idle
at this time. So there is no need to take processor overload
problem into consideration. And other tasks do not have to
wait when the processors run a copy. At the same time, if
only the entry task was duplicated, the overloading problem
could be avoided as much as possible. Our algorithm uses
entry task duplication selection policy to avoid processor
overloading and to improve the overall e	ciency of the
scheduling. In order to make the child nodes get faster data
transmission time, this strategy evaluates the necessity of
entry task scheduling in each processor. �is policy is good
for the entry task with little computation cost di�erence
and with large communication cost. It also does not a�ect
the other tasks scheduling results because the entry task
duplication will not run if it cannot improve the scheduling
result according to the judgment mechanism as follows.

Only the entry task needs the following duplication
selection policy:

(i) Choose the processor
�, which produce the mini-
mum EFT for entry task.

(ii) Determine whether the entry task in another proces-
sor
� (
� ∈ �) needs to be duplicated. If (8) is true,

Scienti�c Programming 5

Table 1: Priority weights of tasks.

Function V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
rank�(V�) 335.6 233.4 209.6 229.1 182.2 184.7 137.9 133.4 154.6 85.0

10

30

20

50

40

60

70

80

90

1

4

6

5

3

7

9

10

2

8

P1 P2 P3

D1 D1

(a) HSIP

10

30

20

50

40

60

70

80

90

2

1 1
1

10

4

9

6

8

7

5

3

P1 P2 P3

(b) SDBATS

10

30

20

50

40

60

70

80

90

9

3

2

1

7
6

5

4

10

8

P1 P2 P3

(c) CPOP

10

30

20

50

40

60

70

80

90

4

6

9

10

8

2

3

1

7

5

P1 P2 P3

(d) HEFT

3
5

10

9

2

4

1

8

7

6

90

80

70

60

50

40

30

20

10

P1 P2 P3

(e) PEFT

Figure 2: Schedules of the sample task graph in Figure 1 with HSIP, SDBATS, CPOP, HEFT, and PEFT.

then do entry task duplication in
�; otherwise, do
nothing. Consider

�
Ventry ,� < �Ventry ,� + �Ventry ,V� , (8)

where V� is the immediate successor node of the entry task.
�e end condition of the above loop is the �rst satisfying one
from the following two judgments:

(1) All processors have been assigned tasks; namely, each
processor’s entry task duplication judgment has been
completed.

(2) All immediate successor nodes of the entry task (V�)
are scheduled; namely, they do not need entry task to
transmit data.

4.1.3. ITS Insertion-Based Optimizing Policy. Insertion-Based
strategy is proposed by the HEFT algorithm and adopted by
many other scheduling algorithms. But there is no precise
mathematical description for this mechanism. When mul-
tiple idle time slots (ITS) meet the insert conditions, HEFT
algorithm just selects the �rst ITS rather than the fastest one
to be completed. �is strategy will cause the unreasonable
scheduling problem. We re�ne HEFT algorithm’s inserting-
based constraints and provide a choosing policy when multi-
ple slots satisfy the conditions. �e detailed description is as
follows:

(i) A
er completion of task allocation, update each
processors’ ITS queue.

(ii) When allocating V�, look up ITS of all processors to
�nd a slot with ��,� ≤ ITS.

(iii) To all of the ITS meet the condition in step (2) and
determine when V� is assigned to the ITS execution

and whether the EFT is less than or equal to the lower
limit time of ITS.

(iv) When there are multiple time slots satisfying steps (2)
and (3), choose the ITS with the smallest EFT.

HSIP algorithm has the same time complexity with the
HEFT algorithm.Computing rank�(V�)must traverse all tasks
and compare processors, which can be done within �(V,
)
in initialization stage. Scheduling all tasks must traverse all
tasks, which can be done in �(V). Computing the EFT of
all tasks can be done in �(V,
). �us, the complexity of the

algorithm HSIP is �(V2,
).
4.2. A Case Study. Figure 2 and Table 2 show the results
of scheduling for the sample DAG in Figure 1 with the
algorithms HSIP, SDBATS, CPOP, HEFT, and PEFT. �e
corresponding result is shown in Table 2, and we can see that
HSIP algorithm has shorter makespan and lesser communi-
cation costs. It is worth mentioning that, in Figure 2(a), 1
is determined by entry task duplication selection policy of
Ventry duplication; V7 is determined by ITS insertion-based
optimizing policy allocation on the processor �2; both are
the reason our algorithm can achieve signi�cant scheduling
results.

5. Experimental Results and Discussion

�is section provides comparisons between the performance
of the HSIP algorithm and the algorithms presented above.
For this purpose, two sets of workload graphs are taken into
consideration: randomly produced application graphs [22]
along with graphs that represent some real-world applica-
tions. We start o� with presenting the comparison metrics
applied to assess the performance.

6 Scienti�c Programming

Table 2: Results of scheduling DAG.

HSIP SDBATS CPOP HEFT PEFT

Task prioritizing
V1, V2, V4, V3, V6,
V5, V9, V7, V8, V10

V1, V3, V4, V2, V6,
V5, V7, V9, V8, V10

V1, V2, V3, V7, V4,
V5, V9, V6, V8, V10

V1, V3, V2, V4, V5,
V6, V9, V7, V8, V10

V1, V4, V2, V5, V3,
V6, V7, V9, V8, V10

Makespan 67 76 86 80 85

5.1. Comparison Metrics. �e metric that is most commonly
adopted to appraise a schedule for a DAG, is themakespan, as
de�ned by (3). Because of the implementation of a sizable set
of task graphs with various characteristics, it is necessary to
standardize the schedule length to the lower bound, known
as the schedule length ratio (SLR), de�ned as follows:

SLR = makespan

∑
V�∈CPMIN

min	�∈� (��,�)
. (9)

�e denominator in the equation is the minimum com-
putation cost of the critical path tasks (CPMIN). Makespan
is always greater than the denominator in the SLR equation.
�us, the best algorithm is the algorithm that has the lowest
SLR.

E	ciency is de�ned as the calculation of the speedup
divided by the number of processors applied in each run,
and the speedup value is calculated as dividing the time of
sequential execution by the time of parallel execution (i.e.,
the makespan). �e sequential execution time is calculated
by assigning the entire tasks to a single one processor that
minimizes the overall computation cost of the task graph, as
shown in the following equation:

Speedup = min	�∈	 {∑V�∈
��,�}
makespan

. (10)

5.2. Random Graph Generator. In order to achieve a broad
range of test DAGs, we have designed a task graph generator
that can randomly generate DAGs with various features
depending on input parameters the same as literature [8].
�e parameters include number of tasks (V), shape parameter
(fat), number of edge factors (density), symmetry parameter
(regularity), the degree of leaping (jump), Communication to
Computation Ratio (CCR), and range percentage of compu-
tation cost (!). By changing fat value we are able to generate
di�erent shapes of the task graphs. �e height of the graph is
related to√V/fat, and the width for each level is equivalent to
√V∗ fat. A dense graph (shorter graph with high parallelism)
is created by selecting fat ≫ 1.0, while fat ≪ 1.0 determines
a longer graph (low parallelism).

�e density de�nes the number of edges between two
node levels, the lower value generates fewer edges, and the
higher value generates more edges. �at a�ects the connec-
tivity between nodes of each level.

�e regularity de�nes the uniformity of each level. �e
small value will cause the numbers of nodes in each level
to di�er largely, namely, an unsymmetrical DAG. On the
contrary, the number of nodes in each level will be similar.

�e jump is the degree of leaping, which decides the steps
that show how the node jumps down.�e jump value denotes

how many leaping steps from the current node level to the
down level, and jump = 1 denotes that the node of current
layer connects next layer’s nodes properly.

�e range percentage of computation costs on processors
(!) basically is the heterogeneity aspect for processors speeds.
Parameter �� is the average computation cost for each
individual task V�.�e�� is selected randomly from a uniform
distribution with a range of [0, 2 ∗ 	DAG]. Where 	DAG

represents the average computation cost in the given graph.
�e computation cost of each individual task V� in the system
on each processor
� is decided randomly from the following
range:

�� × (1 − !2) ≤ ��,� ≤ �� × (1 +
!
2) . (11)

For the purpose of the experiments, we chose the range
of values for the parameters as follows: V = {10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500}; CCR = {0.1,
0.5, 0.8, 1, 2, 5, 10}; ! = {0.1, 0.2, 0.5, 1, 2}; jump = {1, 2, 4};
regularity = {0.2, 0.8}; fat = {0.1, 0.4, 0.8}; density = {0.2,
0.8}; Processors = {4, 8, 16, 32}. �ese parameters produce
70560 di�erent DAG models. Every DAG model generates
10 random DAGs with di�erent edges and node weights. So
there are 705600 random DAGs used in our research. �is is
also the same for the data in literature [8].

Average SLR is the key factor that evaluates the per-
formance of the algorithm in terms of the graph structure.
Figure 3 demonstrates the average SLR for the changing
numbers of tasks. Figure 4 demonstrates the average SLR
for di�erent CCR. Figure 5 demonstrates the average SLR by
heterogeneity (!) values with 0.1, 0.2, 0.5, 1.0, or 2.0. �e
e	ciency values attained from each of the algorithms with
di�erent numbers of processors are shown in Figure 6. �e
standard deviations of the experimental errors are calculated
and are typically between 3–6%.

In Figure 3 as the number of tasks increases, the SLR of
our algorithm is smaller than other algorithms. Comparing
the PEFT algorithm, in 10 tasks, the SLR of our algorithm
is close to 10% higher than the PEFT. In 500 tasks, our
algorithm is 5% higher. Figures 4 and 5 show that, with
increasing CCR and heterogeneous parameters, SLR of our
algorithm are better than other algorithms. Figure 6 shows
that, with di�erent numbers of processors, our algorithm
also has higher e	ciency than the others. �e results further
emphasize that HSIP algorithm outperforms the reported
algorithms with respect to average SLR and e	ciency for
random task graphs with di�erent shapes.

Table 3 shows the pairwise schedule length comparison
of the scheduling algorithms. We can see that the HSIP is
68% better than, 31% worse than, and 1% equal to PEFT. Our

Scienti�c Programming 7

HSIP

PEFT

SDBATS

HEFT

CPOP

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 S
L

R

20 30 40 50 60 70 80 90 100 200 300 400 50010

Number of nodes

Figure 3: Average SLR for di�erent number of tasks.

HSIP

PEFT

SDBATS

HEFT

CPOP

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

A
ve

ra
ge

 S
L

R

0.5 0.8 1 2 5 100.1

CCR

Figure 4: Average SLR for di�erent CCR.

HSIP

PEFT

SDBATS

HEFT

CPOP

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

A
ve

ra
ge

 S
L

R

0.2 0.5 1 20.1

Heterogeneity

Figure 5: Average SLR for di�erent heterogeneity.

HSIP

PEFT

SDBATS

HEFT

CPOP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
�

ci
en

cy

8 16 324

Number of processors

Figure 6: E	ciency for di�erent number of processors.

Table 3: Pairwise schedule length comparison of the scheduling
algorithms.

HSIP PEFT SDBATS HEFT CPOP

HSIP

Better

∗
68% 75% 81% 97%

Worse 31% 17% 14% 2%

Equal <1% 8% 5% <1%
PEFT

Better 31%

∗
77% 70% 95%

Worse 68% 32% 26% 4%

Equal <1% <1% 4% <1%
SDBATS

Better 17% 32%

∗
61% 92%

Worse 75% 77% 33% 7%

Equal 8% <1% 6% <1%
HEFT

Better 14% 26% 33%

∗
85%

Worse 81% 70% 61% 14%

Equal 5% 4% 6% <1%
CPOP

Better 2% 4% 7% 14%

∗Worse 97% 95% 92% 85%

Equal <1% <1% <1% <1%

algorithmalso holds the superiority, when it is comparedwith
other algorithms.

Due to introducing a look-ahead feature, PEFT algorithm
�rstly considers the child nodes for the scheduling priority.
So it has some advantages when the parallelism is low. But
when the parallelism becomes high, this advantage is not
obvious, especially when the DAG has a big heterogeneous
di�erence. When the computation cost di�erences and com-
munication cost weight of the child nodes are large, the PEFT
algorithm o
en does not enjoy this advantage. Sometimes
it is even not better than HEFT. �e SDBATS algorithm is
better than HEFT in some cases. But SDBATS ignores the
insertion-based strategy and focuses on the computation cost
di�erences too much. It does not have the advantage in the
case of large communication cost. HEFT is the most classical
scheduling algorithm.�e e�ect is relatively stable, which can

8 Scienti�c Programming

HSIP

PEFT

SDBATS

HEFT

CPOP

1

1.5

2

2.5

3

3.5

4
A

ve
ra

ge
 S

L
R

6 7 8 9 10 11 12 13 14 155

Matrix size

(a) Average SLR

HSIP

PEFT

SDBATS

HEFT

CPOP

4 8 162

Number of processors

0

0.2

0.4

0.6

0.8

1

E
�

ci
en

cy

(b) E	ciency

Figure 7: Experimental result for Gaussian elimination.

be seen from its maximum equivalence rate of scheduling
results comparingwith other algorithms. CPOP has the worst
scheduling results, because it pays too much emphasis on
the tasks of the critical path on the same processor. But it
occasionally has good performance when the tasks on the
critical path meet the scheduling optimal conditions.

�e experiment results show that HSIP is better than
other comparative algorithms in random DAG experiments
of various parameters. Especially in the case of big het-
erogeneous di�erence, the advantage of our algorithm is
more obvious. It is because HSIP pays more attention to
the balance between the computational cost di�erence and
communication cost weight as presented in Section 4.

5.3. Real-World Application Graphs. In this section, we take
the application graphs of some real-world problems into
account, namely, Gaussian elimination [23], Fast Fourier
Transformation (FFT) [24], Montage [25], and Epigenomics
[26], which are used in [6, 8].

In theGaussian elimination applications experiment, het-
erogeneous computing systems using �ve processors, CCR
and !, provided in Section 5.2, are adopted. As the structure
of the application is already established, the parameters such
as the number of tasks, jump, regularity, fat, and density are
therefore not required. A new parameter matrix size (*) is
used as opposed to number of tasks (V). �e total number of
tasks is equal to (*2 + * − 2)/2, in a Gaussian elimination
graph. We appraise the performance of the algorithms at a
range of matrix sizes that spans from 5 to 15. �e size of the
graphs in this experiment increases from a minimum of 14
tasks to the largest 119 tasks. �e results of the simulation
are presented in Figure 7, which shows that HSIP algorithm
performs better than other reported algorithms in terms of
average SLR and e	ciency in various matrix sizes.

In FFT related experiments, because the application
structure is established, only the CCR and range percent-
age parameters (!) are applied. In our experiments, the

number of data points in FFT provides another parameter,
which increases from 2 to 32 with incremental powers of 2.
Figure 8(a) shows the average SLR values of the FFT graphs
at a variety of sizes of input points. Figure 8(b) represents
the e	ciency values attained from each of the algorithms
with regard to di�erent numbers of processors with 32 data
points graphs. �e HSIP algorithm performs better than
other reported algorithms.

�e Montage is used to construct an application of
astronomical image mosaic in the sky. We use 25 and 50
task nodes to make experiments. Like other real applications,
the application structure has been established, only using
the CCR, CPU number, and range rate parameters (!).
Figure 9 shows the experimental results under the di�erent
parameters of SLR. Our algorithm is still better than other
algorithms.

Epigenomic is used to compare the genetic performance
of genetic state of human cells in whole genome range.
Like other real applications, the application structure has
been established, only using the CCR, CPU number, and
range rate parameters (!). In this experiment, we selected 24
and 46 task nodes. Figure 10 shows the experimental results
under di�erent parameters of the SLR. HSIP is still dominant
position by comparison.

�e standard deviations of all the above real-world
problems’ experimental errors are calculated, and they are in
the 4–7% range.

6. Conclusions

In this paper, we proposed a new list scheduling algorithm
for heterogeneous systems named HSIP. �e task scheduling
algorithm proposed in this paper has demonstrated that the
scheduling DAG structured applications performs better in
heterogeneous computing system in respect of performance
matrices (average schedule length ratio, speedup, e	ciency,
and frequency of best results). �e performance of the HSIP

Scienti�c Programming 9

HSIP

PEFT

SDBATS

HEFT

CPOP

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 8 16 32

A
ve

ra
ge

 S
L

R

Input points

(a) Average SLR

HSIP

PEFT

SDBATS

HEFT

CPOP

0

0.2

0.4

0.6

0.8

1

2 4 8 16

E
�

ci
en

cy

Number of processors

(b) E	ciency

Figure 8: Experimental result for FFT.

0

10

20

30

40

50

60

70

0.1 0.5 0.8 1 2 5 10

A
ve

ra
ge

 S
L

R

CCR

HSIP

PEFT

SDBATS

HEFT

CPOP

(a) Average SLR for di�erent CCR

0

10

20

30

40

50

60

70

4 8 16 32 64

A
ve

ra
ge

 S
L

R

HSIP

PEFT

SDBATS

HEFT

CPOP

Number of CPUs

(b) Average SLR for di�erent number of CPUs

0

5

10

15

20

25

30

0.1 0.2 0.5 1 2

A
ve

ra
ge

 S
L

R

Heterogeneity

HSIP

PEFT

SDBATS

HEFT

CPOP

(c) Average SLR for di�erent heterogeneity

Figure 9: Experimental result for Montage.

10 Scienti�c Programming

0

10

20

30

40

50

60

70

0.1 0.5 0.8 1 2 5 10

A
ve

ra
ge

 S
L

R

CCR

HSIP

PEFT

SDBATS

HEFT

CPOP

(a) Average SLR for di�erent CCR

0

10

20

30

40

50

60

70

4 8 16 32 64

A
ve

ra
ge

 S
L

R

Number of CPUs

HSIP

PEFT

SDBATS

HEFT

CPOP

(b) Average SLR for di�erent number of CPUs

0

5

10

15

20

25

30

0.1 0.2 0.5 1 2

A
ve

ra
ge

 S
L

R

Heterogeneity

HSIP

PEFT

SDBATS

HEFT

CPOP

(c) Average SLR for di�erent heterogeneity

Figure 10: Experimental result for Epigenomic.

algorithm has been experimentally observed by applying
a large set of task graphs created randomly with various
characteristics and application graphs of multiple real-world
issues, such as Gaussian elimination, Fast Fourier Transfor-
mation, Montage, and Epigenomics. �e simulation results
backup the fact thatHSIP algorithm is better than the existing
algorithms, PEFT, SDBATS, CPOP, and HEFT, for instance.

�e complexity of HSIP algorithm is �(V2,
), which is the
same time complexity in comparison with other scheduling
algorithms illustrated in this paper.

Competing Interests

�e authors declare that they have no competing interests.

Acknowledgments

�is paper is partially supported by �e National Natural
Science Foundation of China under Grant no. 11372067 and

�e General Project of Science and Technology Research
fromEducationDepartment of LiaoningProvince (Grant no.:
L2014508).

References

[1] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous
distributed computing,” in Encyclopedia of Electrical and Elec-
tronics Engineering, J. G. Webster, Ed., vol. 8, pp. 679–690, John
Wiley & Sons, New York, NY, USA, 1999.

[2] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik,
and P. Wong, “�eory and practice in parallel job scheduling,”
in Job Scheduling Strategies for Parallel Processing, vol. 1291 of
Lecture Notes in Computer Science, pp. 1–34, Springer, Berlin,
Germany, 1997.

[3] Y. K. Kwok and I. Ahmad, “Benchmarking the task graph
scheduling algorithms,” in Proceedings of the 1st Merged Inter-
national and Symposium on Parallel and Distributed Processing,
and IEEE Parallel Processing Symposium (IPPS/SPDP ’98), pp.
531–537, March-April 1998.

Scienti�c Programming 11

[4] J. C. Liou and M. Palis, “A comparison of general approaches
to multiprocessor scheduling,” in Proceedings of the 11th Inter-
national Parallel Processing Symposium, pp. 152–156, IEEE,
Geneva, Switzerland, April 1997.

[5] T. Hagras and J. Janeček, “A high performance, low complexity
algorithm for compile-time task scheduling in heterogeneous
systems,” Parallel Computing, vol. 31, no. 7, pp. 653–670, 2005.

[6] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-e�ective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol.
13, no. 3, pp. 260–274, 2002.

[7] E. U. Munir, S. Mohsin, A. Hussain, M. W. Nisar, and S. Ali,
“SDBATS: a novel algorithm for task scheduling in hetero-
geneous computing systems,” in Proceedings of the IEEE 27th
International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW ’13), pp. 43–53, IEEE,
Cambridge, Mass, USA, May 2013.

[8] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm
for heterogeneous systems by an optimistic cost table,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp. 682–694, 2014.

[9] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,” Journal of Parallel &
Distributed Computing, vol. 59, no. 2, pp. 107–131, 1999.

[10] J.-K. Kim, S. Shivle, H. J. Siegel et al., “Dynamically mapping
tasks with priorities and multiple deadlines in a heterogeneous
environment,” Journal of Parallel and Distributed Computing,
vol. 67, no. 2, pp. 154–169, 2007.

[11] W. Sun, Y. Zhang, and Y. Inoguchi, “Dynamic task �ow
scheduling for heterogeneous distributed computing: algorithm
and strategy,” IEICE Transactions on Information and Systems,
vol. E90-D, no. 4, pp. 736–744, 2007.

[12] J. G. Barbosa and B. Moreira, “Dynamic scheduling of a
batch of parallel task jobs on heterogeneous clusters,” Parallel
Computing, vol. 37, no. 8, pp. 428–438, 2011.

[13] E. S. H. Hou, N. Ansari, and H. Ren, “A genetic algorithm for
multiprocessor scheduling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 2, pp. 113–120, 1994.

[14] R. C. Correa, A. Ferreira, and P. Rebreyend, “Integrating list
heuristics into genetic algorithms for multiprocessor schedul-
ing,” in Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing, pp. 462–469, New Orleans, La, USA,
October 1996.

[15] M. K. Dhodhi, I. Ahmad, A. Yatama, and I. Ahmad, “An
integrated technique for taskmatching and scheduling onto dis-
tributed heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, vol. 62, no. 9, pp. 1338–1361, 2002.

[16] M. I. Daoud andN.Kharma, “A high performance algorithm for
static task scheduling in heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing, vol. 68,
no. 4, pp. 399–409, 2008.

[17] T. Hagras and J. Janecek, “A simple scheduling heuristic for
heterogeneous computing environments,” in Proceedings of the
Second International Conference on Parallel and Distributed
Computing (ISPDC ’03), pp. 104–110, IEEE, 2003.

[18] E. Ilavarasan, P. �ambidurai, and R. Mahilmannan, “High
performance task scheduling algorithm for heterogeneous com-
puting system,” in Distributed and Parallel Computing, pp. 193–
203, Springer, Berlin, Germany, 2005.

[19] E. Ilavarasan and P. �ambidurai, “Low complexity perfor-
mance e�ective task scheduling algorithm for heterogeneous

computing environments,” Journal of Computer Science, vol. 3,
no. 2, pp. 94–103, 2007.

[20] X. Tang, K. Li, G. Liao, and R. Li, “List scheduling with
duplication for heterogeneous computing systems,” Journal of
Parallel and Distributed Computing, vol. 70, no. 4, pp. 323–329,
2010.

[21] S. Bansal, P. Kumar, and K. Singh, “An improved duplica-
tion strategy for scheduling precedence constrained graphs
in multiprocessor systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 6, pp. 533–544, 2003.

[22] P. F. Dutot, T. N’Takpé, F. Suter, and H. Casanova, “Scheduling
parallel task graphs on (almost) homogeneous multicluster
platforms,” IEEE Transactions on Parallel &Distributed Systems,
vol. 20, no. 7, pp. 940–952, 2009.

[23] A. K. Amoura, E. Bampis, and J.-C. König, “Scheduling algo-
rithms for parallel Gaussian elimination with communication
costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 9, no. 7, pp. 679–686, 1998.

[24] Y. C. Chung and S. Ranka, “Applications and performance anal-
ysis of a compile-time optimization approach for list schedul-
ing algorithms on distributed memory multiprocessors,” in
Proceedings of the ACM/IEEE Conference on Supercomputing
(Supercomputing ’92), pp. 512–521, IEEE, Minneapolis, Minn,
USA, November 1992.

[25] Montage: An Astronomical Image Mosaic Engine, 2013, http://
montage.ipac.caltech.edu/.

[26] USC Epigenome Center, 2013, http://epigenome.usc.edu/.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

